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Abstract: The iterative equation fq(x) = g(x) , x ∈ X for a given function g and a positive integer q is solved in the

following two main cases:

(i) X = Z , g(x) = ax+ b , (a, b ∈ Z ; a ̸= 0, 1);

(ii) X = N ∪ {0} , g is increasing with no fixed point.
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1. Introduction

For a function f and a positive integer q , define fq = f ◦ f ◦ · · · ◦ f (q times). Given a function g , the

polynomial-like iterative functional equation of the form

a1f(x) + a2f
2(x) + · · ·+ aqf

q(x) = g(x) (x ∈ X) (1.1)

has been studied in many different settings of a1, a2, . . . , an, X and g(x).

In a recent paper [6], using Schauder’s fixed point theorem and the Banach contraction principle, sufficient

conditions for the existence, uniqueness, and stability of the periodic and continuous solutions of (1.1) were

given when X = R . In particular, the solution of 2f(x) + λf2(x) = sinx , λ ∈ [−1, 1], was established, as

well as a similar result when the right-hand expression is a cosine function. In [4, 5], the equation of the

form a1f(x) + a2f
2(x) = bx + c was solved for a1, a2, b, c ∈ R , a2 ̸= 0. When g(x) is continuous and strictly

monotonic, a comprehensive work dealing with continuous solutions of fq(x) = g(x) can be found in [2, Chapter

XV].

In 2008, Sarkaria [9] (see also his unpublished paper at http://kssarkaria.org/docs/RootsFunctions.pdf)

found all functions f : X → X , where X = N, Z , or R , satisfying the iterative functional solution fq(n) = n+k
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for given q and k ∈ N . This equation arose from one of the problems posed at the International Mathematical

Olympiad in 1987: prove that there is no function f : N → N such that

f (f(n)) = n+ 1987.

More precisely, Sarkaria proved that:

(i) for q ≥ 1, k ≥ 1, there exists a function f : N → N satisfying fq(n) = n+ k if and only if q divides k ;

(ii) there are exactly k!/(k/q)! such functions and their shapes can be explicitly determined;

(iii) there are infinitely many functions f : Z → Z satisfying fq(n) = n+ k if and only if q divides k ;

(iv) there exist continuous functions f : R → R satisfying fq(n) = n+ k , and explicit forms of such functions

can be determined.

In another direction, as mentioned in [1], Mallows observed that there is a unique increasing sequence

(a(n))n≥0 of nonnegative integers such that a (a(n)) = 2n for n ̸= 1. In 1979, Propp [7, 8] introduced the

sequence (s(n))n≥0 , defined to be the unique increasing sequence such that s (s(n)) = 3n . In 2005, Allouche

et al. [1] showed that there are uncountably many increasing sequences (a(n))n≥0 such that a (a(n)) = dn for

all d ≥ 4, while for d = 2 and d = 3 there is a unique increasing sequence satisfying a (a(n)) = dn . Recently,

in 2014, the results of Propp [7, 8] and Allouche et al. [1] were generalized in [3], where it was proved that

for q ≥ 2, D ≥ 2, if D − 1 divides q , then there exists a unique increasing function f : N0 → N0 satisfying

fq(n) = Dn , where N0 := N ∪ {0} ; otherwise, there are uncountably many increasing functions satisfying this

iterative functional equation.

Here, we consider the iterative functional equation

fq(x) = g(x) (x ∈ X), (1.2)

for two different domains of X = Z and X = N .

Since the domains considered in this work are discrete, the results in the continuous case as given in [2]

and [4–6] are independent from ours here. In the next section, we find all solutions f for the case X = Z and

g(x) = ax+ b , where a, b ∈ Z with a ̸= 0, 1. Our approach is to look closely at the sequence of iterative values

{fn(α)}n∈Z for fixed α . This sequence is periodic with somewhat arbitrarily given values in each period, and

the main task is to systematize the values in each period to take care of all possibilities. It turns out that the

analysis is most involved when a = −1. When a ̸∈ {−1, 0, 1} , the situation is simpler in the sense that the

sequence of iterative values has a so-called initial element, called a starter, which enables us to systematize the

values in each period more easily and cleanly.

In Section 3, we solve (1.2) when X = N0 and g is an increasing function having no fixed point. The

approach in this part is similar to that of the case a ̸∈ {−1, 0, 1} in the previous section.

2. Over the set of integers

In this section, we solve the iterative functional equation

fq(n) = an+ b (n ∈ Z) (2.1)
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where q ≥ 2, a ̸= 0, 1, and b are integers. For brevity, put

g(n) := an+ b, p :=
b

1− a
.

The simple proof of the next lemma is left to the reader.

Lemma 2.1 If f is a solution function of (2.1), then:

(i) f is one-to-one;

(ii) f partitions Z into equivalence classes via the relation x ∼ y ⇐⇒ y = fsq(x) for some s ∈ Z ;

(iii) f has a unique fixed point at x = p provided that it is an integer.

For convenience, we will define some terminologies about equivalence classes. Let A1, A2, . . . be equiv-

alence classes on the set Z or N0 with respect to some equivalence relation. If Ai for i = 1, 2, . . . has the

smallest absolute element, then this element is called the starter of class Ai and an element of Ai not being

a starter is called a nonstarter of Ai .

We start with the case a = −1.

Theorem 2.2 Let q ≥ 2 and b be integers. If f : Z → Z satisfies the iterative functional equation

fq(n) = −n+ b, (2.2)

then f must be of the form fπ for some π defined below.

Proof Let f : Z → Z be a solution of fq(n) = −n+ b . Let α ∈ Z\
{

b
2

}
. Consider the set

{
α, f(α), f2(α), . . . , fq(α) = − ∝ + b, . . . , f2q(α) = α

}
,

which has at most 2q elements. Let m be the smallest natural number such that fm(α) = α . Since f−1 exists

and f2q(α) = α , we get m | 2q . If m is odd, then m | q , say m = qk , so fq(α) = fmk(α) = α , a contradiction.

Hence, m is even, say

m = 2r. (2.3)

If α, f(α), f2(α), . . . , f2r−1(α) are not distinct, then f i(α) = f j(α) for some i, j with 0 ≤ i < j ≤ 2r − 1

implying that f j−i(α) = α , which is a contradiction. Then α, f(α), f2(α), . . . , f2r−1(α) are distinct. Note

also that f l(α) = α for l ∈ 2rZ . Since r | q , if q/r is even, say q = (2t)r , then fq(α) = f (2r)t(α) = α , a

contradiction. Then q/r must be an odd number, say q = (2t+ 1)r , so

fr(α) = fr(f2r(t)(α)) = f (2t+1)r(α) = fq(α) = −α+ b.

Hence,{
α, f(α), f2(α) , . . . , f2r−1(α)

}
=
{
α, f(α), f2(α), . . . , fr−1(α),−α+ b,−f(α) + b, . . . ,−fr−1(α) + b

}
.
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For h = 0, 1, . . . , r − 1, let Dα
h :=

{
fh(α), fh+r(α)

}
=
{
fh(α),−fh(α) + b

}
. Observe that Dα

h ∩Dα
k = ∅ for

all h, k ∈ {0, 1, . . . , r − 1} and h ̸= k . Denote the set Dα
0 ∪ · · · ∪Dα

r−1 by D(r, α) and observe that

f : Dα
h =

{
fh(α),−fh(α) + b

}
→ Dα

h+1 =
{
fh+1(α),−fh+1(α) + b

}
satisfies

f(fh(α)) = fh+1(α), f(−fh(α) + b) = fh+1+r(α) = −fh+1(α) + b.

Taking α2 ∈ Z\ (D(r, α) ∪ {b/2}) and repeating the above procedure, we obtain

D(r2, α2) = Dα2
0 ∪ · · · ∪Dα2

r2−1,

where r2 | q and q/r2 is odd. This process can be continued until we eventually exhaust the set Z and so

Z\
{
b

2

}
= D(r, α) ∪ D(r2, α2) ∪ · · · .

We turn now to obtain an explicit form of the solution function f . Let

Ei = {i, b− i}, i ∈
{
m ∈ Z | m ≥ b

2

}
.

Observe that Z = ∪i∈ZEi . Let π be a partition of the set {Ei}i ̸=b/2 into subsets, each of which contains s

of the sets Ei , where s is a divisor of q with q/s odd as obtained in (2.3). Since q/s is an odd number, let

q = (2l + 1)s . Consider the set
Es(π(i)) = Ei0 ∪ Ei1 ∪ · · · ∪ Eis−1 ,

where π(i) = {i0, i1, . . . , is−1} is the ith component of the partition π , and

Eij =
{
αij , βij

}
, αij ∈ {ij , b− ij}, βij = b− αij

for j = 0, 1, 2, . . . , s− 1.

Define the function fπ : Z → Z by assigning its values on each Es(π(i)) as

fπ : Eij → Eij+1 (j = 0, 1, 2, . . . , s− 2)

by
fπ(αij ) = αij+1 , fπ(βij ) = βij+1

and
fπ : Eis−1 → Ei0

by
fπ(αis−1) = βi0 , fπ(βis−1) = αi0 .

The mapping of function fπ on each Es(π(i)) is illustrated by

αi0
fπ−→ αi1

fπ−→ αi2
fπ−→ · · · fπ−→ αis−1

fπ−→ βi0
fπ−→ βi1

fpi−→ βi2
fπ−→ · · · fπ−→ βis−1

fπ−→ αi0 .

If b/2 ∈ Z , define fπ(b/2) = b/2 so that fq
π(b/2) = b/2 = − (b/2) + b.
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We now show that fπ satisfies (2.2). For j = 0, 1, . . . , s− 2, since

fπ(αij ) = αij+1 , f2
π(αij ) = fπ(αij+1) = αij+2 ,

...
...

fs−j−1
π (αij ) = αij+(s−j−1)

= αis−1 , fs−j
π (αij ) = fπ(αis−1) = βi0 ,

...
...

fs
π(αij ) = f j

π(βi0) = βij , −αij + b = βij ,

we get

fs
π(αij ) = −αij + b and f2s

π (αij ) = αij

so

fq
π(αij ) = f2ls+s

π (αij ) = fs
π(αij ) = −αij + b.

Similarly, we have fq
π(βij ) = −βij + b for j = 0, 1, . . . , s− 2. Finally, on the set Eis−1 , we have

fπ(αis−1) = βi0 ,

f2
π(αis−1) = fπ(βi0) = βi1 ,

...

fs
π(αis−1) = βis−1 = −αis−1 + b,

f2s
π (αis−1) = αis−1 ,

so

fq
π(αis−1

) = f2ls+s
π (αis−1

) = fs
π(αis−1

) = −αis−1
+ b,

and similarly we also have

fq
π(βis−1) = −βis−1 + b.

Since Z = ∪i∈ZEi , it follows that fq
π(n) = −n+ b .

From the above construction, we deduce that the totality of the Es(π(i)) s is identical with that of the

D(α, s)s and so each solution function f of (2.2) must be of the form fπ for some π (with s being some divisor

r of q ). 2

The last part of the proof in Theorem 2.2 gives the following collorary.

Corollary 2.3 Let q, b ∈ Z , q ≥ 2 and let Ci = {i, b − i} , i ∈ Z . For each divisor s of q such that q/s is

odd, let Is = {i0, i1, . . . , is−1} ⊂ Z be a set of s indices i0 < i1 < · · · < is−1 such that Cij ∩ Cik = ∅ whenever

ij ̸∈ {ik, b− ik} and let C
(Is)
s = Ci0 ∪ · · · ∪ Cis−1 .

For each decomposition of Z\ {b/2} into a countable union of pointwise disjoint C
(Is)
s(

i.e. ,Z\ {b/2} =
∪

Is
C

(Is)
s

)
, define fs : Z → Z by

fs

(
b

2

)
=

b

2
if

b

2
∈ Z,
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from each C
(Is)
s into itself

fs : Cij :=
{
αij , βij

}
→ Cij+1 (j = 0, 1, . . . , s− 2)

where αij ∈ {ij , b− ij} , βij = b− αij , by

fs(αij ) = αij+1 , fs(βij ) = βij+1 ,

and

fs : Cis−1 :=
{
αis−1 , βis−1

}
→ Ci0

by

fs(αis−1) = βi0 , fs(βis−1) = αi0 .

Then fs satisfies fq
s (n) = −n+ b .

Example 2.4 Let f : Z → Z satisfy the iterative functional equation

f6(n) = g(n) := −n+ 5. (2.4)

Then g(n) has no fixed points in Z . Since q = 6 , there are two possible values of s for which q/s is odd, i.e.

s = 2, 6 . Let

Ci = {i, 5− i}, i ∈
{
m ∈ Z | m ≥ 5

2

}
.

Case s = 2. To illustrate how to obtain a solution function, as an example of a possible partition π , we take

π = {C3, C4} ∪ {C5, C6} ∪ {C7, C8} ∪ {C9, C10} ∪ · · · .

The solution function fπ is shown via the following diagram of element maps:

fπ : Ci → Ci+1

fπ : Ci+1 → Ci
i = 3, 5, 7, . . .

i = 3 : 3
fπ→ 4

fπ→ 2
fπ→ 1

fπ→ 3
fπ→ 4

fπ→ 2
fπ→ 1

fπ→ · · ·

i = 5 : 5 → 6 → 0 → −1 → 5 → 6 → 0 → −1 → · · ·

i = 7 : 7 → 8 → −2 → −3 → 7 → 8 → −2 → −3 → · · ·

...

As another example of possible partition π , take

π = {C3, C5} ∪ {C4, C6} ∪ {C7, C9} ∪ {C8, C10} ∪ · · · ,

which gives another solution function fπ :

fπ : Ci → Ci+2

fπ : Ci+2 → Ci
i = 3, 4, 7, 8, 11, 12, . . .
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i = 3 : 3
fπ→ 5

fπ→ 2
fπ→ 0

fπ→ 3
fπ→ 5

fπ→ 2
fπ→ 0

fπ→ · · ·

i = 4 : 4 → 6 → 1 → −1 → 4 → 6 → 1 → −1 → · · ·

i = 7 : 7 → 9 → −2 → −4 → 7 → 9 → −2 → −4 → · · ·

i = 8 : 8 → 10 → −3 → −5 → 8 → 10 → −3 → −5 → · · ·

...

Since there are infinite many partitions of the set {Ci}i≥3 into subsets, each of which contains two elements of

the sets Ci , the equation (2.4) has infinitely many solutions.

Case s = 6. As an example of the partition π , take

π = {C3, C4, C5, C6, C7, C8} ∪ {C9, C10, C11, C12, C13, C14} ∪ · · · .

Then the solution fπ is given by

fπ : Ci → Ci+1 for i ≥ 3 and i ̸= 8, 14, 20, 26, . . .

fπ : Ci → Ci−5 for i = 8, 14, 20, 26, . . .

3
fπ→ 4

fπ→ 5
fπ→ 6

fπ→ 7
fπ→ 8

fπ→ 2
fπ→ 1

fπ→ 0
fπ→ −1

fπ→ −2
fπ→ −3

fπ→ 3
fπ→ · · ·

9 → 10 → 11 → 12 → 13 → 14 → −4 → −5 → −6 → −7 → −8 → −9 → 9 · · ·

...

Since there are infinitely many partitions of the set {Ci}i≥3 into subsets of six elements, there are uncountably

many solutions of (2.4).

Throughout the rest of this section, we assume that q, a , and b are integers such that q ≥ 2 and

a ̸= −1, 0, 1.

Lemma 2.5 Let β ∈ Z .

(i) If g−i(β) ̸∈ Z for some i ∈ N , then g−(i+1)(β) ̸∈ Z .

(ii) If β = p , then g−j(β) ∈ Z for all j ≥ 1 .

(iii) If β ̸= p , then there exists a positive integer J such that g−j(β) ∈ Z for all j ≤ J and g−j(β) ̸∈ Z for

all j > J .

Proof

(i) Assume that g−(i+1)(β) := n ∈ Z . Then g−i(β) = g(n) ∈ Z , a contradiction.

(ii) We see that

g(p) = a

(
b

1− a

)
+ b =

b

1− a
= p,

and so p = g−j(p) for all j ≥ 1.

825



MAVECHA et al./Turk J Math

(iii) Suppose β ̸= p . If p ∈ Z , then let J be the largest nonnegative integer such that aJ divides β − p . For

i = 0, 1, . . . , J , we have β−p
ai + p ∈ Z and

β − p

ai
+ p =

β

ai
− b

a− 1

(
ai − 1

ai

)
=

β − b

ai
− b

ai−1
− · · · − b

a

=
1

a

{(
β − b

ai−1
− b

ai−2
− · · · − b

a

)
− b

}
= g−1

(
β − b

ai−1
− b

ai−2
− · · · − b

a

)
= · · · = g−i (β) .

For j > J , we easily see that g−j(β) = β−p
aj + p ̸∈ Z .

If p ̸∈ Z , then consider the numbers of the form β−p
ak + p (k ∈ N0). For k = 0, note that β−p

ak + p ∈ Z.

Let K ∈ N be large enough so that
∣∣∣β−p
aK

∣∣∣ < |p| − ⌊|p|⌋ . Thus, β−p
aK + p ̸∈ Z . Let J be the largest positive

integer such that β−p
aj + p ∈ Z for j = 0, 1, . . . , J . For j > J , we then have g−j (β) = β−p

aj + p ̸∈ Z . 2

By Lemma 2.5, each equivalence class constructed via the equivalence relation in Lemma 2.1 contains a

unique element called a starter (α is a starter if there is no integer n such that g(n) = α). Let S denote the

set of all starters in Z\{p} and let N denote the set of all nonstarters in Z together with p if p ∈ Z . We see

that S is an infinite set since {ma+ b− 1 | m ∈ N0} ⊂ S.

By Lemma 2.5, the equivalence classes constructed via the equivalence relation in Lemma 2.1 are either

of the form

Cα = {gm(α) | m ∈ N0} where α ∈ S

or of the form

Cp =

{
{p} , if p ∈ Z,
∅, if p ̸∈ Z,

which yields

Z =

(∪
α∈S

Cα

)∪
Cp.

For convenience, let C = {Cα | α ∈ S} . Useful properties of these classes are gathered below.

Lemma 2.6 If r and l are in S but r ̸= l , then r and l are in different classes.

Proof If r and l are in the same equivalence class, then there is t ∈ Z\{0} such that r = f tq(l). Interchanging

r, l , we may assume t > 0. Thus, r = fq
(
f (t−1)q(l)

)
= g(f (t−1)q(l)), i.e. r ̸∈ S , a contradiction. 2

Lemma 2.7 (i) For each α ∈ S , f sends the class Cα into a unique class in C that contains f(α) .

(ii) We have fq(Cα) ⊂ Cα for all α ∈ S.

(iii) The function f is not onto.
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Proof

(i) Let x ∈ Cα , i.e. there exists a nonnegative integer m such that x = gm(α). We see that

f(x) = f(gm(α)) = fqm(f(α)) = gm(f(α)),

i.e. f(x) and f(α) are in the same class, say, Cα for some α ∈ S . If Cα ∩ Cp ̸= ∅ , then there is a

nonnegative integer m such that p = gm(f(α)) = f(gm(α)). Since p is the fixed point of f and f is

one-to-one, we get gm(α) = p , and so α = p , which is a contradiction.

(ii) Let α ∈ S and x ∈ Cα , i.e. x = gm(α) for some m ∈ N0 . Then fq(x) = gm+1(α) ∈ Cα , which shows

that fq(Cα) ⊂ Cα for all α ∈ S .

(iii) Suppose that f is onto. Let α ∈ S . Then there exists α1 ∈ Z such that α = f(α1). Similarly, there

exists α2 ∈ Z such that α1 = f(α2), i.e. α = f2(α2). Continuing in this way, we get α = fq(αq) for

some αq ∈ Z , i.e. α = g(αq), a contradiction.

2

Lemma 2.7(iii) tells us that Rf ̸= Z . Since N ⊂ Rf , it follows that the set S\Rf is nonempty and we

explore it further.

Lemma 2.8 If k ∈ S\Rf , then fq−1(k), fq−2(k), . . . , f(k), k are the starters of q distinct classes.

Proof For i = 0, 1, . . . , q − 1, suppose f i(k) ∈ Cαi
where the αi s are not necessarily distinct. We now show

that f i(k) is the starter of the class Cαi . Starting from class Cαq−1 , we have fq−1(k) = gt(αq−1) for some

t ∈ N0 . Since both αq−1 and fq−1(k) are in class Cαq−1 , Lemma 2.7(ii) implies that both f(αq−1) and fq(k)

are in the same class. By Lemma 2.7(iii), we have fq(k) ∈ Cα0 , and so f(αq−1) ∈ Cα0 , i.e. f(αq−1) = gs(k)

for some s ∈ N . Then

g(k) = fq(k) = f(fq−1(k)) = f(gt(αq−1)) = gt(f(αq−1)) = gt+s(k).

Since g is one-to-one, we have k = gt+s−1(k) = at+s−1(k−p)+p . Since k is not a fixed point, we have t+s = 1,

so t = 0 and s = 1. Hence, fq−1(k) = αq−1 . The same reasoning also shows that fq−2(k), . . . , f(k), k are the

starters of the distinct classes Cαq−2 , . . . , Cα1 , Cα0 , respectively. 2

We can now determine our solution function.

Theorem 2.9 If f : Z → Z satisfies the iterative functional equation fq(n) = an + b , then f must be of the

form fπ for some π defined below.

Proof Let f : Z → Z be a solution of fq(n) = an+ b . Let α0 ∈ S\Rf so that α0 ̸= p . From Lemma 2.8, we

see that α0, f(α0) = α1, . . . , f
q−1(α0) = αq−1 are starters of q distinct classes. Since f is 1-1, we have αi ̸= p

for i = 0, 1, . . . , q − 1. Indeed, αi = f i(α0) is the starter of Cαi .

Let C (α0) = Cα0 ∪ · · · ∪ Cαq−1 and observe that for h = 0, 1, . . . , q − 2,

f : Cαh
= {gm(αh) | m ∈ N0} → Cαh+1

= {gm(αh+1) | m ∈ N0}
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via

f(g0(αh)) = f(αh) = αh+1,

f(g(αh)) = f(fq(αh)) = fq(f(αh)) = af(αh) + b = aαh+1 + b = aαh+1 − (a− 1)p

...

f(gm(αh)) = gm(αh+1) = am(αh+1)− (am − 1)p

and

f : Cαq−1
= {gm(αq−1) | m ∈ N0} → Cα0

= {gm(α0) | m ∈ N0}

via

f(g0(αq−1)) = f(αq−1) = fq(α0) = aα0 + b = aα0 − (a− 1)p,

f(g(αq−1)) = f(fq(αq−1)) = fq+1(fq−1(α0)) = f2q(α0) = afq(α0) + b = a2α0 − (a2 − 1)p

...

f(gm(αq−1)) = gm(aα0 + b) = am+1(α0)− (am+1 − 1)p.

Take αq ∈ (S\Rf ) ∩ (Z\ (C (α0) ∪ {p})) and repeat the above procedure to obtain

C (αq) = Cαq ∪ · · · ∪ Cα2q−1 .

Continuing in the same manner, at stage i+ 1 choose

αiq ∈ (S\Rf ) ∩
(
Z\
(
C (α0) ∪ C (αq) ∪ · · · ∪ C (α(i−1)q) ∪ {p}

))
and construct

C (αiq) = Cαiq ∪ · · · ∪ Cα(i+1)q−1
.

We finally arrive at

Z\ {p} = C (α0) ∪ C (αq) ∪ C (α2q) ∪ · · · .

We turn now to obtain an explicit form of the solution function f . Define fπ : Z → Z on each C (αh), h ∈ qN0 ,

by

fπ : Cαh+j
→ Cαh+j+1

(j = 0, 1, . . . , q − 2)

via

fπ(g
m(αh+j)) = gm(αh+j+1)

and

fπ : Cαh+q−1
→ Cαh

via

fπ(g
m(αh+q−1)) = gm+1(αh)

and if p ∈ Z , define fπ(p) = p , so that fq
π(p) = ap+ b.
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For j = 0, 1, . . . , q − 2 , we have

fπ(g
m(αh+j)) = gm(αh+j+1),

f2
π(g

m(αh+j)) = fπ(g
m(αh+j+1)) = gm(αh+j+2),

...

fq−1−j
π (gm(αh+j)) = gm(αh+j+(q−1−j)) = gm(αh+q−1),

f (q−1−j)+1
π (gm(αh+j)) = fπ(g

m(αh+q−1)) = gm+1(αh),

...

fq
π(g

m(αh+j)) = f (q−1−j)+(1+j)
π (gm(αh+j)) = gm+1(αh+j).

Since gm+1(αh+j) = g(gm(αh+j)) = agm(αh+j) + b , it follows that

fq
π(g

m(αh+j)) = agm(αh+j) + b.

On the set Cαh+q−1
, we have

fπ(g
m(αh+q−1)) = gm+1(αh),

f2
π(g

m(αh+q−1)) = fπ(g
m+1(αh)) = gm+1(αh+1),

...

fq−1
π (gm(αh+q−1)) = gm+1(αh+q−2),

fq
π(g

m(αh+q−1)) = fπ(g
m+1(αh+q−2)) = gm+1(αh+q−1).

Since gm+1(αh+q−1) = g(gm(αh+q−1)) = agm(αh+q−1) + b , it follows that

fq
π(g

m(αh+q−1)) = agm(αh+q−1) + b.

Hence, f is of the form fπ . 2

Corollary 2.10 Let α ∈ Z\ {p} and Cα = {gm(α) | m ∈ N0} . Let

Ij =
{
αjq, αjq+1, . . . , α(j+1)q−1

}
⊂ Z\ {p} (j ∈ N0)

be a set of q indices αjq < αjq+1 < · · · < α(j+1)q−1 such that Cαl
∩ Cαt = ∅ whenever αl ̸= αt and let

C
(Ij)
j = Cαjq ∪ Cαjq+1 ∪ · · · ∪ Cα(j+1)q−1

.

For each decomposition of Z\ {p} into a countable union of pointwise disjoint

C
(Ij)
j

(
i.e. Z\ {p} =

∪
j∈N0

C
(Ij)
j

)
, denote this partition (Ij) by π .

Define Fπ : Z → Z by Fπ(p) = p if p ∈ Z , from each class C
(Ij)
j into itself by

Fπ : Cαjq+l
:= {gm(αjq+l) | m ∈ N0} → Cαjq+l+1

(l = 0, 1, . . . , q − 2)
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via
Fπ(g

m(αjq+l)) = gm(αjq+l+1),

and

Fπ : Cα(j+1)q−1
:=
{
gm(α(j+1)q−1) | m ∈ N0

}
→ Cαjq

via

Fπ(g
m(α(j+1)q−1)) = gm+1(αjq).

Then Fπ satisfies fq(n) = an+ b .

Proof Choose α0 ∈ Z\ {p} and construct Cα0 = {gm(α0) | m ∈ N0} . Choose α1 ∈ Z\ (Cα0 ∪ {p}) and con-

struct Cα1 = {gm(α1) | m ∈ N0} . Choose α2 ∈ Z\ (Cα0 ∪ Cα1 ∪ {p}) and construct Cα2 = {gm(α2) | m ∈ N0} .
Continue in the same manner until we choose αq−1 ∈ Z\

(
Cα0 ∪ · · · ∪ Cαq−2 ∪ {p}

)
and construct Cαq−1 =

{gm(αq−1) | m ∈ N0} . Let I0 = {α0, . . . , αq−1} .

Let C
(I0)
0 =

q−1∪
i=0

Cαi . Let αq ∈ Z\ (C (α0) ∪ {p}) . We repeat the above procedure to obtain I1 =

{αq, . . . , α2q−1} and

C
(I1)
1 =

2q−1∪
i=q

Cαi .

Continuing in the same manner, choose

αjq ∈ Z\
(
C (α0) ∪ C (αq) ∪ · · · ∪ C (α(j−1)q) ∪ {p}

)
and construct Ij =

{
αjq, . . . , α(j+1)q−1

}
C

(Ij)
j =

(j+1)q−1∪
i=jq

Cαi .

Repeat the process until we finally exhaust Z\ {p} , and so

Z\ {p} = C
(I0)
0 ∪ C

(I1)
1 ∪ C

(I2)
2 ∪ · · · ; C

(Ij)
j ∩ C

(Ik)
k = ∅ (j ̸= k).

Denote this partition of Z\ {p} by π .

Define Fπ : Z → Z by Fπ(p) = p if p ∈ Z and on each class C
(Ij)
j (j ≥ 0) (of the partition π ) onto

itself by

Fπ : Cαi

(
∈ C

(Ij)
j

)
→ Cαi+1 (i = (j − 1)q, (j − 1)q + 1, . . . , jq − 2),

gm(αi) 7−→ gm(αi+1),

Fπ : Cαjq−1 → Cα(j−1)q
,

gm(αjq−1) 7−→ gm+1(α(j−1)q).

We see that F q
π(p) = p if p ∈ Z and for l ∈ {0, 1, . . . , q − 2} ,

Fπ

(
gm(α(j−1)q+l)

)
= gm(α(j−1)q+l+1),
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F 2
π

(
gm(α(j−1)q+l)

)
= Fπ

(
gm(α(j−1)q+l+1)

)
= gm(α(j−1)q+l+2),

...

F q−l−1
π

(
gm(α(j−1)q+l)

)
= gm(α(j−1)q+l+(q−l−1)) = gm(αjq−1),

F (q−l−1)+1
π

(
gm(α(j−1)q+l)

)
= Fπ (g

m(αjq−1)) = gm+1(α(j−1)q),

F q
π

(
gm(α(j−1)q+l)

)
= F (q−l)+l

π

(
gm(α(j−1)q+l)

)
= F l

π

(
gm+1(α(j−1)q)

)
= gm+1(α(j−1)q+1) = g

(
gm(α(j−1)q+1)

)
= agm(α(j−1)q+1) + b,

and

Fπ (g
m(αjq−1)) = gm+1(α(j−1)q),

F 2
π (gm(αjq−1)) = gm+1(α(j−1)q+1),

...

F q−1
π (gm(αjq−1)) = gm+1(α(j−1)q+(q−2)) = gm+1(αjq−2),

F q
π (gm(αjq−1)) = F (q−1)+1

π (gm(αjq−1)) = Fπ

(
gm+1(αjq−2)

)
= gm+1(αjq−1) = g (gm(αjq−1)) = agm(αjq−1) + b.

Hence, Fπ satisfies fq(n) = an+ b . 2

Example 2.11 Let f : Z → Z satisfy the iterative functional equation

f3(n) = g(n) := 3n+ 1. (2.5)

Then g(n) has no fixed points in Z . The existence of a solution function is guaranteed by Theorem 2.9. The

set of all starters is infinite of the form

S = Z\ (3Z+ 1) = 3Z ∪ (3Z+ 2) = {. . . ,−4,−3,−1, 0, 2, 3, 5, . . .}.

Then we have

. . . , C−4 = {−4,−11,−32, . . .} , C−3 = {−3,−8,−23, . . .} , C−1 = {−1,−2,−5, . . .} ,

C0 = {0, 1, 4, . . .} , C2 = {2, 7, 22, . . .} , C3 = {3, 10, 31, . . .} , . . . .

As an example of a partition π of Z , choose

I0 = {0, 2, 3} , I1 = {−4,−3,−1} , I2 = {5, 6, 8} , . . .

and let

C
(I0)
0 = C0 ∪ C2 ∪ C3, C

(I1)
1 = C−4 ∪ C−3 ∪ C−1, C

(I2)
2 = C5 ∪ C6 ∪ C8, . . . .

Then the set

π =
{

C
(I0)
0 ,C

(I1)
1 ,C

(I2)
2 , . . .

}
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forms a partition of Z . The following diagram shows element maps of one such function Fπ .

Fπ : C0 → C2 Fπ : C−4 → C−3 Fπ : C5 → C6

Fπ : C2 → C3 Fπ : C−3 → C−1 Fπ : C6 → C8 · · ·

Fπ : C3 → C0 Fπ : C−1 → C−4 Fπ : C8 → C5

0
Fπ→ 2

Fπ→ 3
Fπ→ 1

Fπ→ 7
Fπ→ 10

Fπ→ 4
Fπ→ 22

Fπ→ 31
Fπ→ · · ·

− 4 → −3 → −1 → −11 → −8 → −2 → −32 → −23 → −5 → · · ·

5 → 6 → 8 → 16 → 19 → 25 → 49 → 58 → 76 → · · ·

9 → 11 → 12 → 28 → 34 → 37 → 85 → 103 → 112 → · · ·

. . .

As there are many ways to construct such a partition π , there are infinitely many solutions of (2.5).

3. Over the set of natural numbers

In this section, we prove the following theorem.

Theorem 3.1 Let q ∈ N, q ≥ 2 and g : N0 → N0 . Assume that g is an increasing function having no fixed

point. If f : N0 → N0 satisfies the iterative functional equation

fq(n) = g(n), (3.1)

then f must be of the form fK for some K defined in the proof of this theorem.

Adopting the notation in Sections 1 and 2, let Rg and Rf denote the range of g and f , respectively.

We begin with some preliminary observations.

(i) Since g = fq is increasing, it is injective.

(ii) That g has no fixed points is equivalent to the condition that g(1) ̸= 1.

(iii) The two functions f, g commute with each other, i.e. f ◦ g = g ◦ f .

Assuming the existence of a function f : N0 → N0 satisfying (3.1), we proceed by proving a number of

lemmas containing its illuminating properties.

Lemma 3.2 If f is a solution function of (3.1), then:

(i) f is one-to-one (and so f−1 is well defined on Rf ⊆ N0 );

(ii) f partitions N0 into (nonempty) equivalence classes via the relation

x ∼ y ⇐⇒ y = fsq(x) for some s ∈ Z.

The proof of Lemma 3.2 is simple, so it is left to the reader. We next investigate these equivalence classes.

832



MAVECHA et al./Turk J Math

Lemma 3.3 For r, s ∈ N0 with r ̸= s , if r and s are not in Rg , then r and s are in different classes.

Proof Suppose r and s are in the same class. There is t ∈ Z such that r = f tq(s). Since r ̸= s , we see that

t ̸= 0, and by interchanging r, s , we can assume t > 0. Thus, r = fq
(
f (t−1)q(s)

)
= g(f (t−1)q(s)), showing that

r ∈ Rg , a contradiction. 2

Lemma 3.4 There is a unique nonnegative integer r /∈ Rg in each equivalence class, and it is the smallest

element in this class.

Proof Let C be such an equivalence class. If C ⊂ Rg , take an n0 ∈ C ; since g is increasing, we see

that n0 = g(n1) for some n1 ≤ n0 , and since g has no fixed point, we must have n1 < n0 . Moreover, from

fq(n1) = g(n1) = n0 , we have n1 ∈ C . Repeating the arguments, we obtain n1 = g(n2), n2 < n1, n2 ∈ C .

Continuing in the same manner, we arrive at a negative integer belonging to C , which is not possible. Thus,

C contains an element r /∈ Rg , which must be unique by Lemma 3.3.

Next we show that r is the smallest element in C . If there exists u ∈ C such that u < r , from the

preceding result, u ∈ Rg , i.e. u = g(u1) for some u1 ∈ N0 . This element satisfies u1 < u, u1 ∈ C , by the

same reasoning as above. Continuing in the same manner, we get a negative integer in C , which is again a

contradiction. 2

Taking into account the results of Lemmas 3.2–3.4, it is convenient to denote each equivalence class by Cr ,

where r ̸∈ Rg is the (unique) smallest element in the class, and such an element r is the starter of Cr . Clearly,

the classes Cr are disjoint, and

N0 =
∪

r/∈Rg

Cr, Cr = {gm(r) | m ∈ Z}.

Lemma 3.5 If r ̸∈ Rg is the starter of Cr , then Cr = {gm(r) | m ∈ N0} .

Proof If x ∈ Cr is such that x = g−m(r) for some m ∈ N , then r = gm(x). Since g is an increasing function

without fixed points, we have

r = gm(x) > gm−1(x) ≥ gm−2(x) ≥ · · · ≥ x,

contradicting the minimality of r . 2

Lemma 3.6 Let r be the starter of Cr . Then:

(i) the function f sends the class Cr into a unique class that contains f(r) ;

(ii) after q iterations, f maps a class back into itself, i.e. fq(Cr) ⊆ Cr .

Proof From Lemma 3.5, each element in Cr is of the form gs(r) ∈ Cr (s ∈ N0). Since

f(gs(r)) = f(g(gs−1(r))) = g(f(gs−1(r))) = · · · = gs(f(r)),

we see that f(gs(r)) and f(r) are in the same class, which shows that all elements of f(Cr) belong to one and

only one class, which proves (i). To prove (ii), observe that

fq(gs(r)) = g(gs(r)) = gs+1(r) ∈ Cr.
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2

If x ∈ Rg = Rfq , then clearly x ∈ Rf , i.e. Rg ⊆ Rf , and we now look more closely at Rf .

Lemma 3.7 (i) There are elements in N0 but not in Rf .

(ii) If k ∈ N0\Rf , then k, f(k), f2(k), . . . , fq−1(k) belong to distinct classes and each of them is the starter

of its class.

Proof (i) If Rf = N0 , then f is a bijection (Lemma 3.2) onto its range, and so is f−1 . Since g is increasing

without fixed points, we get g(0) ̸= 0, yielding

g(0) ≥ 1, g(1) ≥ 2, . . . , fq(k) = g(k) ≥ k + 1 (k ∈ N0).

This last relation implies that f−q(l) := u ≤ l − 1. Using this repeatedly, we get

f−2q(l) = f−q(u) ≤ u− 1 ≤ l − 2, f−3q(l) = f−2q(u) ≤ u− 2 ≤ l − 3, . . . .

Thus, for t sufficiently large, we arrive at f−tq(l) < 0, which is untenable.

(ii) Take an integer k ∈ N0\Rf , and let

f i(k) ∈ Cri (i = 0, 1, 2, . . . , q − 1), (3.2)

where the ri s are not necessarily distinct.

We claim that f i(k) is the smallest element in its class Cri .

Starting from the last class, Crq−1 , if the claim is false, then its starter satisfies rq−1 < fq−1(k). Since

rq−1 = g0(rq−1), the definition of the class shows that fq−1(k) = gt(rq−1) for some t ∈ N . Since rq−1 and

fq−1(k) are in the same class Crq−1 , Lemma 3.6(i) indicates that f(rq−1) and f(fq−1(k)) are in the same

class. Since k ∈ Cr0 , by Lemma 3.6(ii), f(fq−1(k)) = fq(k) ∈ Cr0 . Thus, f(rq−1) ∈ Cr0 . As g is increasing

with no fixed point, we have

f(rq−1) < gt(f(rq−1)) = f(gt(rq−1)) = f(fq−1(k)) = fq(k) = g(k).

Since there is no element between k and g(k) in Cr0 and since k ̸∈ Rf , we have f(rq−1) < k . After applying

fq = g repeatedly to f(rq−1), we must reach k , so that k ∈ Rf , which is a contradiction. Hence, fq−1(k)

is the starter in Crq−1 . The same reasoning also shows that fq−2(k), . . . , f(k) are the starters of classes

Crq−2 , . . . , Cr1 , respectively.

It remains to show that k is the starter in Cr0 . Since r0 = g0(r0), k = gt(r0) (t ∈ N), are both in Cr0 ,

by Lemma 3.6(i), f(r0) and f(k) are in the same class. Since g is increasing with no fixed point, we have

f(r0) < gt(f(r0)) = f(gt(r0)) = f(k) ∈ Cr1 ,

yielding f(r0) ∈ Cr1 , which contradicts the fact that f(k) is the smallest in Cr1 . By Lemmas 3.3 and 3.4,

k, f(k), f2(k), . . . , fq−1(k) are in distinct classes. 2

Remark. From Lemma 3.7, we see that ri = f i(k) (i = 0, 1, . . . , q − 1) and it is clear that for k ∈ N0\Rf ,

the elements f(k), f2(k), . . . , fq−1(k) can be given arbitrary values from N0 .
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Keeping the above notation, we now prove Theorem 3.1 by showing that a function f : N0 → N0 satisfying

(3.1) must be one of the functions fK for some K defined below.

Proof of Theorem 3.1 Let f : N0 → N0 be a solution of fq(n) = g(n). Let k0 ∈ N0\Rf and ri =

f i(k0) (i = 0, 1, . . . , q− 1). By Lemma 3.7(ii), we see that r0, r1, . . . , rq−1 are starters of q distinct classes Cri

(0 ≤ i ≤ q − 1). Since ri is the starter of Cri , let

C (r0) = Cr0 ∪ Cr1 ∪ · · · ∪ Crq−1

and observe that for h = 0, 1, . . . , q − 2,

f : Crh := {gm(rh) | m ∈ N0} → Crh+1
:= {gm(rh+1) | m ∈ N0}

and
f : Crq−1

→ Cr0

satisfy

f(gm(rh)) = gm(f(rh)) = gm(rh+1)

and

f(gm(rq−1)) = gm(f(rq−1)) = gm(r0).

Proceeding generally at the state i+ 1, (i ≥ 0), choose

riq ∈ (S\Rf ) ∩
(
N0\

(
C (r0) ∪ · · · ∪ C (r(i−1)q)

))
and construct

C (riq) = Criq ∪ · · · ∪ Cr(i+1)q−1
.

Since C (riq) ∩ C (rjq) = ∅ if i ̸= j , continuing this procedure will eventually exhaust N0 , i.e. we obtain a

partition K of N0 as

N0 = C (r0) ∪ C (rq) ∪ C (r2q) ∪ · · · =
∪
i≥0

C (riq). (3.3)

We turn now to obtain an explicit form of the solution f .

Define fK : N0 → N0 on each C (rh) (h ∈ qN0 ) by

fK : Crh+j
−→ Crh+j+1

(j = 0, 1, . . . , q − 2)

via

fK (gm(rh+j)) = gm(rh+j+1)

and
fK : Crh+q−1

−→ Crh

via

fK (gm(rh+q−1)) = gm+1(rh).
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The mapping fK on each C (rh) is illustrated by

· · · fK−→ gm(rh)
fK−→ gm(rh+1)

fK−→ gm(rh+2)
fK−→ · · · fK−→ gm(rh+q−1)

fK−→ gm+1(rh)

fK−→ gm+1(rh+1)
fK−→ gm+1(rh+2)

fK−→ · · · fK−→ gm+1(rh+q−1)
fK−→ gm+2(rh)

fK−→ · · · .

For j = 0, 1, . . . , q − 2 , we have

fK(g
m(rh+j)) = gm(rh+j+1),

f2
K(g

m(rh+j)) = fK(g
m(rh+j+1)) = gm(rh+j+2),

...

fq−1−j
K (gm(rh+j)) = gm(rh+j+(q−1−j)) = gm(rh+q−1),

f
(q−1−j)+1
K (gm(rh+j)) = fK(g

m(rh+q−1)) = gm+1(rh),

...

fq
K(g

m(rh+j)) = f
(q−1−j)+(1+j)
K (gm(rh+j)) = gm+1(rh+j) = g(gm(rh+j)).

On the set Crh+q−1
, we have

fK(g
m(rh+q−1)) = gm+1(rh),

f2
K(g

m(rh+q−1)) = fK(g
m+1(rh)) = gm+1(rh+1),

...

fq
K(g

m(rh+q−1)) = gm+1(rh+q−1) = g(gm(rh+q−1)).

Hence, f is of the form fK .

Corollary 3.8 Let q ∈ N, q ≥ 2 and g : N0 → N0 . Assume that g is an increasing function having no fixed

point.

Let r ∈ N0 and Cr = {gm(r) | m ∈ N0} . Let Ij =
{
rjq, rjq+1, . . . , r(j+1)q−1

}
⊂ N0 (j ∈ N0) be

a set of q indices rjq < rjq+1 < · · · < r(j+1)q−1 such that Crl ∩ Crt = ∅ whenever rl ̸= rt and let

C
(Ij)
j = Crjq ∪ Crjq+1 ∪ · · · ∪ Cr(j+1)q−1

.

For each decomposition of N0 into a countable union of pointwise disjoint C
(Ij)
j

(
i.e. N0 =

∪
j∈N0

C
(Ij)
j

)
,

denote this partition (Ij) by K .

Define FK : N0 → N0 from each class C
(Ij)
j into itself by

FK : Crjq+l
:= {gm(rjq+l) | m ∈ N0} → Crjq+l+1

(l = 0, 1, . . . , q − 2)

via
FK(g

m(rjq+l)) = gm(rjq+l+1),
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and

FK : Cr(j+1)q−1
:=
{
gm(r(j+1)q−1) | m ∈ N0

}
→ Crjq

via

FK(g
m(r(j+1)q−1)) = gm+1(rjq).

Then FK satisfies fq(n) = g(n) .

Proof Given q ∈ N, q ≥ 2 and g : N0 → N0 an increasing function having no fixed point, choose r0 ∈ N0 and

construct Cr0 = {gm(r0) | m ∈ N0} . Choose r1 ∈ N0\Cr0 and construct Cr1 = {gm(r1) | m ∈ N0} . Choose

r2 ∈ N0\ (Cr0 ∪ Cr1) and construct Cr2 = {gm(r2) | m ∈ N0} . Continue in the same manner until we choose

rq−1 ∈ N0\
(
Cr0 ∪ · · · ∪ Crq−2

)
and construct Crq−1 = {gm(rq−1) | m ∈ N0} .

Let C (r0) =

q−1∪
i=0

Cri . Let rq ∈ N0\C (r0). We repeat the above procedure to obtain

C (rq) =

2q−1∪
i=q

Cri .

Continuing in the same manner, choose

rjq ∈ N0\
(
C (r0) ∪ C (rq) ∪ · · · ∪ C (r(j−1)q)

)
and construct

C (rjq) =

jq−1∪
i=(j−1)q

Cri .

Repeat the process until we finally exhaust N0 , and so

N0 = C (r0) ∪ C (rq) ∪ C (r2q) ∪ · · · ; C (rjq) ∩ C (rkq) = ∅ (j ̸= k).

Denote this partition of N0 by K .

Define FK : N0 → N0 on each class C (rjq) (j ≥ 0) (of the partition K) onto itself by

FK : Cri (∈ C (rjq)) → Cri+1
(i = (j − 1)q, (j − 1)q + 1, . . . , jq − 2),

gm(ri) 7−→ gm(ri+1),

FK : Crjq−1 → Cr(j−1)q
,

gm(rjq−1) 7−→ gm+1(r(j−1)q).

We see that for l ∈ {0, 1, . . . , q − 2} ,

FK
(
gm(r(j−1)q+l)

)
= gm(r(j−1)q+l+1),

F 2
K
(
gm(r(j−1)q+l)

)
= FK

(
gm(r(j−1)q+l+1)

)
= gm(r(j−1)q+l+2),

...
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F q−l−1
K

(
gm(r(j−1)q+l)

)
= gm(r(j−1)q+l+(q−l−1)) = gm(rjq−1),

F
(q−l−1)+1
K

(
gm(r(j−1)q+l)

)
= FK (gm(rjq−1)) = gm+1(r(j−1)q),

F q
K
(
gm(r(j−1)q+l)

)
= F

(q−l)+l
K

(
gm(r(j−1)q+l)

)
= F l

K
(
gm+1(r(j−1)q)

)
= gm+1(r(j−1)q+1) = g

(
gm(r(j−1)q+1)

)
,

and

FK (gm(rjq−1)) = gm+1(r(j−1)q),

F 2
K (gm(rjq−1)) = gm+1(r(j−1)q+1),

...

F q−2
K (gm(rjq−1)) = gm+1(r(j−1)q+(q−3)) = gm+1(rjq−3),

F q−1
K (gm(rjq−1)) = F

(q−1)+1
K (gm(rjq−1)) = FK

(
gm+1(rjq−3)

)
= gm+1(rjq−2),

F q
K (gm(rjq−1)) = F

(q−1)+1
K (gm(rjq−1)) = FK

(
gm+1(rjq−2)

)
= gm+1(rjq−1) = g (gm(rjq−1)) .

Hence, FK satisfies fq(n) = g(n). 2

As an application, we show that the result of Sarkaria mentioned earlier is an immediate consequence of

Theorem 3.1.

Corollary 3.9 Let α, q ∈ N, q ≥ 2 . Then there exists f : N0 → N0 satisfying

fq(n) = n+ α

if and only if q | α .

Proof Let g : N0 → N0 be given by g(n) = n+ α . Clearly,

N0\Rg = {0, 1, . . . α− 1} =: S

is the set of all possible starters. The corresponding equivalence classes are

C(k)
ri = {f i(k), g(f i(k)), g2(f i(k)), . . .} = {f i(k), f i(k) + α, f i(k) + 2α, . . .}

=
{
l ∈ N0 | l ≡ f i(k) mod α

}
(3.4)

(k ∈ S, ri = i ∈ {0, 1, . . . , q − 1}) .

Observe that for the classes (3.4) and the relation (3.3) to be consistent with N0 =
∪α−1

i=0 {k ∈ N0 | k ≡ i mod α} ,
i.e. for fK to be constructible, it is necessary and sufficient that q | α . 2

Example 3.10 Let f : N0 → N0 satisfy the iterative functional equation

f3(n) = g(n) := n3 + 1. (3.5)
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Clearly, g(n) is an increasing function with no fixed points in N0 . The existence of a solution function is

guaranteed by Theorem 3.1. The set of all starters is infinite of the form

S = N0\g(N0) = {m ∈ N0 | m− 1 is not a perfect cube in N0}

= {0, 3, 4, 5, 6, 7, 8, 10, 11, . . .}.

Then we have

C0 = {0, 1, 2, . . .} , C3 = {3, 28, 21953, . . .} , C4 = {4, 65, 274626, . . .} ,

C5 = {5, 126, 2000377, . . .} , C6 = {6, 217, 10218314, . . .} , C7 = {7, 344, 40707585 . . .} , . . . .

As an example of a partition K of N0 , choose

I0 = {0, 3, 4} , I1 = {5, 6, 7} , I2 = {8, 10, 11} , . . .

and let

C
(I0)
0 = C0 ∪ C3 ∪ C4, C

(I1)
1 = C5 ∪ C6 ∪ C7, C

(I2)
2 = C8 ∪ C10 ∪ C11, . . . .

Then the set

K =
{

C
(I0)
0 ,C

(I1)
1 ,C

(I2)
2 , . . .

}
forms a partition of N0 . The following diagram shows element maps of one such function FK :

FK : C0 → C3 FK : C5 → C6 FK : C8 → C10

FK : C3 → C4 FK : C6 → C7 FK : C10 → C11 · · ·

FK : C4 → C0 FK : C7 → C5 FK : C11 → C8

0
FK→ 3

FK→ 4
FK→ 1

FK→ 28
FK→ 65

FK→ 2
FK→ 21953

FK→ 274626
FK→ · · ·

5 → 6 → 7 → 126 → 217 → 344 → 2000377 → 10218314 → · · ·

8 → 10 → 11 → 513 → 1001 → 1332 → 135005698 → · · ·

12 → 13 → 14 → 1729 → 2198 → 2745 → 5168743490 → · · ·

. . .

As there are many ways to construct such a partition K , there are infinitely many solutions of (3.5).
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