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Abstract: The iterative equation f?(z) = g(x), z € X for a given function ¢ and a positive integer ¢ is solved in the

following two main cases:
(i) X=27Z, g(x) =azx+0b, (a,b€Z; a#0,1);
(i) X =NU{0}, g is increasing with no fixed point.
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1. Introduction
For a function f and a positive integer ¢, define f9 = fo fo.--o f (g times). Given a function g, the

polynomial-like iterative functional equation of the form
arf(x) + agf?(x) + -+ a,fU(x) = g(z) (reX) (1.1)

has been studied in many different settings of a1, as,...,a,, X and g(x).

In a recent paper [6], using Schauder’s fixed point theorem and the Banach contraction principle, sufficient
conditions for the existence, uniqueness, and stability of the periodic and continuous solutions of (1.1) were
given when X = R. In particular, the solution of 2f(x) + Af?(x) = sinz, A € [~1,1], was established, as
well as a similar result when the right-hand expression is a cosine function. In [4, 5], the equation of the
form ay f(z) + axf%(z) = bx + ¢ was solved for a1, as,b,c € R, as # 0. When g(z) is continuous and strictly
monotonic, a comprehensive work dealing with continuous solutions of f9(z) = g(z) can be found in [2, Chapter
XVI.

In 2008, Sarkaria [9] (see also his unpublished paper at http://kssarkaria.org/docs/RootsFunctions.pdf)
found all functions f: X — X, where X =N, Z, or R, satisfying the iterative functional solution f?(n) = n+k
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for given ¢ and k£ € N. This equation arose from one of the problems posed at the International Mathematical
Olympiad in 1987: prove that there is no function f: N — N such that

f(f(n)) =n+1987.
More precisely, Sarkaria proved that:
(i) for ¢ > 1,k > 1, there exists a function f:N — N satisfying f9(n) = n + k if and only if ¢ divides k;
(ii) there are exactly k!/(k/q)! such functions and their shapes can be explicitly determined;
(iii) there are infinitely many functions f :7Z — Z satisfying f?(n) = n + k if and only if ¢ divides k;

(iv) there exist continuous functions f : R — R satisfying f%(n) = n+ k, and explicit forms of such functions

can be determined.

In another direction, as mentioned in [1], Mallows observed that there is a unique increasing sequence
(a(n)), o of nonnegative integers such that a(a(n)) = 2n for n # 1. In 1979, Propp [7, 8] introduced the
sequence (s(n)),q, defined to be the unique increasing sequence such that s(s(n)) = 3n. In 2005, Allouche
et al. [1] showed that there are uncountably many increasing sequences (a(n)),>, such that a(a(n)) = dn for
all d > 4, while for d =2 and d = 3 there is a unique increasing sequence satisfying a (a(n)) = dn. Recently,
in 2014, the results of Propp [7, 8] and Allouche et al. [1] were generalized in [3], where it was proved that
for ¢ > 2,D > 2,if D — 1 divides ¢, then there exists a unique increasing function f : Ny — Ny satisfying
f4(n) = Dn, where Ny := NU {0}; otherwise, there are uncountably many increasing functions satisfying this
iterative functional equation.

Here, we consider the iterative functional equation

fUx) =g(x)  (zeX), (1.2)

for two different domains of X =7 and X = N.
Since the domains considered in this work are discrete, the results in the continuous case as given in [2]

and [4-6] are independent from ours here. In the next section, we find all solutions f for the case X = Z and
g(x) = ax +b, where a,b € Z with a # 0,1. Our approach is to look closely at the sequence of iterative values
{f™(@)}nez for fixed «. This sequence is periodic with somewhat arbitrarily given values in each period, and
the main task is to systematize the values in each period to take care of all possibilities. It turns out that the
analysis is most involved when a = —1. When a ¢ {—1,0,1}, the situation is simpler in the sense that the
sequence of iterative values has a so-called initial element, called a starter, which enables us to systematize the
values in each period more easily and cleanly.

In Section 3, we solve (1.2) when X = Ny and g is an increasing function having no fixed point. The

approach in this part is similar to that of the case a ¢ {—1,0,1} in the previous section.

2. Over the set of integers

In this section, we solve the iterative functional equation

fin)=an+b (n€Z) (2.1)
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where ¢ > 2, a # 0,1, and b are integers. For brevity, put

= b = .
on) = an+b, po=

The simple proof of the next lemma is left to the reader.
Lemma 2.1 If f is a solution function of (2.1), then:

(i) f is one-to-one;

(ii) f partitions Z into equivalence classes via the relation x ~y <=y = f*1(x) for some s € Z;
(iii) f has a unique fixed point at x = p provided that it is an integer.

For convenience, we will define some terminologies about equivalence classes. Let Aq, As,... be equiv-
alence classes on the set Z or Ny with respect to some equivalence relation. If A; for ¢ = 1,2,... has the
smallest absolute element, then this element is called the starter of class A; and an element of A; not being
a starter is called a nonstarter of A;.

We start with the case a = —1.

Theorem 2.2 Let ¢ > 2 and b be integers. If [ :7Z — Z satisfies the iterative functional equation
fi(n) =-n+bd, (2.2)
then f must be of the form fr for some w defined below.

Proof Let f:Z — Z be a solution of f4(n) = —n+b. Let a € Z\ {3 }. Consider the set

{a,f(a),fQ(a),...,fq(a) =—ox+0b...,[a)= oz},

which has at most 2¢ elements. Let m be the smallest natural number such that f™(a) = «. Since f~! exists
and f29(a) = a, we get m | 2¢. If m is odd, then m | q, say m = ¢k, so f9(a) = f™*(a) = a, a contradiction.
Hence, m is even, say

m = 2r. (2.3)
If a, f(a), f2(a),..., f?"71(a) are not distinct, then fi(a) = f/(a) for some i,j with 0 < i < j < 2r —1
implying that f/~%(a) = «, which is a contradiction. Then a, f(a), f?(a),..., f?"~!(a) are distinct. Note
also that fl'(a) = a for | € 2rZ. Since r | q, if g/r is even, say ¢ = (2t)r, then fi(a) = fCa) = a, a

contradiction. Then ¢/r must be an odd number, say ¢ = (2t + 1)r, so

fT(OL) _ fr(f?r(t)(a)) _ f(2t+1)r(a) _ fq(a) = —a+b.
Hence,

{o. f(a), f*(a) ..., f7Ha)} = {a, f(a), f(),.... [ (), —a+ b~ f(a) +b,...,— [} (a) + b} .
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For h =0,1,...,r — 1, let DY := {f"(a), /""" (a)} = {f"(a), —f"(a) + b}. Observe that D N Dy = § for
all h,k € {0,1,...,r —1} and h # k. Denote the set DF U---U D ; by 2(r,«a) and observe that

feDy ={f"a),=f"(a)+b} = Diy = {" (@), =" () + b}

satisfies
(M) = "), f(=fMa) +b) = (@) = = (o) +b.

Taking as € Z\ (Z2(r,a) U {b/2}) and repeating the above procedure, we obtain
.@(7’2,0[2) :Dgz U"'UDaQ

ro—17

where 79 | ¢ and ¢/ry is odd. This process can be continued until we eventually exhaust the set Z and so

Z\{g} =P(r,a) U ZD(ra,a0)U- -

We turn now to obtain an explicit form of the solution function f. Let
. . . b
E, ={ib—1i}, ie€ mEZ|m2§ .

Observe that Z = U;czE;. Let m be a partition of the set {Ei}i;éb/2 into subsets, each of which contains s

of the sets E;, where s is a divisor of ¢ with ¢/s odd as obtained in (2.3). Since ¢/s is an odd number, let
q = (214 1)s. Consider the set

—19

gs(ﬂ(i)) =E,UE;, U---UE;,
where (i) = {ig,%1,...,4s—1} is the ith component of the partition 7, and
Eij :{aij76ij}7 Qs e{ljab_zj}7ﬁlj :b_aij

for 7=0,1,2,...,s — 1.
Define the function fr :Z — Z by assigning its values on each &r(;)) as

Jr i Eiy = By, (j=0,1,2,...,5 —2)
by
frei;) = iy f=(Bi;) = Bijia
and
fﬂ- : Ei571 — Eig
by

fﬂ'(ais_l) = ﬂioa fﬂ(ﬂis—l) = Q.

The mapping of function f; on each &) is illustrated by

fﬂ' fﬂ' f7T f7r f7r f7'r fL frr fﬂ' f7.—
iy —> Qg —> Oy —> + = —> Qi —>Bio —)51'1 _p>5742 —)—)BZ oy T Oy

s

If b/2 € Z, define fr(b/2) =b/2 so that f2(b/2) =b/2=—(b/2)+b.
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We now show that f, satisfies (2.2). For j =0,1,...,s — 2, since

fr(ai;) = i, f,%(aij) = fali; ) = @ij s,
f‘;ijil(aij) = Q5 oy T Qg f;ij(aij) = fﬂ'(aisfl) = /Bioa
f;(aij):fg(ﬂio)zﬂiﬁ —Qy; +b:ﬂij7
we get
filei,) = —ay, +b and f2(0y,) = oy,
SO

fg(aij) = les-&-‘s(aij) = f;(ah) =~ + b.
Similarly, we have fi(53;,) = —8;, +0b for j =0,1,...,5— 2. Finally, on the set F; _,, we have
f‘n’(ais_l) = ﬂioa
f72r(05’i571) = fﬂ(ﬂio) = ﬁi17

f;(aisfl) = ﬁi371 = _aisfl + b7
f?s(aikl) = Qg _q,
SO
f‘g(aisfl) = les+s(ai57l) = f:r;(aisf1) =0y, + b,

and similarly we also have

Since Z = U;ez B, it follows that fi(n) = —n +b.
From the above construction, we deduce that the totality of the &((;))s is identical with that of the

2(a, s)s and so each solution function f of (2.2) must be of the form f, for some 7 (with s being some divisor

r of q). O
The last part of the proof in Theorem 2.2 gives the following collorary.

Corollary 2.3 Let q,b € Z, ¢ > 2 and let C; = {i,b— i}, i € Z. For each divisor s of q such that q/s is
odd, let I = {ig,i1,...,is—1} C Z be a set of s indices ig < iy < --- <ig_1 such that C;; N C;, =0 whenever
i; & {ir,b—ir} and let € =y u---UC;, .

For each decomposition of Z\{b/2} into a countable union of pointwise disjoint g

(i.e. JZA{b/2} = U, %S“s)), define fo:Z — 7 by
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from each ‘55(15) into itself
fS:Cij :={aij,ﬁij}—>0ij+l (jZO,l,...,S—Q)
where o;; € {ij,b— i}, Bi;, =b—ay;, by

fs(aij) = aij+17 fs(ﬁij) = B’i]‘+1>

and

fs . Cis—l = {Oéis_laﬂis—l} — Cz

by

Then fs satisfies fd(n) = —n+b.
Example 2.4 Let f: 7 — 7Z satisfy the iterative functional equation
f%(n) =g(n) := —n +5. (2.4)

Then g(n) has no fized points in Z. Since q = 6, there are two possible values of s for which q/s is odd, i.e.
s=2,6. Let

5
C;={i,5—1i}, i€ {m€Z|m>2}.
Case s =2. To illustrate how to obtain a solution function, as an example of a possible partition 7, we take
™= {Cg, 04} U {05, CG} U {07, Cg} U {Cg, 010} U---.

The solution function fr is shown via the following diagram of element maps:

fﬂ- : Cl — Ci+1

fr:Citr— G i=3,5,7,...

i=3:30abh o013l yln oty gy
1=5:56—=-6—-0—--1-5=-6—-0—-1—---

1=7: 7T+ 8=+-2—+-3=27—-8=>-2—=--3—=--

As another example of possible partition 7, take
7 ={C3,C5} U{Cy,C6} U{C7,Co} U{Cs,Cro}U---,
which gives another solution function fr:

fﬂ- : Oi — Oi+2

Gy i=3,4,7,8,11,12,...
T - i+2 7
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i=3:3b 5ol ol gl 5l ol gly
i=4 :4—-56—>1—--1—-4—->6—>1—>—-1—---
1=7 759> -2—>-4—>T7T>59—>-2—>—-4—---

t=8:8=2>10—-+-3—--H—-8—-10—--3—=>-5—---

Since there are infinite many partitions of the set {C’i}i23 into subsets, each of which contains two elements of

the sets C;, the equation (2.4) has infinitely many solutions.

Case s =6. As an example of the partition 7, take
7 ={C3,C4,C5,Cs,C7,Cs} U{Cy, C1o, C11,C12,C13,Craf U .

Then the solution f. is given by
fr:Ci = Ciqq fori >3 and i # 8,14, 20,26, . ..
fﬂ— :Cy — Ci_s fO?” 1= 8,14, 20,26, ...

3l s gl gl gl ol 1 Il 1y ofn gl gl

9-10—-1—-12—-13—+14—+—-4—-+-5—+-6—-+-T—--8=-9—=9--.

Since there are infinitely many partitions of the set {C’i}i23 into subsets of six elements, there are uncountably

many solutions of (2.4).

Throughout the rest of this section, we assume that ¢,a, and b are integers such that ¢ > 2 and
a#-1,0,1.

Lemma 2.5 Let § € 7Z.
(i) If g74(B) € Z for some i € N, then g~ (B) € Z.
(ii) If B=p, then g~9(B) €Z for all j > 1.

(iii) If B # p, then there exists a positive integer J such that g=3(3) € Z for all 5 < J and g~ (B) € Z for
all 3> J.

Proof
(i) Assume that =+ (B) :=n € Z. Then g~ (3) = g(n) € Z, a contradiction.

(ii) We see that

and so p =g~/ (p) forall j > 1.
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(iii) Suppose 8 # p. If p € Z, then let J be the largest nonnegative integer such that a’ divides 8 — p. For
1=0,1,...,J, we have %+p€Z and

I

ISR
—N
7N
o |
1
=l o
58

|O“
(V)

>
~__
|

>
—
I

Q
L
RS
=
1
=l o
IS

kS
(]

Q| o
~__

For j > J, we easily see that ¢=7(8) = % +p 7.

If p € 7Z, then consider the numbers of the form ﬁa;p +p (k€ Ny). For k =0, note that Bop 4 peZ.

ak

Let K € N be large enough so that

%‘ < Ip| = Llp|]. Thus, i}p +p & Z. Let J be the largest positive
integer such that %4—]362 for j =0,1,...,J. For j > J, we then have g~/ (8) = %+p¢Z. O

By Lemma 2.5, each equivalence class constructed via the equivalence relation in Lemma 2.1 contains a
unique element called a starter (« is a starter if there is no integer n such that g(n) = ). Let S denote the
set of all starters in Z\{p} and let N denote the set of all nonstarters in Z together with p if p € Z. We see
that S is an infinite set since {ma+b—1|m € No} C S.

By Lemma 2.5, the equivalence classes constructed via the equivalence relation in Lemma 2.1 are either

of the form
Co ={9™(a) | m € No} where a € S

or of the form

o _ )i}, ifpeZ,
PUle,  ifpéz,

which yields

Z= (U ca>Ucp.

acsS

For convenience, let C = {C, | « € S}. Useful properties of these classes are gathered below.

Lemma 2.6 If r and l are in S but r £ 1, then r and [ are in different classes.

Proof If r and [ are in the same equivalence class, then there is ¢t € Z\{0} such that r = f*(l). Interchanging
r,l, we may assume t > 0. Thus, r = f7 (f(t=14(1)) = g(f¢=V4(1)), i.e. r ¢ S, a contradiction. O

Lemma 2.7 (i) For each a € S, f sends the class Cy, into a unique class in C that contains f(c).
(ii) We have f9(Cq) C Cy for all a € S.

(iii) The function f is not onto.
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Proof

(i) Let z € C,, i.e. there exists a nonnegative integer m such that x = ¢"(«). We see that

f(x) = f(g™ (@) = F"(f(@) = g™ (f(@)),

ie. f(x) and f(a) are in the same class, say, Cx for some @ € S. If Cz N C, # 0, then there is a
nonnegative integer m such that p = ¢"(f(a)) = f(¢™(«)). Since p is the fixed point of f and f is

one-to-one, we get ¢"*(a) = p, and so o = p, which is a contradiction.

(ii) Let « € S and x € C,, i.e. z = g™(a) for some m € Ng. Then fi(z) = g™"!(a) € C,, which shows
that f9(Cy) C C, forall a € S.

(iii) Suppose that f is onto. Let o € S. Then there exists oy € Z such that a = f(a1). Similarly, there
exists as € Z such that a1 = f(az), i.e. a = f%(az). Continuing in this way, we get a = f9(ay) for

some o4 € Z, i.e. o= g(ey), a contradiction.

O
Lemma 2.7(iii) tells us that R; # Z. Since N C Ry, it follows that the set S\R; is nonempty and we

explore it further.

Lemma 2.8 If k € S\Ry, then f17(k), f472(k),..., f(k),k are the starters of q distinct classes.

Proof For i=0,1,...,q— 1, suppose fi(k) € C,, where the a;s are not necessarily distinct. We now show
that f%(k) is the starter of the class C,,. Starting from class C,
t € Np. Since both a1 and f97!(k) are in class C,

Qg1

1> we have fi71(k) = g'(aq—1) for some
Lemma 2.7(ii) implies that both f(cay—1) and f9(k)
are in the same class. By Lemma 2.7(iii), we have f(k) € Cu,, and so f(ag—1) € Ca,, ie. flag-1) = ¢°(k)

for some s € N. Then
g(k) = fU(k) = F(f771(K) = f(g'(g-1)) = ¢"(fag—1)) = "> (k).

Since g is one-to-one, we have k = ¢g/**~1(k) = a'T*~1(k—p)+p. Since k is not a fixed point, we have t+s =1,
sot=0and s =1. Hence, f97!(k) = ay—1. The same reasoning also shows that f9=2(k),..., f(k),k are the

starters of the distinct classes Co,_,,--.,Ca,, Ca, , respectively. O

We can now determine our solution function.

Theorem 2.9 If f:Z — Z satisfies the iterative functional equation fi(n) = an + b, then f must be of the

form f. for some m defined below.

Proof Let f:Z — Z be a solution of fi(n) =an+b. Let ag € S\Ry so that ag # p. From Lemma 2.8, we
see that g, f(ag) = a1,..., f77 (ap) = a,—1 are starters of ¢ distinct classes. Since f is 1-1, we have a; # p
for i =0,1,...,¢g— 1. Indeed, a; = fi(ap) is the starter of C,, .

Let ¢ (o) = Coy U---UCy,_, and observe that for h =0,1,...,q -2,

[+ Cay ={9™(an) [m € No}p = Copy = {9" (an41) [ m € No}
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f(9%(en)) = flan) = anta,
flglan)) = f(fUan)) = f1(f(an)) = af(an) + b= aapi1 +b=aany1 — (a—1)p
f(g"(an)) = g™ (ant1) = a™ (ant1) — (@™ = 1)p
and
f1Cay s ={9"(ag-1) [ m € No} = Coy = {g™(a0) | m € No}
via

F(g°(ag-1)) = flag-1) = f9(ao) = aag + b = aag — (a — 1)p,

Flglag-1)) = F(fUag-1)) = f7THF o)) = [ (a0) = af¥(ag) + b = a’ag — (a® — 1)p

Flg™ (ag-1)) = g™ (aag +b) = a™*(ag) — (@™ —1)p.
Take aq € (S\Ry) N (Z\ (€¢(ap) U{p})) and repeat the above procedure to obtain

G (ag) = Ca, U---UCy

2g—1"°

Continuing in the same manner, at stage ¢ + 1 choose
tig € (S\Ry) N (Z\ (¥(00) UE () U+ - U E(ai1),) U {p}))

and construct
C(aiq) = Copy U+ UC,

®(it1)g—1"

We finally arrive at
Z\{p} = € (o) UC (ag) UE (cxaq) U+ -+
We turn now to obtain an explicit form of the solution function f. Define f, : Z — Z on each € («ay), h € ¢Np,
by
friCapss = Coprss (G=0,1,...,q—2)

via
fr(g" (an+j)) = g™ (Qn+j41)
and
Jr Cah,+q_1 — Ca,,
via
fr(g™ (anig—1)) = g™ (an)

and if p € Z, define f.(p) = p, so that fi(p) = ap +b.
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For j=0,1,...,9—2 , we have
Jx(g™ (an;)) = 9™ (ahj11),

F2(g™ (ants) = fr(g™ (antjt1)) = 9™ (nyjsa),

(g™ (angs) = 9™ (Qngjr(g-1-7) = 9" (Qhtg-1),

FEITH g™ (angg)) = f (g™ (@htq-1)) = g7 (an),

FA(g™ (aneg)) = DD (g (ansg)) = ¢ (@)
Since g™ (antj) = 9(9™ (n+5)) = ag™(an4j) + b, it follows that

JHg™ (angj)) = ag™ (anyj) + 0.

On the set C,,,, ,, we have
fa(g™(@niq-1)) = g™ (an),
FRg™(@hq-1)) = fx (g™ an)) = g™ (anta),
FAH g™ (@nrg—1)) = 9™ (@htg—2)s
FH™ (@htq-1)) = fr (g™ (@htq—2)) = 9" (@htg—1)-
Since g™ (apig-1) = 9(¢™ (Wh+q—1)) = ag™ (ntq—1) + b, it follows that

fH(g™ (nsq-1)) = ag™ (p1q-1) + 0.

Hence, f is of the form f. O

Corollary 2.10 Let o € Z\ {p} and Co = {¢™ () | m € No}. Let

I = {ajg, @jgr1,- g1} CZ\{p}  (J € No)
be a set of q indices ajq < jgr1 < --0 < Qjy1yg—1 such that Coy N Co, = O whenever oy # oy and let

¢\") = Ca,, UCaypyy U UC

Qg Qjg+1 Q(j+1)g—1"

For each decomposition of Z\ {p} into a countable union of pointwise disjoint

%j([j) (i.e. Z\A{p} = U,en, Sa”j(lj)) , denote this partition (I;) by m.
Define Fr : Z — 7 by Fr(p) =p if p € Z, from each class %j([j) into itself by

Fr:Cojpp =19 (jge1) | m € No} = Cojpiri (l=0,1,...,9—2)
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Va
Fr(9™(jg1)) = 9™ (ajgi41),
and
L G {gm(o‘(j+1)q—1) | m € NO} = Cay,
via
m _m+1
Fﬂ'(g (O‘(j+1)q71)) =g (aij)'

Then F satisfies f4(n) =an+b.

Proof Choose ag € Z\ {p} and construct C,, = {g™ () | m € No}. Choose a; € Z\ (Cyn, U {p}) and con-
struct Cy, = {g™(a1) | m € Ng}. Choose ag € Z\ (Cq, U Cy, U {p}) and construct C,, = {g™(az) | m € Np}.
Continue in the same manner until we choose ay_1 € Z\ (C’ao U UCq,_, U {p}) and construct Cy,_, =

{gm(aq,l) | m e NQ} . Let Iy = {Ozo, .. .,Oéqfl}.

q—1
Let ‘KO(IO) = U Co,. Let oy € Z\ (%(ap)U{p}). We repeat the above procedure to obtain I; =
i=0
{ag,...,a24-1} and
2g—1
%1(11) — U Cai-
i=q
Continuing in the same manner, choose

ajq € Z\ (% (o) U % (0rg) U+ UE(agj-1)g) U {p})

and construct I; = {ozjq, e ,Oz(jﬂ)qq}

Repeat the process until we finally exhaust Z\ {p}, and so
Z\{p} =6 UG UG U €A =0 (£ k).

Denote this partition of Z\ {p} by 7.

Define F : Z — Z by Fr(p) = p if p € Z and on each class ‘@(Ij) (j > 0) (of the partition 7) onto
itself by
Fﬂ' : Cozi (e (gj(jj)) — Cai+1 (Z = (] - 1)q7 (.7 - 1)Q+ 17 e 7jq - 2)a
9" (i) — g™ (@ita),
Fr i Cojyr = Cagiiayys
9™ (@jg-1) > 9" a-1)g)-

We see that Fi(p) =p if p€Z and for [ € {0,1,...,q— 2},

Fr (9™ (j-1)g11)) = 9™ (@G-1)q4141);
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F2 (9™ (ag-1)g11) = Fr (9™ (@ -1)g4111)) = 9™ (@G- 1)g1142),

FI M (g™ (g-1)q+1)) = 9™ (@G -1)qri+(a—1-1)) = 9" (@jg—1),
FL =08 (g™ (- 1)g11)) = Fr (9™ (@0q-1)) = g™ (- 1)q)»
F2 (g™ (aj-1)g1)) = FX (g™ (@g-1g+1)) = Fr (9™ (@(-1)0))

m—+1

= 9" —1)g41) = 9 (9" ((j—1)q+1)) = ag™ (a(j—1)q4+1) + b,

and
Fr (9" (ojq-1)) = ngrl(O‘(j—l)q)a
FZ (9™ (ajg-1)) = 9" ai-1)g11),
Fi (g™ (ajq-1)) = gm+1(a(j—1)q+(q—2)) = g™ (ajq-2),
FI (g™ (atjg-1)) = FO DT (g™ (ajg-1)) = Fr (9™ (0jq—2))
=g" N ajg-1) = g (9" (ajg-1)) = ag™(ajg-1) +D.
Hence, F, satisfies f9(n) =an +b. O

Example 2.11 Let f:7Z — Z satisfy the iterative functional equation
f3(n) = g(n) :==3n+ 1. (2.5)

Then g(n) has no fized points in Z. The existence of a solution function is guaranteed by Theorem 2.9. The

set of all starters is infinite of the form
S=7Z\B2+1)=32UBZ+2)={...,—4,-3,-1,0,2,3,5,...}.

Then we have
cony Oy ={-4,-11,-32,...}, C_3={-3,-8,-23,...}, C_; ={-1,-2,-5,...},
Co=1{0,1,4,...}, Co ={2,7,22,...}, C3={3,10,31,...}, ....

As an example of a partition © of Z, choose

Iy ={0,2,3}, I ={-4,-3,-1}, I, = {5,6,8}, ...
and let

F1) = CoUC,UCs, € =C_,UC_sUC, E) =CsuCsUCs, ...

Then the set
= {%510),%[”,%2”2),...}
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forms a partition of Z. The following diagram shows element maps of one such function Fj .

FW:CO‘)OQ FWSC_4*>C_3 F-,.—IC54)06
FW:CQ‘)OS Fﬂ:C_;g%C_l Fﬂ-ICﬁ‘)CS
FW1034)CO Fﬂic_lﬁc_zl Fﬂ-ZCS‘)C‘g

F,

ooty 3 1 S R T S

0o 3 15 75 105 4
-4--3-+-1—--11—--8—--2=-32—>-23—>-5— -
5—>6—-8—>16—>19—25 549 58 > 76 — ---

9—-11—-12—-28—34 —+37—8 — 103 - 112 — ---

As there are many ways to construct such a partition w, there are infinitely many solutions of (2.5).

3. Over the set of natural numbers

In this section, we prove the following theorem.

Theorem 3.1 Let g € N, ¢ > 2 and g : Ng — Ny. Assume that g is an increasing function having no fived
point. If f:No — Ny satisfies the iterative functional equation

fi(n) = g(n), (3.1)
then f must be of the form fic for some K defined in the proof of this theorem.

Adopting the notation in Sections 1 and 2, let R, and R; denote the range of g and f, respectively.

We begin with some preliminary observations.
(i) Since g = f7 is increasing, it is injective.
(ii) That g has no fixed points is equivalent to the condition that g(1) # 1.
(iii) The two functions f, g commute with each other, i.e. fog=go f.

Assuming the existence of a function f : Ny — Ny satisfying (3.1), we proceed by proving a number of

lemmas containing its illuminating properties.

Lemma 3.2 If f is a solution function of (3.1), then:
(i) f is one-to-one (and so f~' is well defined on Ry C Ny );
(ii) f partitions Ng into (nonempty) equivalence classes via the relation

x~y = y=fx) for some s € Z.

The proof of Lemma 3.2 is simple, so it is left to the reader. We next investigate these equivalence classes.
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Lemma 3.3 For r,s € Ny with r # s, if r and s are not in R, then v and s are in different classes.

Proof Suppose r and s are in the same class. There is t € Z such that r = f!9(s). Since r # s, we see that
t # 0, and by interchanging r, s, we can assume ¢t > 0. Thus, r = f9 (f¢=14(s)) = g(ft=D4(s)), showing that

r € Ry, a contradiction. O

Lemma 3.4 There is a unique nonnegative integer r ¢ Ry in each equivalence class, and it is the smallest

element in this class.

Proof Let C be such an equivalence class. If ' C R,, take an ng € C'; since g is increasing, we see
that ng = g(ny) for some ny < ng, and since g has no fixed point, we must have n; < ng. Moreover, from
f4n1) = g(n1) = ng, we have n; € C'. Repeating the arguments, we obtain n; = g(ng), na < ny, ns € C.
Continuing in the same manner, we arrive at a negative integer belonging to C', which is not possible. Thus,
C' contains an element r ¢ R,, which must be unique by Lemma 3.3.

Next we show that r is the smallest element in C'. If there exists u € C' such that u < r, from the
preceding result, u € Ry, i.e. u = g(u1) for some u; € Ny. This element satisfies uq < u, u1 € C, by the
same reasoning as above. Continuing in the same manner, we get a negative integer in C', which is again a
contradiction. O
Taking into account the results of Lemmas 3.2-3.4, it is convenient to denote each equivalence class by C,.,
where r € R, is the (unique) smallest element in the class, and such an element r is the starter of C,.. Clearly,

the classes C). are disjoint, and

No= |J G, Cr={g"(r)|mez}
r¢R,

Lemma 3.5 If r ¢ R, is the starter of C,, then C, = {g"(r) | m € No}.

Proof If z € C, is such that © = g™ (r) for some m € N, then r = g"(x). Since g is an increasing function

without fixed points, we have

r=g"@)>g" (@) 2 g" (@) 2 2,

contradicting the minimality of r. O
Lemma 3.6 Let r be the starter of C,. Then:

(i) the function f sends the class C, into a unique class that contains f(r);

(ii) after q iterations, f maps a class back into itself, i.e. f4(C,) C C,.
Proof From Lemma 3.5, each element in C, is of the form ¢°(r) € C, (s € Ny). Since

Fg* () = flo(g°~H(r)) = g(f(g"  (r))) = - = g°(f (1)),

we see that f(g°(r)) and f(r) are in the same class, which shows that all elements of f(C).) belong to one and

only one class, which proves (i). To prove (ii), observe that
Fi(g*(r) = 9(g°(r) = g™ (r) € C:.
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If x € Ry = Rya, then clearly z € Ry, i.e. Ry C Ry, and we now look more closely at Ry.

Lemma 3.7 (i) There are elements in No but not in Ry .

(ii) If k € No\Ry, then k, f(k), f2(k),..., f7 1 (k) belong to distinct classes and each of them is the starter

of its class.

Proof (i) If Ry = Ny, then f is a bijection (Lemma 3.2) onto its range, and so is f~!. Since g is increasing

without fixed points, we get g(0) # 0, yielding
9(0) =1, g(1) 22, ..., fUk) =g(k) = k+1 (k € No).
This last relation implies that f~%(l) := u <1 — 1. Using this repeatedly, we get
A =fu) <u—-1<1-2, (1) = f2(u) <u—-2<1-3, ...

Thus, for ¢ sufficiently large, we arrive at f~9(l) < 0, which is untenable.
(i) Take an integer k € Ng\R;, and let

fik)ecC,, (i=0,1,2,...,q—1), (3.2)

where the r;s are not necessarily distinct.
We claim that f%(k) is the smallest element in its class C,, .
Starting from the last class, C,. _,, if the claim is false, then its starter satisfies r,_1 < f971(k). Since
rq—1 = g°(rq—1), the definition of the class shows that f9='(k) = g'(r,—1) for some ¢t € N. Since r,_; and
f77 (k) are in the same class C, _,, Lemma 3.6(i) indicates that f(rs—1) and f(f?"!(k)) are in the same
class. Since k € C,,, by Lemma 3.6(ii), f(f?1(k)) = f4(k) € Cy,. Thus, f(ry—1) € Cp,. As g is increasing

with no fixed point, we have

Flrg-1) < g'(f(rq-1)) = f(g' (rg—1)) = F(F77 (k) = f7(k) = g(k).

Since there is no element between k and g(k) in C,, and since k € Ry, we have f(ry,—1) < k. After applying
f? = g repeatedly to f(r,—1), we must reach k, so that k € Ry, which is a contradiction. Hence, f4=1(k)
is the starter in C,, _,. The same reasoning also shows that f?72(k),..., f(k) are the starters of classes
Cry_sy---,Cry , Tespectively.

It remains to show that k is the starter in C,,. Since ro = ¢°(rg), k = g'(r9) (¢t € N), are both in C,,,

by Lemma 3.6(i), f(ro) and f(k) are in the same class. Since ¢ is increasing with no fixed point, we have
fro) < g'(f(ro)) = f(g'(r0)) = f(k) € Ciy,

yielding f(rg) € C,,, which contradicts the fact that f(k) is the smallest in C,,. By Lemmas 3.3 and 3.4,
k, f(k), f2(k),..., f97(k) are in distinct classes. O

Remark. From Lemma 3.7, we see that 7; = fi(k) (i =0,1,...,¢— 1) and it is clear that for k& € No\Ry,
the elements f(k), f2(k),..., f771(k) can be given arbitrary values from Ng.
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Keeping the above notation, we now prove Theorem 3.1 by showing that a function f : Ny — Ny satisfying

(3.1) must be one of the functions fi for some K defined below.

Proof of Theorem 3.1 Let f : Ny — Ny be a solution of f(n) = g(n). Let ko € No\Ry and r; =
fi(ko) (i=0,1,...,¢—1). By Lemma 3.7(ii), we see that 7o, r1,...,74_1 are starters of ¢ distinct classes C,,
(0<i<g—1). Since r; is the starter of C.,, let

€ (ro) =Cr, UC,, U---UC,, _,
and observe that for h=0,1,...,q — 2,

f:Cr ={g"(rn) [ meNo} = Cp, ) = {9 (rn+1) | m € No}

and
f:Cr = Coy
satisfy
fg™ (rn)) = g™ (f(rn)) = g™ (rn+1)
and

f(g™(rq-1)) = g™ (f(rg-1)) = g™ (o).
Proceeding generally at the state i + 1, (¢ > 0), choose

Tig € (S\Rf) N (No\ (‘f(ro) U---uy ‘f(r(i,l)q)))

and construct

C(rig) = Cyp, U+ UC

Tig T(it1)g—1"
Since € (riq) N €(rjq) = 0 if i # j, continuing this procedure will eventually exhaust Ny, i.e. we obtain a
partition K of Ny as
No =€ (ro) UL (rg) UE (rag) U--- = | E(rsg). (3.3)

i>0

We turn now to obtain an explicit form of the solution f.
Define fx : Ng — Ny on each €(ry) (h € ¢Ng) by

fc:Cryy = Crpry (G=0,1,...,¢—2)

via
fie (g™ (rn45)) = 9™ (Phtj)
and
Jc:Crpyoy — Cry
via
fic (6™ (rhrg-1)) = g™ (7).

835



MAVECHA et al./Turk J Math

The mapping fx on each €(ry) is illustrated by

RELN g™ () Ix, 9" (The1) Ix, 9" (rat2) == = " (Thag-1) — 9

I8 g ) L5 g rage) T IS g 1) IS g () IS

For j=0,1,...,9—2 , we have
fre(g™ (rnt)) = 9" (Thaj1),

f}zc(gm(Th+j)) = flc(gm(rhﬂ'ﬂ)) = gm(rh+j+2)v

A0 () = 9" (Phga(g1-7) = 9" (Phq—1),

f;(cq_l_j)+1(gm( m+1(

Thtj)) = fic(9" (Phaq-1)) = g™ (rn),

FE(g™ (i) = FEITOED (g (1)) = g (rngg) = 9(9™ (Psy)-

On the set C,

rhiq_1 > We have

fic(g™ (rhsg—1)) = g™ (rn),

SR (g™ (rhgq—1)) = fic(g" T (rn)) = g™ (rhgr),

T (1) = 9(9" (Phig—1))-

f)%(gm(Tthqfl)) =9
Hence, f is of the form fi.

Corollary 3.8 Let ¢ € N, ¢ > 2 and g : Ny — Ng. Assume that g is an increasing function having no fized

point.
Let r € Ng and C, = {g™(r) |me€No}. Let I; = {rjq,"jg+1.--- 7G+19-1; C No (j € No) be
a set of q indices rj; < rigr1 < 0 < T(jp1)g—1 Such that C., N C., = 0 whenever r; # r; and let
(I;) _
¢ =C,UC, U UCr, .

For each decomposition of Ny into a countable union of pointwise disjoint %j(m (i.e. Ny = UjeNo %j(lf)> ,
denote this partition (I;) by K.

Define Fx : Ng — Ng from each class ‘Kj(jj) into itself by

Fi - CquJrl = {gm(rjq-‘rl) ‘ m e NO} - Cqu+z+1 (l

via
Fic(g™(rjq11)) = 9" (Tjqri41)s
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and
F}C :C

T(i+1)q—1 *

={9"(rG+1-1) [ m €No} = Cr,

via
m+1(

Fre(g™(r(j+1)g-1)) = g Tjq)-

Then Fy satisfies f9(n) = g(n).

Proof Given ¢ € N, ¢ > 2 and g : Ny — Ny an increasing function having no fixed point, choose ry € Ny and
construct C,, = {¢™(ro) | m € No}. Choose r € No\C,, and construct C,, = {¢g™(r1) | m € Ng}. Choose

re € No\ (Cy, UC,,) and construct C,, = {¢g™(r2) | m € No}. Continue in the same manner until we choose

rg—1 € No\ (Cry U-+-UC,,_,) and construct C,, , = {g™(rq—1) | m € No}.

q—1
Let €(rg) = U Cy,. Let r, € No\G(ro). We repeat the above procedure to obtain
=0

2g—1

C(ry) = U Cy,.

Continuing in the same manner, choose
7iq € No\ (€(ro) UL (rg) U--- UL (r-1)q))

and construct

Jja—1
%<TJQ> = U CTi'
i=(j—-1)q
Repeat the process until we finally exhaust Ny, and so
Ny = Cf(’l’o) U Cg(’l”q) U Cg(’l"gq) U Cf(’l’jq) n Cg(’l"kq) =0 (_] 7é k)

Denote this partition of Ny by K.
Define Fi : Ng — Ny on each class €(r;q4) (j > 0) (of the partition C) onto itself by
F)C : CTi (6 %(rjq)) — OTi+1 (l = (.] - l)qa (.7 - 1)q =+ 17 e ajq - 2)a
g™ (ri) — g™ (rita),
Fi - err1 — Cr(jfl)q7

9" (rjg-1) = g (- 1)g)-
We see that for [ € {0,1,...,q — 2},

F (Qm(r(j—l)qﬂ)) = 9" (r(j—1)g+1+1);

FR (g™ (rgi—1yq+1)) = Fic (97 (rG—1)q4141)) = 9™ (rG=1)q+142)5
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F;éilil (gm(T’(j—l)q-i-l)) = 9" (rG-1a+itg-1-1) = 9" (rjg-1),
—l-1)4+1 / m m m
EE T (g7 (- 1000)) = Fie (97 (1)) = 7 (1),

Fléqfl)Jrl (gm(r(jfl)qul)) — FIlC (gm+1(7‘(]‘71)q))

FE (9™ (r-1)g41))

= 9m+1(7“(j71)q+1) =g (gm(r(jfl)qul)) )
and
Fic (9™ (rjq-1)) = 9" (r(i-1)4)5
FR (g™ (rjg-1)) = 9" (r(j—1)q+1)5
FE2 (g™ (rjg-1) = 9" (rG -1yt a-3) = 9™ (rjg-s);
qug1 (9™ (rjg-1)) = Fr(cq_l)H (9™ (rjg-1)) = Fk (9m+1(7"jq*3)) = g" " (rjg-2),
(g™ (rjg-1) = B (97 (rjg-1)) = Fie (97 (rjq-2))
= gm+1(7“jq71> =9(9"(rjq-1)).
Hence, F) satisfies f9(n) = g(n). O

As an application, we show that the result of Sarkaria mentioned earlier is an immediate consequence of
Theorem 3.1.

Corollary 3.9 Let a,q € N, ¢ > 2. Then there exists f: Ng — Ny satisfying
fin) =n+a
if and only if q | «.
Proof Let g: Ny — Ny be given by g(n) = n+ «. Clearly,
No\R, ={0,1,...a—1}=:S
is the set of all possible starters. The corresponding equivalence classes are

O = {1 (k), g(F1 (k) g* (F1 (), .} = {f (k). f1(K) + o, [ () + 20, .}
={l €Ny |l= f'(k) mod a} (3.4)
(keS, r=ie€{0,1,...,q—1}).

Observe that for the classes (3.4) and the relation (3.3) to be consistent with Ny = U?;ol {k €Ny | k=i mod a},

i.e. for fic to be constructible, it is necessary and sufficient that ¢ | a. a

Example 3.10 Let f: Ny — Ng satisfy the iterative functional equation
f3(n) = g(n) :==n®+ 1. (3.5)
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Clearly, g(n) is an increasing function with no fixed points in No. The existence of a solution function is

guaranteed by Theorem 3.1. The set of all starters is infinite of the form
S =No\g(Ng) = {m € Ny | m — 1 is not a perfect cube in Ny}
= {0,3,4,5,6,7,8,10,11,...}.
Then we have
Co=1{0,1,2,...}, C3={3,28,21953,...}, Cy = {4,65,274626, ...},
Cs = {5,126,2000377,...}, Cs = {6,217,10218314,...}, Cr; = {7,344,40707585...}, ....

As an example of a partition K of Ny, choose

Io={0,3,4}, I = {5,6,7}, I, = {8,10,11}, ...

and let

E0) = CoUCsUCy, € =CsUCsUCy 64 =CsUCLUCH, ...

Then the set
K = {%§f°>,<gf’1>,<52(’2>, y }

forms a partition of Ng. The following diagram shows element maps of one such function Fy :

FK:OO—>03 FK:C5—>CG FK308—>010
FK103—>O4 F]CICG—)C7 F]thlo—)Oll
FKIC4—>OO F/C:C7—)C5 FIC:CH_>OS

055 355 45 1755 985 655 25 21953 5 274626 5 -
5—=6—>7—126 — 217 — 344 — 2000377 — 10218314 — - - -

8 — 10 — 11 — 513 — 1001 — 1332 — 135005698 — - - -

12 — 13 — 14 — 1729 — 2198 — 2745 — 5168743490 — - - -

As there are many ways to construct such a partition IC, there are infinitely many solutions of (3.5).

References

[1] Allouche JP, Rampersad N, Shallit JO. On integer sequences whose first iterates are linear. Aequationes Math 2005;
69: 114-127.

[2] Kuczma M. Functional Equations in a Single Variable. Warsaw, Poland: PWN-Polish Scientific Publishers, 1968.

[3] Laohakosol V, Yuttanan B. Iterates of increasing sequences of positive integers. Aequationes Math 2014; 87: 89-103.

[4] Matkowski J, Zhang W. On the polynomial-like iterative functional equation. In: Rassias TM, editor. Functional
Equations and Inequalities. Mathematics and Its Applications, Vol. 43. Dordrecht, the Netherlands: Kluwer
Academic, 2000, pp. 145-170.

839



MAVECHA et al./Turk J Math

[5] Nabeya S. On the functional equation f(p + gz = rf(z)) = a + bx + c¢f(z). Aequationes Math 1974; 11: 199-211.

[6] Ng CT, Zhao HY. Periodic and continuous solutions of a polynomial-like iterative equation. Aequationes Math
2017; 91: 185-200.

[7] Propp J. Problem proposal 474. Crux Math 1979; 5: 229.
[8] Propp J. Solution by G. Patruno. Crux Math 1980; 6: 198.
[9] Sarkaria KS. Roots of translations. Aequationes Math 2008; 75: 304-307.

840



	Introduction
	Over the set of integers
	Over the set of natural numbers

