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Abstract: In this article, the extended form of Laguerre–Appell polynomials is introduced by means of generating
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1. Introduction and preliminaries
The use of integral transforms to deal with fractional derivatives was originated by Riemann and Liouville
[15, 16]. The combined use of integral transforms and special polynomials provides a powerful tool to deal with
fractional derivatives; see for example [3, 10].

One of the important classes of polynomial sequences is the class of Appell polynomial sequences [2],
which arises in numerous problems of applied mathematics, theoretical physics, approximation theory, and
several other mathematical branches. The set of Appell sequences is closed under the operation of umbral
composition of polynomial sequences. Under this operation the set of Appell sequences forms an abelian group.
The Appell sequences are defined by the following generating function:

A(x, t) := A(t)ext =

∞∑
n=0

An(x)
tn

n!
. (1.1)

The power series A(t) is given by

A(t) = A0 +
t

1!
A1 +

t2

2!
A2 + · · ·+ tn

n!
An + · · · =

∞∑
n=0

An
tn

n!
, A0 ̸= 0, (1.2)

with real coefficients Ai (i = 0, 1, 2, · · · ) . The function A(t) is an analytic function at t = 0 . It is easy to see
that for any A(t) the derivative of An(x) satisfies

A
′

n(x) = n An−1(x). (1.3)
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Sequences of polynomials play an important role in numerous problems of applied mathematics, theo-
retical physics, approximation theory, and several other mathematical branches. The Bernstein polynomials of
order n form a basis for the space of polynomials of degree less than or equal to n . Dattoli et al. [9] studied
Bernstein polynomials using operational methods. The class of Appell sequences contains a large number of
classical polynomial sequences such as the Bernoulli, Euler, Hermite, and Miller–Lee polynomials. Certain new
classes of hybrid special polynomials related to the Appell sequences are introduced and studied by Khan et al.
[12, 13]. These hybrid polynomials are important due to the fact that they possess important properties such as
differential equation, generating function, series definition, and integral representation. The problems arising
in different areas of science and engineering are usually expressed in terms of differential equations, which in
most cases have special functions as their solutions. The differential equations satisfied by the hybrid special
polynomials may be used to express the problems arising in new and emerging areas of sciences.

We recall that the Laguerre–Appell polynomials LAn(x, y) are introduced as the discrete Appell convo-
lution of the Laguerre polynomials and are defined by means of the following series definition:

LAn(x, y) = n!

n∑
k=0

(−1)kAn−k(y)x
k

(n− k)!(k!)2
. (1.4)

These polynomials are connected with Appell polynomials by the following operational rule:

exp
(
−y

∂

∂x
x
∂

∂x

)
An(−x)

n!
= LAn(x, y) (1.5)

and specified by the following generating relation:

A(t)eytC0(xt) =

∞∑
n=0

LAn(x, y)
tn

n!
, (1.6)

where C0(xt) denotes the Tricomi function of order zero [1].
Alternatively, the Laguerre–Appell polynomials LAn(x, y) are also defined by the following generating

function:

A(t)eyte−D−1
x t =

∞∑
n=0

LAn(x, y)
tn

n!
,

where D−1
x denotes inverse derivative operator:

D−1
x :=

∫ x

0

f(ξ)dξ.

The possibility of using integral transforms in a wider context is discussed by Dattoli et al. [10], where
by using Euler’s integral

a−ν =
1

Γ(ν)

∫ ∞

0

e−attν−1dt, min{Re(ν),Re(a)} > 0, (1.7)
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it has been shown that [10]

(
α− ∂

∂x

)−ν

f(x) = 1
Γ(ν)

∫∞
0

e−αttν−1 et
∂
∂x f(x)dt = 1

Γ(ν)

∫∞
0

e−αttν−1 f(x+ t)dt, (1.8)

whereas for the cases involving second-order derivatives, it is shown that

(
α− ∂2

∂x2

)−ν

f(x) =
1

Γ(ν)

∫ ∞

0

e−αttν−1 et
∂2

∂x2 f(x)dt. (1.9)

The fractional operators can be treated in an efficient way by combining the properties of exponential
operators and suitable integral representations.

In this article, extended Laguerre–Appell polynomials are introduced and studied using fractional op-
erators. In Section 2, extended Laguerre–Appell polynomials are introduced by means of generating function
and operational definition using fractional operators. The recurrence relations and summation formulae for
the extended Laguerre–Appell polynomials are also established. In Section 3, corresponding results for the
Laguerre–Bernoulli and Laguerre–Euler polynomials are obtained as applications. In the last section, the de-
terminant approach to these polynomials is considered.

2. Extended Laguerre–Appell polynomials
First we derive the operational rule connecting the Appell and the extended Laguerre–Appell polynomials by
proving the following result:

Theorem 2.1 For the extended Laguerre–Appell polynomials νLAn(x, y;α) , the following operational connec-
tion holds true: (

α+

(
y
∂

∂x
x
∂

∂x

))−ν
An(−x)

n!
=

νLAn(x, y;α). (2.1)

Proof Replacing a by
(
α+

(
y ∂
∂xx

∂
∂x

))
in integral (1.7) and then operating it on An(−x)

n! , we find

(
α+

(
y
∂

∂x
x
∂

∂x

))−ν
An(−x)

n!
=

1

Γ(ν)

∫ ∞

0

e−αttν−1 exp
(
−yt

∂

∂x
x
∂

∂x

)
An(−x)

n!
dt, (2.2)

which on using definition (1.5) on the r.h.s. gives

(
α+

(
y
∂

∂x
x
∂

∂x

))−ν
An(−x)

n!
=

1

Γ(ν)

∫ ∞

0

e−αttν−1
LAn(x, yt)dt. (2.3)

The transform on the r.h.s of equation (2.3) defines a new family of special polynomials. Denoting this
family of special polynomials by νLAn(x, y;α) and naming it extended Laguerre–Appell polynomials, it follows
that

νLAn(x, y;α) =
1

Γ(ν)

∫ ∞

0

e−αttν−1
LAn(x, yt)dt. (2.4)
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In view of equations (2.3) and (2.4), assertion (2.1) follows.
2

Remark 2.1 Taking An(x) = xn on the l.h.s. of equation (2.1) and denoting the resultant extended Laguerre
polynomials on the r.h.s. by νLn(x, y;α) , the following operational connection holds true:

(
α+

(
y
∂

∂x
x
∂

∂x

))−ν
(−x)n

n!
= νLn(x, y;α). (2.5)

Next we derive the generating function of the extended Laguerre–Appell polynomials
νLAn(x, y;α) by

proving the following result:

Theorem 2.2 For the extended Laguerre–Appell polynomials
νLAn(x, y;α) , the following generating function

holds true:
A(u) C0(xu)

(α− yu)ν
=

∞∑
n=0

νLAn(x, y;α)
un

n!
. (2.6)

Proof Multiplying both sides of equation (2.4) by un

n! , then summing it over n , and making use of equation
(1.6) on the r.h.s. of the resultant equation, we find

∞∑
n=0

νLAn(x, y;α)
un

n!
=

A(u) C0(xu)

Γ(ν)

∫ ∞

0

e−
(
α−yu

)
ttν−1dt, (2.7)

which in view of integral (1.7) yields assertion (2.6).
2

Remark 2.2 For An(x) = xn , the extended Laguerre–Appell polynomials
νLAn(x, y;α) reduce to the extended

Laguerre polynomials νLn(x, y;α) . Therefore, for A(u) = 1 , the following generating function for the extended
Laguerre polynomials holds true:

C0(xu)

(α− yu)ν
=

∞∑
n=0

νLn(x, y;α)
un

n!
. (2.8)

Remark 2.3 From equations (2.6) and (2.8), we find the following series definitions:

νLAn(x, y;α) =
1

αν Γ(ν)

n∑
m,k=0

(−1)n−m−k

(
n−m

k

)(
n

m

)
Γ(ν + k) yk xn−m−kAm

(n−m− k)! αk
(2.9)

and

νLn(x, y;α) =
1

αν Γ(ν)

n∑
k=0

(−1)n−k

(
n

k

)
Γ(ν + k) yk xn−k

(n− k)! αk
(2.10)

of the extended Laguerre–Appell and the extended Laguerre polynomials, respectively.

Finally, we establish an explicit summation formula for the extended Laguerre–Appell polynomials
νLAn(x, y;α) by proving the following result:
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Theorem 2.3 For the extended Laguerre–Appell polynomials νLAn(x, y;α) , the following explicit summation
formula in terms of the extended Laguerre polynomials νLn(x, y;α) and Appell polynomials An(x) holds true:

νLAn(x, y;α) =

n∑
k=0

n−k∑
r=0

(
n

k

)(
n− k

r

)
(−1)k wk Ar(w) νLn−k−r(x, y;α) (2.11)

Proof Consider the product of generating functions (1.1) and (2.8) in the following form:

A(t)ewt (α− yt)
−ν

C0(xt) =

∞∑
n=0

∞∑
r=0

Ar(w) νLn(x, y;α)
tn+r

n! r!
. (2.12)

Replacing n by n − r on the r.h.s. of equation (2.12), then shifting the first exponential to the r.h.s.,
and again replacing n by n− k in the resultant equation, it follows that

A(t) (α− yt)
−ν

C0(xt) =

∞∑
n=0

n∑
k=0

n−k∑
r=0

(
n

k

)(
n− k

r

)
(−1)k wk Ar(w) νLn−k−r(x, y;α)

tn

n!
. (2.13)

Finally, using generating function (2.6) on the l.h.s. of equation (2.13) and then equating the coefficients
of like powers of t in the resultant equation, assertion (2.11) follows.

2

A recurrence relation is an equation that recursively defines a sequence or multidimensional array of
values, once one or more initial terms are given; each further term of the sequence or array is defined as a
function of the preceding terms.

Differentiating generating function (2.6), with respect to x , y , and α we find the following differential
recurrence relations for the extended Laguerre–Appell polynomials νLAn(x, y;α) :

∂

∂x

(
νLAn(x, y;α)

)
= −n

νLAn−1(x, y;α),

∂

∂y

(
νLAn(x, y;α)

)
= nν ν+1LAn−1(x, y;α), (2.14)

∂

∂α

(
νLAn(x, y;α)

)
= −ν

ν+1LAn(x, y;α).

Consequently, we have

∂

∂y

(
νLAn(x, y;α)

)
=

∂2

∂x∂α νLAn(x, y;α).

Note. It should be noted that for α = ν = 1 and y → D−1
y , the extended Laguerre–Appell polynomials

νLAn(x, y;α) reduce to LAn(x, y) . For the same choice of parameters α , ν and variable y the extended La-
guerre polynomials

ν
Ln(x, y;α) reduce to the 2-variable Laguerre polynomials Ln(x, y) [11].

The combined use of integral transforms and special polynomials provides a powerful tool to deal with
fractional operators [10]. To bolster the contention of using this approach, the extended form of hybrid-type
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polynomials is introduced. The generating function, summation formula, and recurrence relations for the ex-
tended Laguerre–Appell polynomials are derived here. These results may be useful in the investigation of other
useful properties of these polynomials and may have applications in physics.

In the next section, we consider the extended forms of the Laguerre–Bernoulli and Laguerre–Euler
polynomials as members of the extended Laguerre–Appell family.

3. Applications
The functional equations and identities for the Bernoulli and Euler polynomials arise in combinatorial contexts
and may lead systematically to well-defined classes of functions. There is a continuous demand of solving prob-
lems by means of functional equations, relations, and identities in research fields like classical and quantum
optics. The functional equations of hybrid-type special polynomials of more than one variable often appear in
applications ranging from electromagnetic processes to combinatorics. The results for the members belonging
to the extended Laguerre–Appell family can be obtained from the corresponding results of the members of
Appell family. Here we derive certain results for the extended Laguerre–Bernoulli and extended Laguerre–Euler
polynomials from the results of Bernoulli and Euler polynomials.

In view of equation (2.1), we find the following operational rules for the extended Laguerre–Bernoulli
polynomials

νLBn(x, y;α) and the extended Laguerre–Euler polynomials
νLEn(x, y;α) :

(
α+

(
y
∂

∂x
x
∂

∂x

))−ν {Bn(−x)

n!

}
=

νLBn(x, y;α) (3.1)

and (
α+

(
y
∂

∂x
x
∂

∂x

))−ν {En(−x)

n!

}
=

νLEn(x, y;α) (3.2)

respectively. Again taking A(u) = u
eu−1 (of Bernoulli polynomials) and A(u) = 2

eu+1 (of Euler polynomials) in
equation (2.6), the generating functions for

νLBn(x, y;α) and
νLEn(x, y;α) are obtained as

(
u

eu − 1

)
exp(xu)

(α− (yu))ν
=

∞∑
n=0

νLBn(x, y;α)
un

n!
(3.3)

and (
2

eu + 1

)
exp(xu)

(α− (yu))ν
=

∞∑
n=0

νLEn(x, y;α)
un

n!
, (3.4)

respectively.

Several identities involving Appell polynomials are known. The operational formalism developed in
Section 2 can be used to obtain the corresponding identities for the extended Laguerre–Appell polynomials
νLAn(x, y;α) . To achieve this, we perform the following operation:

(O) operating
(
α+ (y ∂

∂xx
∂
∂x )
)−ν on both sides of a given relation.
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We recall the following functional equations involving Bernoulli polynomials Bn(x) [14, p. 26]:

Bn(x+ 1)−Bn(x) = n xn−1, n = 0, 1, 2..... (3.5)

n−1∑
m=0

(
n

m

)
Bm(x) = nxn−1, n = 2, 3, 4..... (3.6)

Bn(mx) = mn−1
m−1∑
k=0

Bn

(
x+

k

m

)
, n = 0, 1.2, .....; m = 1, 2, 3.... (3.7)

On replacing x by −x in equations (3.5)–(3.7) and then performing the operation (O) on the resultant
equation and using operational definitions (3.1) and (2.5), the following identities for the extended Laguerre–
Bernoulli polynomials νLBn(x, y;α) are obtained:

νLBn(x− 1, y;α)−
νLBn(x, y;α) = νLn−1(x, y;α), n = 0, 1, 2 · · · , (3.8)

n−1∑
m=0

1

(n−m)! ν
LBm(x, y;α) = νLn−1(x, y;α), n = 2, 3, 4 · · · , (3.9)

νLBn(mx,m2y;α) = mn−1
m−1∑
k=0

νLBn−1

(
x− k

m
, y;α

)
, n = 0, 1, 2, ...; m = 1, 2, 3 · · · . (3.10)

In a similar manner, corresponding to the functional equations involving the Euler polynomials En(x)

[14, p. 30]:

En(x+ 1) + En(x) = 2xn,

En(mx) = mn
m−1∑
k=0

(−1)kEn

(
x+

k

m

)
n = 0, 1, 2...; m odd,

we find the following identities involving the extended Laguerre–Euler polynomials νLEn(x, y;α) :

νLEn(x− 1, y;α) + νLEn(x, y;α) = 2 νLn(x, y;α). (3.11)

νLEn(mx,m2y;α) = mn
m−1∑
k=0

(−1)k
νLEn

(
x− k

m
, y;α

)
, n = 0, 1.2, ...; m odd. (3.12)

Moreover, corresponding to the following relations between the Bernoulli and Euler polynomials [14, pp.
29-30]:

Bn(x) = 2−n
n∑

m=0

(
n

m

)
Bn−mEm(2x), n = 0, 1, 2..., (3.13)

1692



KHAN and WANI/Turk J Math

En(x) =
2n+1

n+ 1

[
Bn+1

(x+ 1

2

)
−Bn+1

(x
2

)]
, n = 0, 1, 2..., (3.14)

En(mx) = − 2m
n

n+ 1

m−1∑
k=0

(−1)kBn+1

(x+ k

m

)
, n = 0, 1, 2...,m even, (3.15)

we obtain the following relations between the extended Laguerre–Bernoulli and extended Laguerre–Euler
polynomials:

νLBn(x, y;α) = 2−n
n∑

m=0

1

(n−m)!
Bn−m νLEm(2x, 4y;α), n = 0, 1, 2..., (3.16)

νLEn(x, y;α) = 2n+1
[
νLBn+1

(x− 1

2
,
y

4
;α
)
− νLBn+1

(x
2
,
y

4
;α
)]

, n = 0, 1, 2..., (3.17)

νLEn(mx,m2y;α) = −2mn
m−1∑
k=0

(−1)k
νLBn+1

(
x− k

m
, y;α

)
, n = 0, 1.2, ...; m even. (3.18)

In the next section, we consider the determinant approach to the extended Laguerre–Appell polynomials
νLAn(x, y;α) .

4. Determinant approach

In order to establish the determinant form of the extended Laguerre–Appell polynomials, we prove the following
result:

Theorem 4.1 For the extended Laguerre–Appell polynomials
νLAn(x, y;α) , the following determinant form

holds true:

νLA0(x, y;α) =
1

β 0
νL0(x, y;α), β0 =

1

A0
, (4.1)

νLAn(x, y;α)=
(−1)n

(β0)
n+1n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

νL0(x, y;α) νL1(x, y;α) 2! νL2(x, y;α) · · · (n− 1)! νLn−1(x, y;α) n! νLn(x, y;α)

β0 β1 β2 · · · βn−1 βn

0 β0

(
2
1

)
β1 · · ·

(
n−1
1

)
βn−2

(
n
1

)
βn−1

0 0 β0 · · ·
(
n−1
2

)
βn−3

(
n
2

)
βn−2

. . . · · · . .

. . . · · · . .
0 0 0 · · · β0

(
n

n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(4.2)

βn = − 1

A0

( n∑
k=1

(
n

k

)
Akβn−k

)
, n = 1, 2, 3, · · · ,
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where β0, β1, · · · , βn ∈ R, β0 ̸= 0 , and νLn(x, y;α) (n = 0, 1, · · · ) are the extended Laguerre polynomials
defined by equation (2.10).

Proof Since the Appell polynomials possess the following determinant definition [6, p. 1533]:

A0(x) =
1

β 0

, β0 =
1

A0
, (4.3)

An(x) =
(−1)

n

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · xn−1 xn

β0 β1 β2 · · · βn−1 βn

0 β0

(
2
1

)
β1 · · ·

(
n−1
1

)
βn−2

(
n
1

)
βn−1

0 0 β0 · · ·
(
n−1
2

)
βn−3

(
n
2

)
βn−2

. . . · · · . .

. . . · · · . .
0 0 0 · · · β0

(
n

n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (4.4)

βn = − 1

A0

( n∑
k=1

(
n

k

)
Ak βn−k

)
, n = 1, 2, 3, · · · ,

where β0, β1, · · · , βn ∈ R , β0 ̸= 0 .
Taking n = 0 in equation (2.11) and then using equation (4.3) in the resultant equation, assertion (4.1)

follows.
Next, replacing x by −x in equation (4.4) and then expanding the determinant on the r.h.s. of the

resultant equation w.r.t. the first row, it follows that

An(−x) =
(−1)n

(β0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 β2 · · · βn−1 βn

β0

(
2
1

)
β1 · · ·

(
n−1
1

)
βn−2

(
n
1

)
βn−1

0 β0 · · ·
(
n−1
2

)
βn−3

(
n
2

)
βn−2

. . · · · . .

. . · · · . .
0 0 · · · β0

(
n

n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− (−1)n(−x)

(β0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 β2 · · · βn−1 βn

0
(
2
1

)
β1 · · ·

(
n−1
1

)
βn−2

(
n
1

)
βn−1

0 β0 · · ·
(
n−1
2

)
βn−3

(
n
2

)
βn−2

. . · · · . .

. . · · · . .
0 0 · · · β0

(
n

n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

(−1)n(−x)2

(β0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 β1 · · · βn−1 βn

0 β0 · · ·
(
n−1
1

)
βn−2

(
n
1

)
βn−1

0 0 · · ·
(
n−1
2

)
βn−3

(
n
2

)
βn−2

. . · · · . .

. . · · · . .
0 0 · · · β0

(
n

n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ · · ·

1694



KHAN and WANI/Turk J Math

+
(−1)2n−1(−x)n−1

(β0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 β1 β2 · · · βn

0 β0

(
2
1

)
β1 · · ·

(
n
1

)
βn−1

0 0 β0 · · ·
(
n
2

)
βn−2

. . . · · · .

. . . · · · .
0 0 0 · · ·

(
n

n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

(−x)n

(β0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 β1 β2 · · · βn−1

0 β0

(
2
1

)
β1 · · ·

(
n−1
1

)
βn−2

0 0 β0 · · ·
(
n−1
2

)
βn−3

. . . · · · .

. . . · · · .
0 0 0 · · · β0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(4.5)

Since each minor in equation (4.5) is independent of x , operating
(
α+

(
y ∂
∂xx

∂
∂x

))−ν on both sides of
equation (4.5), then using equations (2.1) and (2.5), and combining the terms on the r.h.s. of the resultant
equation, we are led to assertion (4.2). 2

Remark 4.1 For β0 = 1 and βi =
1

i+1 (i = 1, 2, ....., n) the determinant definition of the Appell polynomials
An(x) given by equations (4.3) and (4.4) gives the determinant definition of the Bernoulli polynomials Bn(x) [5].
Therefore, taking β0 = 1 and βi =

1
i+1 (i = 1, 2, ....., n) in equations (4.1) and (4.2), the following determinant

definition of the extended Laguerre–Bernoulli polynomials νLBn(x, y;α) is obtained:

νLB0(x, y;α) = νL0(x, y;α),

νLBn(x, y;α)

=
(−1)n

(β0)
n+1

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

νL0(x, y;α) νL1(x, y;α) 2! νL2(x, y;α) · · · (n− 1)! νLn−1(x, y;α) n! νLn(x, y;α)

1 1
2

1
3 · · · 1

n
1

n+1

0 1 1 · · · 1 1

0 0 1 · · · n−1
2

n
2

. . . · · · . .

. . . · · · . .
0 0 0 · · · 1 n

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(4.6)

Remark 4.2 In view of the fact that for β0 = 1 and βi =
1
2 (i = 1, 2, ....., n) the determinant definition of the

Appell polynomials An(x) given by equations (4.3) and (4.4) reduces to the determinant definition of the Euler
polynomials En(x) [6], taking β0 = 1 and βi =

1
2 (i = 1, 2, ....., n) in equations (4.1) and (4.2), the following

determinant definition for the generalized Laguerre–Euler polynomials
νLEn(x, y;α) is obtained:

νLE0(x, y;α) = νL0(x, y;α),
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νLEn(x, y;α)

=
(−1)n

(β0)
n+1

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

νL0(x, y;α) νL1(x, y;α) 2! νL2(x, y;α) · · · (n− 1)! νLn−1(x, y;α) n! νLn(x, y;α)

1 1
2

1
2 · · · 1

2
1
2

0 1
(
2
1

)
1
2 · · ·

(
n−1
1

)
1
2

(
n
1

)
1
2

0 0 1 · · ·
(
n−1
2

)
1
2

(
n
2

)
1
2

. . . · · · . .

. . . · · · . .
0 0 0 · · · 1

(
n

n−1

)
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(4.7)

Costabile [4, 5, 8] has given several approaches to Bernoulli polynomials. An important approach based on
a determinant definition was given in [5]. This approach is further extended to provide determinant definitions of
the Appell and Sheffer polynomial sequences by Costabile and Longo in [6] and [7], respectively. The equivalence
of the determinant approach with other existing approaches is also established. The simplicity of the algebraic
approach to the Appell and Sheffer polynomials established in [6, 7] allows several applications. The above-
mentioned research works by Costabile and Longo and the importance of operational methods in the theory
of special functions motivated the authors to establish the determinant forms of the extended Laguerre–Appell
polynomials.

Operational methods can be exploited to simplify the derivation of the properties associated with ordi-
nary and generalized special functions and to define new families of special functions. The use of operational
techniques in the study of special functions provides explicit solutions for the families of partial differential
equations including those of heat and D ′Alembert type. The method proposed in this article can be used in
combination with the monomiality principle as a useful tool in analyzing the solutions of a wide class of partial
differential equations often encountered in physical problems.

References

[1] Andrews LC. Special Functions for Engineers and Applied Mathematicians. New York, NY, USA: Macmillan
Publishing Company, 1985.

[2] Appell P. Sur une classe de polynômes. Ann Sci École Norm Sup 1880; 9: 119-144 (in French).

[3] Assante D, Cesarano C, Fornaro C, Vazquez L. Higher order and fractional diffusive equations. Journal of Engi-
neering Science and Technology Review 2015; 8: 202-204.

[4] Costabile FA. On expansion of a real function in Bernoulli polynomials and applications. Conferenze del sem Matem
Uni Bari (IT) n273 1999.

[5] Costabile FA, Dell ′ Accio F, Gualtieri MI. A new approach to Bernoulli polynomials. Rend Mat Appl 2006; 26:
1-12.

[6] Costabile FA, Longo E. A determinantal approach to Appell polynomials. J Comput Appl Math 2010; 234: 1528-
1542.

[7] Costabile FA, Longo E. An algebraic approach to Sheffer polynomial sequences. Integral Transforms Spec Funct
2014; 25: 295-311.

1696



KHAN and WANI/Turk J Math

[8] Costabile FA, Longo E. An algebraic exposition of umbral calculus with application to general interpolation problem
- a survey. Publications de L ′ institut Mathématique Nouvelle série, tome 2014; 96: 67-83.

[9] Dattotli G, Lorenzutta S, Cesarano C. Bernstein polynomials and operational methods. J Comput Anal Appl 2006;
8: 369-377.

[10] Dattoli G, Ricci PE, Cesarano C, Vázquez L. Special polynomials and fractional calculus. Math Comput Modelling
2003; 37: 729-733.

[11] Dattoli G, Torre A. Operational methods and two variable Laguerre polynomials. Atti Acad Sci Torino CL Sci Fis
Mat Natur 1998; 132: 1-7.

[12] Khan S, Al-Saad MWM, Khan R. Laguerre-based Appell polynomials: properties and applications. Math Comput
Modelling 2010; 52: 247-259.

[13] Khan S, Yasmin G, Khan R, Hassan NAM. Hermite-based Appell polynomials: properties and applications. J Math
Anal Appl 2009; 351;: 756-764.

[14] Magnus W, Oberhettinger F, Soni RP. Formulas and Theorems for Special Functions of Mathematical Physics. New
York, NY, USA: Springer-Verlag, 1956.

[15] Oldham H, Spanier N. The Fractional Calculus. San Diego, CA, USA: Academic Press, 1974.

[16] Widder DV. An Introduction to Transform Theory. New York, NY, USA: Academic Press, 1971.

1697


	Introduction and preliminaries
	Extended Laguerre–Appell polynomials
	Applications
	Determinant approach

