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Abstract: In this paper, we use the Lyapunov’s second method to obtain new sufficient conditions for many types of

stability like exponential stability, uniform exponential stability, h -stability, and uniform h -stability of the nonlinear

dynamic equation

x∆(t) = A(t)x(t) + f(t, x), t ∈ T+
τ := [τ,∞)T,

on a time scale T , where A ∈ Crd(T, L(X)) and f : T×X → X is rd-continuous in the first argument with f(t, 0) = 0.

Here X is a Banach space. We also establish sufficient conditions for the nonhomogeneous particular dynamic equation

x∆(t) = A(t)x(t) + f(t), t ∈ T+
τ ,

to be uniformly exponentially stable or uniformly h -stable, where f ∈ Crd(T,X) , the space of rd-continuous functions

from T to X . We construct a Lyapunov function and we make use of this function to obtain our stability results.

Finally, we give illustrative examples to show the applicability of the theoretical results.
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1. Introduction and preliminaries

One of the most important and useful tools for investigating the behavior of solutions of dynamic equations on a

general time scale is Lyapunov’s second method (Lyapunov’s direct method), which was introduced by Lyapunov

in 1892. Many studies used the Lyapunov technique to investigate various types of stability for the systems of

dynamic equations on time scales; for instance, see [5–9, 11–17, 20]. Mukdasai and Niamsup [18] constructed

appropriate Lyapunov functions and derived sufficient conditions for uniform stability, uniform exponential

stability, ψ -uniform stability, and h -stability for linear time-varying systems with nonlinear perturbation on

time scales. Cui [7] gave generalizations for the boundedness theorems on Rn. Nasser et al. [19] established some

sufficient conditions for the existence of the quadratic Lyapunov function that ensure the desired asymptotic

convergence of trajectories. The difficulty of the Lyapunov technique is to construct a Lyapunov function. For

equations with solutions with values in the Euclidean space Rn , the situation is simpler. The Lyapunov function

is usually chosen to be

V (t, x) = xTP (t)x,
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where P (t) is an n × n matrix and xT is the transpose of x ∈ Rn . See [5, 19]. In the Hilbert space setting,

the Lyapunov function is chosen to be

V (t, x) =< P (t)x, x >,

where P (t) is a bounded linear operator on a Hilbert space and < ., . > is its inner product. See [9]. In this

paper, we define an appropriate Lyapunov function for the Banach space situation. See Section 3.

Throughout this paper we denote by

Crd(T, X) = {f : T → X|f is rd-continuous },

C1
rd(T, X) = {f : T → X| f, f∆ are rd-continuous },

C1
rd(T×X,X) = {f : T×X → X| f, f∆ are rd-continuous in the first variable },

Crd := Crd(T,R),

C1
rd := C1

rd(T,R),

R = {f : T → R| f is regressive, i.e. 1 + µ(t)f(t) ̸= 0, t ∈ T},

R+ = {f : T → R| f is positively regressive, i.e. 1 + µ(t)f(t) > 0, t ∈ T},

and

R+Crd = {f : T → R| f is positively regressive and rd-continuous }.

The paper starts with the investigation of sufficient conditions for the boundedness of solutions and the

exponential stability, uniform exponential stability, h-stability, and uniform h -stability of the abstract dynamic

equation

x∆(t) = F (t, x), x(τ) = xτ ∈ X, t ∈ T+
τ := [τ,∞)T, (1.1)

where F : T×X → X is rd-continuous in the first argument with F (t, 0) = 0. Here, T is a time scale and X

is a Banach space. Thereafter, we construct a Lyapunov function and make use of this function to study the

stability of the abstract homogeneous equation

x∆(t) = A(t)x(t), t ∈ T+
τ , (1.2)

and its perturbed equation of the form

x∆(t) = A(t)x(t) + f(t, x), t ∈ T+
τ , (1.3)

where A(·) ∈ Crd(T, L(X)) and f : T×X → X is rd-continuous in the first argument with f(t, 0) = 0. Also,

we establish sufficient conditions for the nonhomogeneous particular dynamic equation

x∆(t) = A(t)x(t) + f(t), t ∈ T+
τ , (1.4)

where f ∈ Crd(T, X), to be uniformly exponentially stable or uniformly h-stable. For the theory of dynamic

equations on time scales, we refer the reader to the very interesting monographs [2] and [3]. We organize

this paper as follows. Section 2 is devoted to establishing characterizations for many types of stability like

exponential stability and uniform exponential stability in the sense of Lyapunov’s second method. These

characterizations are inspired by those in [17] and [21], but for Eq. (1.1) in Banach spaces with small
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modifications. We end this section by obtaining new sufficient conditions for h-stability and uniform h-stability

of the abstract Eq. (1.1). In Section 3, we obtain our main results. We construct a Lyapunov function to study

the uniform exponential stability and uniform h -stability for Eqs. (1.2), (1.3), and (1.4). We supply this paper

with illustrative examples to demonstrate the applicability of the theoretical results.

2. Lyapunov stability theory

In this section, we introduce the concepts of exponential stability, uniform exponential stability, h -stability,

and uniform h -stability. See [1, 2, 4, 5, 8, 10, 17]. These concepts involve the boundedness of solutions of the

nonregressive dynamic equations. We develop the theory of stability of systems of dynamic equations on time

scales to dynamic equations in Banach spaces. We obtain new sufficient conditions for the types of stability

mentioned above.

Definition 2.1 Consider the dynamic equation

x∆(t) = F (t, x), x(τ) = xτ ∈ X, t ∈ T+
τ , (2.1)

where F : T×X → X is rd-continuous in the first argument with F (t, 0) = 0.

(i) A solution x(t) of Eq. (2.1) is said to be bounded if there is a constant ϑ(τ, xτ ) that depends on τ and

xτ such that

∥ x(t) ∥≤ ϑ(τ, xτ ), t ∈ T+
τ .

(ii) We say that the family of solutions of Eq. (2.1) is uniformly bounded if ϑ is independent on τ.

(iii) Eq. (2.1) is called exponentially stable if there exists α > 0 with −α ∈ R+ and there is β : X × T → R+

nonnegative function such that any solution x(t) = x(t, τ, xτ ) of Eq. (2.1) satisfies

∥ x(t) ∥≤ β(xτ , τ)e−α(t, τ), t ∈ T+
τ .

(iv) Eq. (2.1) is called uniformly exponentially stable if β is independent on τ ∈ T.

(v) Let h : T → R be a positive bounded function. We say that Eq. (2.1) is h-stable if there exists

θ : X × T → R≥1 such that any solution x(t) of Eq. (2.1) satisfies

∥ x(t) ∥≤ θ(xτ , τ)h(t)h(τ)
−1, t ∈ T+

τ

for any initial value xτ .

(vi) Let h : T → R be a positive bounded function. We say that Eq. (2.1) is uniformly h-stable if θ is

independent on τ ∈ T.

2.1. Boundedness of solutions

Liu in [17] showed that the results of [20] are true when X = Rn . In this section our aim is to ensure that these

results are true when X is a general Banach space. We generalize and improve the results of [9, 17, 20, 21].

Theorem 2.2 Let p and s be positive constants. Assume there exists a positive definite function V ∈
C1

rd(T×X,R+) that satisfies the following conditions:
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(i) λ(t)∥x∥p ≤ V (t, x), for some positive nondecreasing function λ ;

(ii) V ∆(t, x) ≤ −b(t)V s(t, x) + l(t), for some positive function b with −b ∈ R+Crd and l ∈ Crd ;

(iii) V (t, x)− V s(t, x) ≤ γ , for some γ ≥ 0 ;

(iv)

∫ t

τ

l(u)e⊖(−ω)(σ(u), t)∆u ≤ L, for some nonnegative constant L , where ω := inf
t∈T

b(t) > 0 .

Then all solutions of Eq. (2.1) are bounded.

Proof Let x(t) be a solution of Eq. (2.1). Conditions (ii) and (iii) imply

[V (t, x)e⊖(−ω)(t, τ)]
∆ = V ∆(t, x)e⊖(−ω)(σ(t), τ) +⊖(−ω)V (t, x)e⊖(−ω)(t, τ)

≤ [−b(t)V s(t, x) + l(t) + ωV (t, x)]
e⊖(−ω)(t, τ)

1− ωµ(t)
(2.2)

≤ [−b(t)V s(t, x) + l(t) + ω(V s(t, x) + γ)]
e⊖(−ω)(t, τ)

1− ωµ(t)

≤ l(t) + γω

1− ωµ(t)
e⊖(−ω)(t, τ), t ∈ T+

τ .

Then

V (t, x)e⊖(−ω)(t, τ) ≤ V (τ, xτ )e⊖(−ω)(τ, τ) + γ(e⊖(−ω)(t, τ)− 1) +

∫ t

τ

l(u)e⊖(−ω)(σ(u), τ)∆u

≤ V (τ, xτ ) + γe⊖(−ω)(t, τ) +

∫ t

τ

l(u)e⊖(−ω)(σ(u), τ)∆u.

Hence, by using (iv), we get

V (t, x) ≤ V (τ, xτ ) + γ + L.

Consequently, (i) implies

∥x(t)∥p ≤ 1

λ(t)
(V (τ, xτ ) + L∗),

where L∗ = γ + L . It follows that

∥x(t)∥ ≤ [
1

λ(τ)
(V (τ, xτ ) + L∗)]

1
p , t ∈ T+

τ . (2.3)

Therefore, all solutions of Eq. (2.1) are bounded. 2

Corollary 2.3 Let p, q, s, η1 , and η2 be positive constants. Assume there exists a positive definite function

V ∈ C1
rd(T×X,R+) that satisfies the following conditions:

(i) η1∥x∥p ≤ V (t, x) ≤ η2∥x∥q;

(ii) V ∆(t, x) ≤ −b(t)V s(t, x) + l(t), for some positive function b with −b ∈ R+Crd and l ∈ Crd ;
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(iii) V (t, x)− V s(t, x) ≤ γ , for some γ ≥ 0;

(iv)

∫ t

τ

l(u)e⊖(−ω)(σ(u), t)∆u ≤ L, for some nonnegative constant L , where ω := inf
t∈T

b(t) > 0 .

Then the family of all solutions of Eq. (2.1) is uniformly bounded with respect to the initial point τ.

Proof From the inequality (2.3) and by using (i), we obtain

∥x(t)∥ ≤ [
1

η1
(η2∥xτ∥q + L∗)]

1
p , t ∈ T+

τ ,

where L∗ = γ+L. Then the family of all solutions of Eq. (2.1) is uniformly bounded with respect to the initial

point τ. 2

Corollary 2.4 Let p, q, r, η1 , and η2 be positive constants. Assume there exists a positive definite function

V ∈ C1
rd(T×X,R+) that satisfies the following conditions:

(i) η1∥x∥p ≤ V (t, x) ≤ η2∥x∥q;

(ii) V ∆(t, x) ≤ −b(t)∥x∥r + l(t), for some positive function b with −b(·)

η
r
q

2

∈ R+Crd and l ∈ Crd ;

(iii) V (t, x)− V
r
q (t, x) ≤ γ, for some γ ≥ 0;

(iv)

∫ t

τ

l(u)e⊖(−ω)(σ(u), t)∆u ≤ L, for some nonnegative constant L, where ω := inf
t∈T

b(t)

η
r
q

2

> 0 .

Then the family of all solutions of Eq. (2.1) is uniformly bounded with respect to the initial point τ.

Proof Let x be a solution of Eq. (2.1). By using (i) and (ii), we obtain

V ∆(t, x(t)) ≤ −b(t)

η
r
q

2

V
r
q (t, x(t)) + l(t).

By Corollary 2.3, the family of all solutions of Eq. (2.1) is uniformly bounded with respect to the initial point
τ. 2

Corollary 2.5 Assume there exists a positive definite function V ∈ C1
rd(T×X,R+) that satisfies the following

conditions:

(i) η1∥x∥2 ≤ V (t, x) ≤ η2∥x∥2;

(ii) V ∆(t, x) ≤ −b(t)∥x∥2, for some positive function b with − b(·)
η2

∈ R+Crd.

Then the family of all solutions of Eq. (2.1) is uniformly bounded with respect to the initial point τ.

845



HAMZA and ORABY/Turk J Math

2.2. Exponential stability

Now we develop and generalize the results of Liu [17] by establishing new sufficient conditions for the (uniform)

exponential stability of Eq. (2.1) in a Banach space X in terms of e−δ(t, τ) (with constant δ > 0 and −δ ∈ R+ )

instead of e⊖δ(t, τ), by using Lyapunov’s second method.

Theorem 2.6 Assume that T is a time scale with bounded graininess. Let p and s be positive constants.

Assume there exists a positive definite function V ∈ C1
rd(T×X,R+) that satisfies the following conditions:

(i) λ(t)∥x∥p ≤ V (t, x), for some positive nondecreasing function λ ;

(ii) V ∆(t, x) ≤ −b(t)V s(t, x) + l(t), for some positive function b and some function l ∈ Crd ;

(iii) V (t, x)− V s(t, x) ≤ γe−δ(t, τ), for some γ > 0 and δ > ω := inft∈T b(t) > 0 , with −δ ∈ R+;

(iv)

∫ t

τ

l(u)e⊖(−ω)(σ(u), τ)∆u ≤ K, for some nonnegative constant K.

Then Eq. (2.1) is exponentially stable and every solution x satisfies

∥x(t)∥ ≤ [
1

λ(τ)
(V (τ, xτ ) +K∗)]

1
p e−α(t, τ), t ∈ T+

τ .

Proof Let x be a solution to Eq. (2.1). By using (ii)–(iii) and inequality (2.2), we have

[V (t, x(t))e⊖(−ω)(t, τ)]
∆ ≤ [−b(t)V s(t, x(t)) + l(t) + ω(V s(t, x(t)) + γe−δ(t, τ))]

e⊖(−ω)(t, τ)

1− ωµ(t)

≤ l(t)
e⊖(−ω)(t, τ)

1− ωµ(t)
+

γω

1− ωµ(t)
e−δ⊖(−ω)(t, τ).

This implies that

V (t, x(t))e⊖(−ω)(t, τ) ≤ V (τ, xτ ) +
γω

δ − ω
+K.

Using (i), we obtain

λ(t)∥x(t)∥p ≤ V (t, x(t))

≤ (V (τ, xτ ) +K∗)e−ω(t, τ),

where K∗ = γω
δ−ω +K. Hence,

∥x(t)∥p ≤ 1

λ(t)
(V (τ, xτ ) +K∗)e−ω(t, τ),

and

∥x(t)∥ ≤ [
1

λ(τ)
(V (τ, xτ ) +K∗)]

1
p e⊖(ω

p )(t, τ).

In view of

⊖ω
p
≤ −

ω
p

1 + ω
p ∥µ∥∞

,
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we obtain e⊖ω
p
(t, τ) ≤ e−α(t, τ), where α = ω

p /(1 +
ω
p ∥µ∥∞). It follows that

∥x(t)∥ ≤ [
1

λ(τ)
(V (τ, xτ ) +K∗)]

1
p e−α(t, τ), t ∈ T+

τ .

Therefore, Eq. (2.1) is exponentially stable. 2

Corollary 2.7 Assume that T is a time scale with bounded graininess. Let p, q , and r be positive constants.

Assume there exists a positive definite function V ∈ C1
rd(T×X,R+) that satisfies the following conditions:

(i) λ1(t)∥x∥p ≤ V (t, x) ≤ λ2(t)∥x∥q, for some positive functions λ1, λ2 with nondecreasing λ1;

(ii) V ∆(t, x) ≤ −b(t)∥x∥r + l(t), for some positive function b and some function l ∈ Crd ;

(iii) V (t, x)− V
r
q (t, x) ≤ γe−δ(t, τ), for some γ > 0 and δ > ω := inft∈T

b(t)

λ
r
q
2 (t)

> 0 , with −δ ∈ R+;

(iv)

∫ t

τ

l(u)e⊖(−ω)(σ(u), τ)∆u ≤ K, for some nonnegative constant K .

Then Eq. (2.1) is exponentially stable.

Proof Let x be a solution of Eq. (2.1). By using (i) and (ii), we have

V ∆(t, x(t)) ≤ − b(t)

λ
r
q

2 (t)
V

r
q (t, x(t)) + l(t).

By Theorem 2.6, Eq. (2.1) is exponentially stable. 2

Corollary 2.8 Assume that T is a time scale with bounded graininess. Let p, q, s, η1 , and η2 be positive

constants. Assume there exists a positive definite function V ∈ C1
rd(T × X,R+) that satisfies the following

conditions:

(i) η1∥x∥p ≤ V (t, x) ≤ η2∥x∥q;

(ii) V ∆(t, x) ≤ −b(t)V s(t, x) + l(t), for some positive function b and some function l ∈ Crd ;

(iii) V (t, x)− V s(t, x) ≤ γe−δ(t, τ), for some γ > 0 and δ > ω := inft∈T b(t) > 0, with −δ ∈ R+;

(iv)

∫ t

τ

l(u)e⊖(−ω)(σ(u), τ)∆u ≤ K, for some nonnegative constant K .

Then Eq. (2.1) is uniformly exponentially stable.

Proof Let x be a solution of Eq. (2.1). By using (i) and Theorem 2.6, we obtain

∥x(t)∥ ≤ [
1

η1
(η2∥xτ∥q +K∗)]

1
p e−α(t, τ), t ∈ T+

τ ,

where K∗ = γω
δ−ω +K. Then Eq. (2.1) is uniformly exponentially stable. 2
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Corollary 2.9 Assume that T is a time scale with bounded graininess. Let p, q, r, η1 , and η2 be positive

constants. Assume there exists a positive definite function V ∈ C1
rd(T × X,R+) that satisfies the following

conditions:

(i) η1∥x∥p ≤ V (t, x) ≤ η2∥x∥q;

(ii) V ∆(t, x) ≤ −b(t)∥x∥r + l(t), for some positive function b and some l ∈ Crd ;

(iii) V (t, x)− V
r
q (t, x) ≤ γe−δ(t, τ), for some γ > 0 and δ > ω := inft∈T

b(t)

η
r
q
2

> 0 , with −δ ∈ R+;

(iv)

∫ t

τ

l(u)e⊖(−ω)(σ(u), τ)∆u ≤ K, for some nonnegative constant K .

Then Eq. (2.1) is uniformly exponentially stable.

Proof Let x be a solution of Eq. (2.1). By using (i) and (ii), we have

V ∆(t, x(t)) ≤ −b(t)

η
r
q

2

V
r
q (t, x(t)) + l(t).

Then, by Corollary 2.8, Eq. (2.1) is uniformly exponentially stable. 2

Theorem 2.10 Assume that T is a time scale with bounded graininess. Let p and s be positive constants.

Assume there exists a positive definite function V ∈ C1
rd(T×X,R+) that satisfies the following conditions:

(i) λ(t)∥x∥p ≤ V (t, x), for some positive nondecreasing function λ ;

(ii) V ∆(t, x) ≤ −b(t)V s(t, x) + l(t), for some positive function b, that satisfies ω := inft∈T b(t) > 0 and

−ω ∈ R+, and some function l ∈ Crd ;

(iii) V (t, x)− V s(t, x) ≤ 0 ;

(iv)

∫ t

τ

l(u)e⊖(−ω)(σ(u), τ)∆u ≤ K, for some nonnegative constant K.

Then Eq. (2.1) is exponentially stable.

Proof Let x be a solution of Eq. (2.1). By using (ii)–(iii), and inequality (2.2), we have

[V (t, x(t))e⊖(−ω)(t, τ)]
∆ ≤ [−b(t)V s(t, x(t)) + l(t) + ωV s(t, x(t))]

e⊖(−ω)(t, τ)

1− ωµ(t)

≤ l(t)
e⊖(−ω)(t, τ)

1− ωµ(t)
.

This implies that

V (t, x(t))e⊖(−ω)(t, τ) ≤ V (τ, xτ ) +K.

Using (i), we obtain

λ(t)∥x(t)∥p ≤ V (t, x(t))

≤ (V (τ, xτ ) +K)e−ω(t, τ).
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Hence,

∥x(t)∥ ≤ [
1

λ(τ)
(V (τ, xτ ) +K)]

1
p e⊖(ω

p )(t, τ).

Again we can see e⊖ω
p
(t, τ) ≤ e−α(t, τ), where α = ω

p /(1 +
ω
p ∥µ∥∞). It follows that

∥x(t)∥ ≤ [
1

λ(τ)
(V (τ, xτ ) +K)]

1
p e−α(t, τ), t ∈ T+

τ .

Therefore, Eq. (2.1) is exponentially stable. 2

Corollary 2.11 Assume that T is a time scale with bounded graininess. Let p, q, r, η1 , and η2 be positive

constants. Assume there exists a positive definite function V ∈ C1
rd(T × X,R+) that satisfies the following

conditions:

(i) η1∥x∥p ≤ V (t, x) ≤ η2∥x∥q;

(ii) V ∆(t, x) ≤ −b(t)∥x∥r + l(t), for some positive function b, that satisfies ω := inft∈T
b(t)

η
r
q
2

> 0 and −ω ∈

R+, and some l ∈ Crd ;

(iii) V (t, x)− V
r
q (t, x) ≤ 0;

(iv)

∫ t

τ

l(u)e⊖(−ω)(σ(u), τ)∆u ≤ K, for some nonnegative constant K .

Then Eq. (2.1) is uniformly exponentially stable.

Proof Let x be a solution of Eq. (2.1). By using (i) and (ii), we have

V ∆(t, x(t)) ≤ −b(t)

η
r
q

2

V
r
q (t, x(t)) + l(t).

By using (i) and Theorem 2.10, we obtain

∥x(t)∥ ≤ [
1

η1
(η2∥xτ∥q +K)]

1
p e−α(t, τ), t ∈ T+

τ .

Then Eq. (2.1) is uniformly exponentially stable. 2

Corollary 2.12 Assume that T is a time scale with bounded graininess. Let η1 and η2 be positive constants.

Assume there exists a positive definite function V ∈ C1
rd(T×X,R+) that satisfies the following conditions:

(i) η1∥x∥2 ≤ V (t, x) ≤ η2∥x∥2;

(ii) V ∆(t, x) ≤ −b(t)∥x∥2, for some positive function b with − b(·)
η2

∈ R+Crd.

Then Eq. (2.1) is uniformly exponentially stable.
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Example 2.13 Consider the dynamic equation

x∆(t) = A(t)x(t) + f(t), t ∈ T+
τ , x(τ) = xτ ∈ H, (2.4)

where f ∈ Crd(T,H), H is a Hilbert space, and A : T → L(H) , which satisfies η1∥x∥2 ≤ ⟨A(t)x, x⟩ ≤ η2∥x∥2,
for some η1, η2 ∈ R. If the following conditions hold:

(1) −δ
2
− (

1

4
+

1

2
∥µ∥∞N2) < η2 < −(

1

4
+

1

2
∥µ∥∞N2), t ∈ T for some δ ∈ (0, 1

∥µ∥∞
) (δ ∈ (0,∞) when

∥µ∥∞ = 0);

(2) [∥µ∥∞ + 2(1 + ∥µ∥∞N)2]∥f(t)∥2 ≤ l(t), for some l ∈ Crd and N is any bound of {∥A(t)∥ : t ∈ T};

(3)

∫ t

τ

l(u)e⊖(−c)(σ(u), τ)∆u ≤ K, for some nonnegative K, where c = −(2η2 +
1
2 + ∥µ∥∞N2),

then Eq. (2.4) is uniformly exponentially stable.

Proof We show that, under the assumptions, the conditions of Corollary 2.8 are satisfied. Let V (t, x) = ⟨x, x⟩.
Then

V ∆(t, x(t)) = ⟨x(t), x(t)⟩∆

= ⟨x∆(t), x(t)⟩+ µ(t)⟨x∆(t), x∆(t)⟩+ ⟨x(t), x∆(t)⟩ (2.5)

= ⟨A(t)x(t), x(t)⟩+ ⟨f(t), x(t)⟩+ µ(t)∥A(t)x(t) + f(t)∥2 + ⟨x(t), A(t)x(t)⟩+ ⟨x(t), f(t)⟩

≤ (2η2 + ∥µ∥∞N2)∥x(t)∥2 + (2∥f(t)∥+ 2∥f(t)∥∥µ∥∞N)∥x(t)∥+ ∥f(t)∥2∥µ∥∞.

By using Young’s inequality (wz ≤ wp

p + zq

q if 1
p + 1

q = 1), we get

∥x(t)∥(2∥f(t)∥+ 2∥f(t)∥∥µ∥∞N) ≤ ∥x(t)∥2

2
+

(2∥f(t)∥+ 2∥f(t)∥∥µ∥∞N)2

2
.

This implies that

V ∆(t, x(t)) ≤ (2η2 + ∥µ∥∞N2 +
1

2
)∥x(t)∥2 + [

(2∥f(t)∥+ 2∥f(t)∥∥µ∥∞N)2

2
+ ∥f(t)∥2∥µ∥∞]

≤ −c∥x(t)∥2 + l(t) = −cV (t, x(t)) + l(t).

Condition (1) implies that δ > c > 0. Therefore, by Corollary 2.8, Eq. (2.4) is uniformly exponentially stable.

We consider the following concrete cases:

Case 1: If T = R≥0, then µ(t) = 0 and ∥µ∥∞ = 0. Therefore, Eq. (2.4) is uniformly exponentially stable if

−δ
2
− 1

4
≤ η2 < −1

4
,

2∥f(t)∥2 ≤ l(t),
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and ∫ t

τ

l(u)ec(u−τ)du ≤ K.

Case 2: If T = hZ≥0, h > 0, then µ(t) = h and ∥µ∥∞ = h . Therefore, Eq. (2.4) is uniformly exponentially

stable if

−δ
2
− (

1

4
+
h

2
N2) ≤ η2 < −(

1

4
+
h

2
N2),

and conditions (2) and (3) hold.

Case 3: T =
∪∞

k=0[k(l + h), k(l + h) + l], l, h are positive constants. Then inft∈T µ(t) = 0 and ∥µ∥∞ =

supt∈T µ(t) = h. Therefore, Eq. (2.4) is uniformly exponentially stable if

−δ
2
− (

1

4
+
h

2
N2) ≤ η2 < −(

1

4
+
h

2
N2),

and conditions (2) and (3) hold.

For example, assuming H = R2 and

A(t) =

 e⊖8(t, 0)− 4 0

0 e⊖8(t, 0)− 4

 , t ∈ hZ≥0,

one can see that −4∥x∥2 ≤ ⟨A(t)x, x⟩ ≤ −3∥x∥2, and ∥A(t)∥ ≤ 4. Then Eq. (2.4) is uniformly exponentially

stable when h < 11/32. 2

2.3. h-Stability

In this part, under appropriate conditions, we establish certain estimate of solutions of Eq. (2.1). The following

results are more general than the boundedness theorems. We extend and generalize the results of [7].

Theorem 2.14 Let p, s be positive constants. Assume there exist a positive definite function V ∈ C1
rd(T ×

X,R+) and a bounded positive differentiable function h : T → R+ with nonnegative (nonpositive) derivative

h∆ that satisfy the following conditions:

(i) λ(t)∥x(t)∥p ≤ V (t, x(t)), for some positive nondecreasing function λ;

(ii) V ∆(t, x(t)) ≤ h∆(t)V s(t, x)

h(t)
+ l(t), for some l ∈ Crd;

(iii) V s(t, x(t))− V (t, x(t)) ≤ γ (V s(t, x(t))− V (t, x(t)) ≥ γ), for some γ ≥ 0 ;

(iv)

∫ t

τ

l(u)h(τ)

h(σ(u))
∆u ≤ L, for some nonnegative constant L.

Then all solutions of Eq. (2.1) satisfy the estimate

∥x(t)∥ ≤ (

h(t)
h(τ) [V (τ, xτ ) + L+ γ]

λ(τ)
)

1
p , t ∈ T+

τ . (2.6)
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Proof Let x be a solution to Eq. (2.1). Then we have

[
V (t, x)

h(t)
]∆ =

V ∆(t, x)h(t)− V (t, x)h∆

h(t)h(σ(t))

≤
[h

∆(t)V s(t,x)
h(t) + l(t)]h(t)− V (t, x)h∆(t)

h(t)h(σ(t))

=
h∆(t)[V s(t, x)− V (t, x)] + l(t)h(t)

h(t)h(σ(t))
(2.7)

≤ γ
h∆(t)

h(t)h(σ(t))
+

l(t)

h(σ(t))

= −γ[ 1

h(t)
]∆ +

l(t)

h(σ(t))
.

It follows that

V (t, x)

h(t)
≤ V (τ, xτ )

h(τ)
+ γ

1

h(τ)
+

∫ t

τ

l(u)

h(σ(u))
∆u.

This implies that

V (t, x) ≤ h(t)

h(τ)
[V (τ, xτ ) + γ + L].

Consequently,

λ(t)∥x(t)∥p ≤ h(t)

h(τ)
[V (τ, xτ ) + γ + L].

Since λ(t) ≥ λ(τ), t ∈ T+
τ , then

∥x(t)∥ ≤ (

h(t)
h(τ) [V (τ, xτ ) + γ + L]

λ(τ)
)

1
p , t ∈ T+

τ .

2

Corollary 2.15 Let p, q, η1, η2, s be positive constants be such that
1

p
+

1

q
= 1 . Assume there exist a positive

definite function V ∈ C1
rd(T × X,R+) and a bounded positive differentiable function h : T → R+ with

nonnegative (nonpositive) derivative that satisfy the following conditions:

(i) η1∥x(t)∥p ≤ V (t, x(t)) ≤ η2∥x(t)∥q;

(ii) V ∆(t, x(t)) ≤ h∆(t)V s(t, x)

h(t)
+ l(t), for some l ∈ Crd;
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(iii) V s(t, x(t))− V (t, x(t)) ≤ γ (V s(t, x(t))− V (t, x(t)) ≥ γ), for some γ ≥ 0;

(iv)

∫ t

τ

l(u)h(τ)

h(σ(u))
∆u ≤ L, for some nonnegative constant L.

Then Eq. (2.1) is uniformly h-stable.

Proof By using conditions (i)–(iv ) and Theorem 2.14, we obtain

∥x(t)∥ ≤ (

h(t)
h(τ) [η2∥xτ∥

q + L+ γ]

η1
)

1
p , t ∈ T+

τ .

Then Eq. (2.1) is uniformly h-stable. 2

Corollary 2.16 Assume there exist a positive definite function V ∈ C1
rd(T × X,R+) and a bounded positive

differentiable function h : T → R+ that satisfy the following conditions

(i) η1∥x(t)∥2 ≤ V (t, x(t)) ≤ η2∥x(t)∥2;

(ii) V ∆(t, x(t)) ≤ h∆(t)V (t, x)

h(t)
.

Then Eq. (2.1) is uniformly h-stable.

Example 2.17 Consider the dynamic equation

x∆(t) = A(t)x(t), t ∈ T+
τ , x(τ) = xτ ∈ H, (2.8)

where A : T → L(H) , which satisfies ρ1∥x∥2 ≤ ⟨A(t)x, x⟩ ≤ ρ2∥x∥2, for some ρ1, ρ2 ∈ R. Assuming there is a

positive bounded differentiable function h : T → R+ such that

(2ρ2 + ∥µ∥∞N2)h(t) ≤ h∆(t), (2.9)

holds, then Eq. (2.8) is uniformly h-stable. Here, N > 0 is any bound of {∥A(t)∥ : t ∈ T} .

Proof We show that, under the assumptions, the conditions of Corollary 2.16 are satisfied. Let V (t, x) = ⟨x, x⟩.
Conditions (i)–(ii) are satisfied when η1 = 1, η2 = 1. In view of equality (2.5) and relation (2.9), we have

V ∆(t, x) = ⟨Ax, x⟩+ µ(t)⟨Ax,Ax⟩+ ⟨x,Ax⟩

≤ (2ρ2 + ∥µ∥∞N2)∥x∥2

≤ h∆(t)

h(t)
V (t, x).

Therefore, by Corollary 2.16, Eq. (2.8) is uniformly h -stable. 2

We consider the following concrete cases:

Case 1: If h(t) = 5, then Eq. (2.8) is uniformly 5-stable if

0 ≤ ∥µ∥∞ ≤ −2ρ2
N2

.
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Case 2: If h(t) = e−λ(t, 0), λ > 0, then Eq. (2.8) is uniformly e−λ -stable if the following condition holds:

2ρ2 + ∥µ∥∞N2 ≤ −λ.

For instance, let T = P0.6,0.4 =
∪∞

k=0[k, k + 0.6]. In this time scale

µ(t) =

 0, if t ∈
∪∞

k=0[k, k + 0.6),

0.4, if t ∈
∪∞

k=0{k + 0.6}.

Assume A(t) = −a(t)I, where −ρ2 ≤ a(t) ≤ −ρ1, t ∈ T, a(·) ∈ Crd(T,R+) , and ρ1, ρ2 < 0. One can see that

ρ1∥x∥2 ≤ ⟨Ax, x⟩ ≤ ρ2∥x∥2. Therefore, Eq. (2.8) is uniformly e−λ -stable when

2(ρ2 +
1

5
ρ21) ≤ −λ.

3. Main results

Our aim in this section is to establish the boundedness, the exponential stability, and the h -stability of the

abstract homogeneous equation

x∆(t) = A(t)x(t), t ∈ T+
τ , (3.1)

and its perturbed equations of the form

x∆(t) = A(t)x(t) + f(t, x), t ∈ T+
τ (3.2)

and

x∆(t) = A(t)x(t) + f(t), t ∈ T+
τ , (3.3)

under the initial condition x(τ) = xτ ∈ X , where A ∈ Crd(T, L(X)) and f : T ×X → X is rd-continuous in

the first argument with f(t, 0) = 0.

In the rest of the paper, we consider the operators S(t), W (t), S1(t) ∈ L(X,X∗) are defined as follows:

(S(t)x)y = P∆(t)x(y) + µ(t)P∆(t)(A(t)x)(y) + µ(t)P∆(t)x(A(t)y) + µ2(t)P∆(t)(A(t)x)(A(t)y),

(W (t)x)(y) = P (t)(A(t)x)(y) + µ(t)P (t)(A(t)x)(A(t)y) + (P (t)x)(A(t)y),

and

(S1(t)x)y = P∆(t)x(y) + P∆(t)y(x) + µ(t)P∆(t)(A(t)x)(y) + µ(t)P∆(t)y(A(t)x) + µ(t)P∆(t)(y)(y),

for x, y ∈ X , where P (t) : X → X∗ is a linear mapping and P is differentiable with respect to t ∈ T . Here

X∗ is the dual space of X. As usual, we say that an operator P (t) : X → X∗ is greater than or equal to (resp.

less than or equal to) a real number η if P (t)x(x) ≥ η∥x∥2 (resp. P (t)x(x) ≤ η∥x∥2 ). In this case we write

P (t) ≥ η (resp. P (t) ≤ η ). In this section we denote the Lyapunov function by

V (t, x) = (P (t)x)x.
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Theorem 3.1 Assume that T is a time scale with bounded graininess. Let η1, η2 be positive constants and β

be a positive function with − β
η2

∈ R+Crd. Assume there exist Q ∈ Crd(T, L(X,X∗)) and P ∈ C1
rd(T, L(X,X∗))

such that the following conditions hold:

(i) η1 ≤ P (t) ≤ η2,

(ii) W (t) ≤ −Q(t) ≤ −β(t),

(iii) S(t) ≤ 0,

Then Eq. (3.1) is uniformly exponentially stable.

Proof Let x be a solution of Eq. (3.1) and g(t) = V (t, x(t)). Condition (i) implies that

η1∥x∥2 ≤ V (t, x(t)) ≤ η2∥x∥2.

The delta derivative of g(t) is given by

g∆(t) = (P (t)x(t))∆x(σ(t)) + (P (t)x(t))(x∆(t))

= P∆x(t)(x(t)) + µ(t)P∆(t)x∆(t)x(t) + µ(t)P∆(t)x(t)x∆(t) + µ2(t)P∆(t)x∆(t)x∆(t)

+ P (t)x∆(t)x(t) + µ(t)P (t)x∆(t)x∆(t) + (P (t)x(t))(x∆(t)) (3.4)

= (S(t)x(t))(x(t)) + (W (t)x(t))(x(t)) (3.5)

≤ −Q(t)x(t)(x(t))

≤ −β(t)∥x(t)∥2.

Then, by Corollary 2.12, Eq. (3.1) is uniformly exponentially stable. 2

Theorem 3.2 Assume there exists an operator P ∈ C1
rd(T, L(X,X∗)) and a bounded positive differentiable

function h : T → R+ that satisfy the following conditions:

(i) η1 ≤ P (t) ≤ η2, for some η1, η2 ∈ R+;

(ii) W (t)h(t) ≤ αh∆(t), where

α =

 η1, h∆(t) ≥ 0,

η2, h∆(t) < 0;

(iii) S(t) ≤ 0.

Then Eq. (3.1) is uniformly h-stable.
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Proof Let x be a solution of Eq. (3.1). Then in view of equality (3.5) and conditions (ii)–(iii), we have

V ∆(t, x(t)) = (S(t)x(t))(x(t)) + (W (t)x(t))(x(t))

≤ α
h∆(t)∥x(t)∥2

h(t)

≤ h∆(t)

h(t)
V (t, x(t)).

Then, by Corollary 2.16, Eq. (3.1) is uniformly h -stable. 2

Theorem 3.3 Assume that T is a time scale with bounded graininess. Let η1, η2 be positive constants and β

be a positive function with − β
η2

∈ R+Crd. Assume there exist Q ∈ Crd(T, L(X,X∗)) and P ∈ C1
rd(T, L(X,X∗))

such that the following conditions hold:

(i) η1 ≤ P (t) ≤ η2,

(ii) W (t) ≤ −Q(t) ≤ −β(t),

(iii) (S(t)x)(x) + µ(t)(S1(t)x)(f(t, x)) ≤ 0, x ∈ X,

(iv) ∥f(t, x)∥ ≤ λ∥x∥, x ∈ X, for some λ > 0, which satisfies b(t) =: β(t)− 2λ∥P (t)∥[1 + ∥µ∥∞(∥A(t)∥+ λ

2
)] > 0,

Then Eq. (3.2) is uniformly exponentially stable

Proof In view of equality (3.4) and using (ii)–(iv), we obtain

V ∆(t, x(t)) = (P∆(t)x(t))(x(t)) + µ(t)(P∆(t)(A(t)x(t) + f(t, x(t)))(x(t)) + µ(t)(P∆(t)x(t))(A(t)x(t) + f(t, x(t)))

+ µ2(t)(P∆(t)(A(t)x(t) + f(t, x(t))))(A(t)x(t) + f(t, x(t))) + (P (t)(A(t)x(t) + f(t, x(t))))(x(t))

+ µ(t)(P (t)(A(t)x(t) + f(t, x(t))))(A(t)x(t) + f(t, x(t))) + (P (t)x(t))(A(t)x(t) + f(t, x(t)))

= (S(t)x(t))(x(t)) + (W (t)x(t))(x(t)) + µ(t)(S1(t)x(t))(f(t, x(t))) + (P (t)f(t, x(t)))(x(t))

+ (P (t)x(t))(f(t, x(t))) + µ(t)(P (t)A(t)x(t))(f(t, x(t))) + µ(t)(P (t)f(t, x(t)))(A(t)x(t))

+ µ(t)(P (t)f(t, x(t)))(f(t, x(t))) (3.6)

≤ −(Q(t)x(t))(x(t)) + 2λ∥P (t)∥[1 + ∥µ∥∞(∥A(t)∥+ λ

2
)]∥x(t)∥2

≤ −[β(t)− 2λ∥P (t)∥(1 + ∥µ∥∞(∥A(t)∥+ λ

2
))]∥x(t)∥2,

where β(t) > 2λ∥P (t)∥(1 + ∥µ∥∞(∥A(t)∥+ λ

2
)). In view of − b

η2
∈ R+Crd, using Corollary 2.12, we conclude

that Eq. (3.2) is uniformly exponentially stable. 2
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Theorem 3.4 Assume there exists P ∈ C1
rd(T, L(X,X∗)) and a bounded positive differentiable function h :

T → R+ that satisfy the following conditions:

(i) η1 ≤ P (t) ≤ η2, for some η1, η2 ∈ R+;

(ii) W (t)h(t) ≤ αh∆(t), where

α =

 η1, h∆(t) ≥ 0,

η2, h∆(t) < 0;

(iii) ∥f(t, x)∥ ≤ λ∥x∥, x ∈ X for some λ > 0;

(iv) (S(t)x)(x) + µ(t)(S1(t)x)(f(t, x)) ≤ −d(t)∥x∥2, for some d(t) > 2λη2[1 + ∥µ∥∞(∥A(t)∥+ λ

2
)], t ∈ T.

Then Eq. (3.2) is uniformly h-stable.

Proof In view of equality (3.6) and using (i)–(iv), we obtain

V ∆(t, x(t)) ≤ −d(t)∥x(t)∥2 + α
h∆(t)

h(t)
∥x∥2 + 2λη2[1 + ∥µ∥∞(∥A(t)∥+ λ

2
)]∥x(t)∥2

≤ α
h∆(t)

h(t)
∥x(t)∥2 ≤ h∆(t)

h(t)
V (t, x(t)).

Then, by Corollary 2.16, Eq. (3.2) is uniformly h -stable. 2

Now we establish the boundedness, the uniform exponential stability, and the uniform h -stability of the

nonhomogeneous dynamic equation

x∆(t) = A(t)x(t) + f(t), t ∈ T+
τ , (3.7)

under the initial condition x(τ) = xτ ∈ X , where f ∈ Crd(T, X).

Theorem 3.5 Let η1, η2 be positive constants and β be a positive function such that β > 1
2 and − β

η2
∈ R+Crd .

Assume there exist Q ∈ Crd(T, L(X,X∗)) and P ∈ C1
rd(T, L(X,X∗)) such that the following conditions hold:

(i) η1 ≤ P (t) ≤ η2, for some η1, η2 ∈ R+;

(ii) W (t) ≤ −Q(t) ≤ −β(t);

(iii) (S(t)x)(x) + µ(t)(S1(t)x)(f(t)) ≤ 0, x ∈ X;

(iv) [∥f(t)∥∥P (t)∥(1 + ∥µ∥∞∥A(t)∥)]2 + ∥µ∥∞∥f(t)∥2∥P (t)∥ ≤ l(t), for some l ∈ Crd;

(v)

∫ t

τ

l(u)e⊖(−ω)(σ(u), t)∆u ≤ L, for some nonnegative constant L, where ω =: inf
t∈T

β(t)− 1
2

η2
> 0.

Then the family of all solutions of Eq. (3.7) is uniformly bounded with respect to the initial point τ.
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Proof In view of equality (3.4) and using (ii)–(iv), we obtain

V ∆(t, x(t)) = (S(t)x(t))(x(t)) + (W (t)x(t))(x(t)) + µ(t)(S1(t)x(t))(f(t)) + (P (t)f(t))(x(t))

+ (P (t)x(t))(f(t)) + µ(t)(P (t)A(t)x(t))(f(t)) + µ(t)(P (t)f(t))(A(t)x(t))

+ µ(t)(P (t)f(t))(f(t)) (3.8)

≤ −β(t)∥x(t)∥2 + 1

2
∥x(t)∥2 + 1

2
[2∥f(t)∥∥P (t)∥(1 + ∥µ∥∞∥A(t)∥)]2 + ∥µ∥∞∥f(t)∥2∥P (t)∥ (3.9)

≤ −[β(t)− 1

2
]∥x(t)∥2 + l(t).

Here, we used Young’s inequality. By Corollary 2.4, the family of all solutions of Eq. (3.7) is uniformly bounded

with respect to the initial point τ. 2

Theorem 3.6 Assume that T is a time scale with bounded graininess. Let η1, η2 be positive constants and

β a positive function such that β > 1
2 and − β

η2
∈ R+Crd . Assume there exist Q ∈ Crd(T, L(X,X∗)) and

P ∈ C1
rd(T, L(X,X∗)) such that the following conditions hold:

(i) η1 ≤ P (t) ≤ η2;

(ii) W (t) ≤ −Q(t) ≤ −β(t);

(iii) (S(t)x)(x) + µ(t)(S1(t)x)(f(t)) ≤ 0, x ∈ X;

(iv) [∥f(t)∥∥P (t)∥(1 + ∥µ∥∞∥A(t)∥)]2 + ∥µ∥∞∥f(t)∥2∥P (t)∥ ≤ l(t), for some l ∈ Crd;

(v)

∫ t

τ

l(u)e⊖(−ω)(σ(u), τ)∆u ≤ K, for some nonnegative constant K, where ω =: inf
t∈T

β(t)− 1
2

η2
> 0.

Then Eq. (3.7) is uniformly exponentially stable.

Proof In view of inequality (3.9) and using (ii)–(iv), we obtain

V ∆(t, x(t)) ≤ −[β(t)− 1

2
]∥x(t)∥2 + l(t).

By Corollary 2.11, Eq. (3.7) is uniformly exponentially stable. 2

Theorem 3.7 Assume there exist P ∈ C1
rd(T, L(X,X∗)) and a bounded positive differentiable function h :

T → R+ that satisfy the following conditions:

(i) η1 ≤ P (t) ≤ η2, for some η1, η2 ∈ R+;

(ii) (W (t) + 1
2 )h(t) ≤ αh∆(t), where

α =

 η1, h∆(t) ≥ 0,

η2, h∆(t) < 0;
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(iii) (S(t)x)(x) + µ(t)(S1(t)x)(f(t)) ≤ 0;

(iv) [∥f(t)∥∥P (t)∥(1 + ∥µ∥∞∥A(t)∥)]2 + ∥µ∥∞∥f(t)∥2∥P (t)∥ ≤ l(t), for some l ∈ Crd ;

(v)

∫ t

τ

l(u)h(τ)

h(σ(u))
∆u ≤ L, for some nonnegative constant L.

Then Eq. (3.7) is uniformly h-stable.

Proof In view of inequality (3.8) and conditions (ii)–(iv), and using Young’s inequality, we obtain

V ∆(t, x(t)) ≤ (W (t)x(t))(x(t)) +
1

2
∥x(t)∥2 + 1

2
[2∥f(t)∥∥P (t)∥(1 + ∥µ∥∞∥A(t)∥)]2 + ∥µ∥∞∥f(t)∥2∥P (t)∥

≤ α
h∆(t)

h(t)
∥x(t)∥2 + l(t)

≤ h∆(t)

h(t)
V (t, x(t)) + l(t).

Then, by Corollary 2.15, Eq. (3.7) is uniformly h -stable. 2

The following example shows the applicability of the theoretical results

Example 3.8 Consider the dynamic equation

x∆(t) = A(t)x(t) + f(t), t ∈ T+
τ , x(τ) = xτ ∈ ℓ2 = {(xn) : Σ∞

n=1|xn|2 <∞}, (3.10)

where A : T → L(l2) is defined by A(t) = (−1 +
1

2
e−2(t, 0))I, and f(t) =

√
e⊖2(t, 0)I. Here I is the identity

operator. Let T be a time scale with bounded graininess 0 ≤ µ(t) ≤ 1
2 . Let Q(t) = 1 − 3

8e
2
−2(t, 0). Then

Q(t) > 5
8 . Therefore, Eq. (3.10) is uniformly exponentially stable.

Define P (t) by

P (t) = (1 +
1

2
e−2(t, 0))I. (3.11)

Its derivative is

P∆(t) = −e−2(t, 0)I.

Take η1 = 1, η2 = 3
2 . One can see that all conditions (i)–(v) of Theorem 3.6 hold. Therefore, Eq. (3.10)

is uniformly exponentially stable. Indeed, we have

(W (t)x(t))x(t) ≤ −3

2
(1− 1

4
e2−2(t, 0))∥x(t)∥2

≤ (−1 +
3

8
e2−2(t, 0))∥x(t)∥2

= −(Q(t)x(t))(x(t)).

Also, it is clear that (S(t)x)(x) + µ(t)(S1(t)x)(f(t)) ≤ 0, t ∈ T, x ∈ X,

[∥f(t)∥∥P (t)∥(1 + ∥µ∥∞∥A(t)∥)]2 + ∥µ∥∞∥f(t)∥2∥P (t)∥ ≤ 3

2
e⊖2(t, 0)[

3

2
(1 +

1

2
)2 +

1

2
]

=
93

16
e⊖2(t, 0) = l(t),
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and ∫ t

τ

l(u)e⊖(−ω)(σ(u), τ)∆u =
93

16

∫ t

τ

e⊖2(u, 0)e⊖(− 1
8 )
(σ(u), τ)∆u

=
93

16
e− 1

8
(τ, 0)

∫ t

τ

1

1− 1
8µ(u)

e(⊖2)⊖(− 1
8 )
(u, 0)∆u ≤ K.

Therefore, by Theorem 3.6, Eq. (3.10) is uniformly exponentially stable.

Note that:

(1) If µ = 0, then ∫ t

τ

l(u)e⊖(−ω)(σ(u), τ)∆u =
93

16
e− 1

8
(τ, 0)

∫ t

τ

1

1− 1
8µ(u)

e(⊖2)⊖(− 1
8 )
(u, 0)∆u

=
93

16
e−

1
8 τ

∫ t

τ

e−
15
8 udu

= −93

16
.
8

15
e−

1
8 τ [e−

15
8 t − e−

15
8 τ ]

≤ 31

10
e−2τ ≤ 31

10
.

(2) If µ = 1
2 , then ∫ t

τ

l(u)e⊖(−ω)(σ(u), τ)∆u =
93

16
e− 1

8
(τ, 0)

∫ t

τ

1

1− 1
8µ(u)

e(⊖2)⊖(− 1
8 )
(u, 0)∆u

=
93

16
e− 1

8
(τ, 0)

∫ t

τ

16

15
e− 14

15
(u, 0)∆u

= −93

16
.
16

14
e− 1

8
(τ, 0)[e− 14

15
(t, 0)− e− 14

15
(τ, 0)]

≤ 93

14
e− 7

8
(τ, 0) ≤ 93

14
.
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