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Abstract: A topological space X is called productively Lindelöf if X × Y is Lindelöf for every Lindelöf space Y . We
study with remainders and investigate topological spaces with productively Lindelöf remainders.
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1. Introduction
All spaces are assumed to be Tychonoff. All undefined notions can be found in [20, 26]. A space X is of countable
type if every compact subspace P of X is contained in a compact subspace F ⊂ X that has a countable base
of open neighborhoods in X . All metrizable spaces, all Čech-complete spaces, and, more generally, all p-spaces
are contained in the class of spaces of countable type [3].

A topological group G is a group with a topology such that the multiplication mapping of G × G into
G is continuous and the inverse mapping of G onto itself associating x−1 with arbitrary x ∈ G is continuous.
For more details, see [6].

Recall that a topological space is productively Lindelöf if its product with every Lindelöf space is Lindelöf.
Since the Cartesian product of a compact space and a Lindelöf space is Lindelöf, any σ -compact space is
productively Lindelöf (see, e.g., [20]).

In 1971 Michael proved that:

Theorem 1.1 ( [29]) CH implies every productively Lindelöf metrizable space is σ -compact.

More recently Alas et al. proved the following result.

Theorem 1.2 ( [1]) CH implies productively Lindelöf regular p-spaces are σ -compact.

Even though the class of projectively Lindelöf spaces has been extensively studied, it is still not well understood.
For more details see, e.g., [2, 14, 36].

For a space X and its compactification bX , the complement bX \ X is called a remainder of X . X

is called nowhere locally compact if no point of X has a compact neighborhood. Notice that if X is nowhere
locally compact, then any remainder of X is also dense in any compactification bX of X . The theory on
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remainders of compactifications has a long history and its root goes back to Čech [16]. A famous classical result
in this theory is the following due to Henriksen and Isbell [21]: a space X is of countable type if and only if
the remainder in any (or some) compactification of X is Lindelöf. Later, Arhangel’skii conducted a systematic
study of the theory and he has made many significant contributions to this topic (see, e.g., [7–13]).

Let Q denote the space of rationals. It is well known that there exists a compactification bQ in which
the remainder of Q is the space P of irrationals. Clearly, Q and P are p-space, since they are metrizable.
Michael proved the following well-known result.

Theorem 1.3 ( [29]) CH implies there is a Lindelöf space X such that X × P is not Lindelöf.

It follows that, under CH, the remainder of Q is not productively Lindelöf, since P is not σ -compact [23, 32].
However, without additional assumptions it is still an open problem whether P is productively Lindelöf or not.
A Lindelöf space Y is called a Michael space if P × Y is not Lindelöf. Indeed, one of the classical problem
of Michael is: does there exist a Michael space? It is known that under some assumptions such as b = ℵ1

or d = cov(M) there is a Michael space (see, e.g., [27, 30]). Thus, this example shows that remainders of a
productively Lindelöf space need not be productively Lindelöf.

In this sense, it is natural to ask:

Question 1.4 When does a productively Lindelöf space have a productively Lindelöf remainder?

Despite much effort, the theory of productively Lindelöf spaces is still not clear. Therefore, Question 1.4 may
be rewritten as follows:

Question 1.5 How can we characterize topological spaces with a productively Lindelöf remainder?

It is known that any compactification bX of a space X is the image of the Stone–Čech compactification
βX under a (unique) continuous mapping f that keeps X pointwise fixed; furthermore, f(βX \X) = bX \X
[21, Lemma 1.1]. Note that f and its restriction to βX \ X are perfect. On the other hand, the class of
productively Lindelöf spaces is preserved under perfect maps [35].

Therefore we have the following:

Lemma 1.6 If the Stone–Čech remainder βX \X of X is productively Lindelöf, then every remainder of X
is productively Lindelöf.

In this paper we are mainly interested in the remainders of topological spaces with productively Lindelöf
property. In Section 2, we present some examples around the productively Lindelöfness. In Section 3, we focus
on the characterizing of remainders that have productively Lindelöf property or not. Finally, in Section 4, we
discuss the remainders of the space of all continuous real-valued functions on a space X with the topology of
pointwise convergence.

2. Examples
In this section we analyze some topological spaces with productively Lindelöf remainder.

Example 2.1 The space S of the set of all real numbers with the topology generated by the base consisting
of all intervals [a, b) = {x ∈ R : a ≤ x < b} , where a, b ∈ R and a < b , is called the Sorgenfrey line. It
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is known that S is Lindelöf, and S × S is not Lindelöf (see [20]). Then S is not productively Lindelöf. Let
Z = X ∪ Y be the double arrows space (also called, two arrows space), where X = {(x, 0) : 0 < x ≤ 1} and
Y = {(x, 1) : 0 ≤ x < 1} . The subspace X is the arrow space that is homeomorphic to S [20, Exercise 3.10.C].
Z is a Hausdorff compactification of S , and its remainder Y is still a copy of S (see [8]). Thus, S has a
nonproductively Lindelöf remainder. This implies that the Stone–Čech remainder βS \ S cannot be productively
Lindelöf by Lemma 1.6. Let us note that S is not a p-space (see [37]). Assuming CH, S has no metrizable
productively Lindelöf remainder. However, it is not clear whether there is a nonmetrizable productively Lindelöf
remainder of S .

Example 2.2 There is a productively Lindelöf space such that the remainder in any (or some) compactification
of it is productively Lindelöf.

Proof Let βN be the Stone–Čech compactification of the discrete space N . βN \ N is compact since it is a
closed subspace of βN (see, e.g., [39, pp. 74]). Then βN \N is productively Lindelöf. By following Lemma 1.6,
every remainder of N is productively Lindelöf. 2

Example 2.3 There is a nonproductively Lindelöf space X such that every remainder of X is productively
Lindelöf.

Proof Let X be the space of the ordinal numbers that are less than the first uncountable ordinal ω1 in the
order topology. Since X is not Lindelöf (see, e.g., [41]) it cannot be productively Lindelöf. Now consider the
one-point compactification of X denoted by bX = X ∪ {ω1} . Cleary, bX \X is productively Lindelöf. Indeed,
βX coincides with bX (see, e.g., [5]), and then every remainder of X is productively Lindelöf. 2

We should also note that we do not have a Lindelöf but not productively Lindelöf space such that every
remainder of it is productively Lindelöf. In fact, Todorcevic [38] constructs a stationary Aronszajn line that is
Lindelöf and not productively Lindelöf (see [19]). Moreover, in [14] Barr et al. give an example of a space that
is Lindelöf and not productively Lindelöf under CH. However, we do not know whether Stone–Čech remainders
of these spaces are productively Lindelöf.

Example 2.4 (CH) There is a nonproductively Lindelöf Čech-complete space with a productively Lindelöf
remainder.

Proof By following an example in [11], let X be the product space G×B , where B is a compact topological
group such that w(B) > 2c and G is the countable power of the usual space R . X is Čech-complete (see, e.g.,
[20]) and then any remainder of X is σ -compact. Therefore, any remainder of X is productively Lindelöf.

Note that X is productively Lindelöf if and only if G is productively Lindelöf.
Claim: G is not productively Lindelöf. If G were productively Lindelöf, then G would be σ -compact

by Theorem 1.2, but G is not σ -compact. To see this suppose that G is σ -compact. Note that G is a Polish
space; then by the Baire category theorem (see, e.g., [25], p. 41) it is a Baire space, i.e. G cannot be represented
as a union of countable family of nowhere dense subspaces. Let G =

∪
n Fn , where each Fn is compact. Then

there is a natural number n0 such that Fn0 has a nonempty interior. Let g0 be a point in Fn0 . Let g be any
point in G . Observe that gg−1

0 Fn0 is a compact neighborhood of g . Thus, G is locally compact. However G
cannot be locally compact, since it is a nowhere locally compact topological group. 2
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Example 2.5 There is a countable subgroup G such that no remainder of G is productively Lindelöf.

Proof Consider the Cantor cube Dω1 = {0, 1}ω1 with its standart Boolean group structure. Since it is
separable, there is a countable dense subspace of Dω1 , called G . Clearly, G is productively Lindelöf. Note
that G cannot be of countable type [9, p. 169]. Therefore, any remainder of G is not Lindelöf [21], and then
none of the remainder of G is productively Lindelöf. 2

3. Some results on spaces with productively Lindelöf remainders

Now we discuss certain restrictions on remainders of topological spaces that guarantee that these remainders
are productively Lindelöf or not. We have the following partial results in this direction.

Lemma 3.1 Every Čech-complete space has a productively Lindelöf remainder.

Recall from [11] a space X is locally Čech-complete if for each x ∈ X there exists an open neighborhood
V of x such that the closure of V in X is Čech-complete.

Corollary 3.2 Every remainder of a locally Čech-complete topological group is productively Lindelöf.

Proof Since every locally Čech-complete topological group is Čech-complete [28, Lemma 4.1], the proof is
immediate by Lemma 3.1. 2

A Lindelöf p-space is a preimage of a separable metrizable space under a perfect mapping [3].

Theorem 3.3 (CH) A non-Čech-complete Lindelöf p-space has no productively Lindelöf remainder.

Proof Let X be a non-Čech-complete Lindelöf p-space. Suppose there is a productively Lindelöf remainder
Y = bX \ X of X in some compactification bX . Then Y is a Lindelöf p-space [7, Theorem 2.1]. Following
Theorem 1.2, Y is σ -compact, but this implies X is Čech-complete. 2

In what follows, we show that the assumption “Lindelöf p-space” in Theorem 3.3 cannot be dropped.

Example 3.4 There is a non-Čech-complete space with a productively Lindelöf remainder (here we do not need
CH).

Proof Let T (ω1 + 1) be the space of all ordinal numbers not exceeding the first uncountable ordinal ω1

and Z be the subspace of T (ω1 + 1) consisting of all nonisolated points of T (ω1 + 1) . Now define Y0 as the
subspace of Z consisting of all isolated points of Z . Set Y = Y0 ∪ {ω1} and X = T (ω1 + 1) \ Y . Note that
T (ω1 + 1) is compact [5] and since X is dense in T (ω1 + 1) , T (ω1 + 1) is a compactification bX of X , and Y

is a remainder of X in bX . Observe that Y0 is uncountable and all points of Y0 are isolated in Y . Moreover,
any open neighborhood of ω1 contains all but countably many points of Y due to the topology on T (ω1 + 1) .

Following Example 2.2 in [11] X is not Čech-complete and Y is not a Lindelöf Σ -space. The class of
Lindelöf Σ -space is introduced by Nagami [31]. Recall that a space is a Lindelöf Σ-space if it is the image of a
Lindelöf p-space under a continuous mapping. Since all Lindelöf p-spaces are Lindelöf Σ -spaces [10], Y cannot
be a Lindelöf p-space.
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Now we show that Y is productively Lindelöf. Let K be any Lindelöf space. Take any open cover U of
Y ×K . Without loss of generality, we may assume U = {VY ×OK : VY is open inY,OK is open inK} . Since
{ω1}×K is Lindelöf (see, e.g., [20]), there is a countable subfamily W of U such that

∪
W covers the subspace

{ω1} ×K of Y ×K .
Set W = {V1 × O1, V2 × O2, . . . } , where Vi = {ω1} ∪ (Y0 \Mi) and each Mi ⊆ Y0 is countable for

i = 1, 2, . . . . Note that (Y ×K)\(
∪
W) =

∪
i∈N(Mi×K) . Clearly, each Mi×K is Lindelöf, and so

∪
i∈N(Mi×K)

is Lindelöf. Then there is a countable subfamily W ′ of U such that
∪

W ′ covers
∪

i∈N(Mi ×K) . Therefore
we have a countable subfamily W ′ ∪W of U that contains Y ×K . 2

Ohio completeness was introduced by Arhangels’kii [7], who has shown that it is a useful tool in the study
of remainders of compactifications. Recall that a space X is Ohio complete if in every compactification bX of
X there exists a Gδ -subset Z such that X ⊂ Z and every y ∈ Z \X is separated from X by a Gδ -subset of
Z . All Čech-complete spaces, all Lindelöf spaces, and all p-spaces are examples of Ohio-complete spaces.

It is obvious that every Čech-complete space has a productively Lindelöf remainder. If we extend it to
the class of Ohio-complete spaces, the following question naturally arises: does every Ohio-complete space have
a productively Lindelöf remainder? The answer is “no”.

As we discussed in Section 2, the Sorgenfrey line S is Lindelöf and so it is Ohio complete. However, there
is a remainder of S that is homeomorphic to S , and S is not productively Lindelöf.

The next statement shows how Ohio complete spaces are related to productively Lindelöf remainders.

Theorem 3.5 Let G be a not of countable type topological group. If some remainder (or any remainder) is
Ohio complete, then G is productively Lindelöf and G has no productively Lindelöf remainder.

Proof Let G be a not of countable type topological group. Take any remainder bG \ G that is Ohio
complete in some compactification bG of G . Since every topological group is paratopological group, by following
Corollary 4.2 in [12], G is σ -compact. Hence, G is productively Lindelöf. Clearly, none of the remainder of G
is Lindelöf by the classical result of Henriksen and Isbell. Thus, there is no productively Lindelöf remainder of
G . 2

Since there is a generalization of the topological group that is called a rectifiable space (see section 2 in
[12] for more information) by following Corollary 3.7 in [12] one can generalize Theorem 3.5 to a larger class
of rectifiable spaces.

The following example shows that the assumption bG \ G is Ohio complete in Theorem 3.5 cannot be
dropped.

Example 3.6 There is a not of countable type topological group G such that neither G nor bG\G is productively
Lindelöf.

Proof Let G be the product space Rc . It is well known that it is a nonnormal, nowhere locally compact
topological group (see [7]). Take any remainder bG \ G of G . Note that G is not of countable type, since it
is not a paracompact p-space [7, Theorem 4.1 and Example 4.2]. By Theorem 4.3 in [7] bG \ G cannot be
Ohio complete, since G is neither a σ -compact nor a paracompact p-space. On the other hand, G cannot
be productively Lindelöf since it is not normal. Furthermore, it is clear that bG \ G is not productively
Lindelöf. 2
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Recall from [34] that a topological space X is Hurewicz if given any sequence {Un}n∈N of open covers
of X one may pick finite set Vn ⊂ Un in such a way that {

∪
Vn : n ∈ N } is a γ -cover of X . An infinite open

cover U is a γ -cover if for each x ∈ X the set {U ∈ U : x ̸∈ U } is finite. It is known that

σ-compact ⇒ Hurewicz ⇒ Lindelöf.

We have the following result by Theorem 1.3 in [15] and Lemma 1.6.

Corollary 3.7 Let G be a topological group. If βG \G is Hurewicz, then every remainder of G is productively
Lindelöf.

We denote by (MA+¬CH) that we assume Martin’s axiom and the negation of the continuum hypothesis
(see [24]).

Recall that a topological group G is precompact if for every neighborhood U of the identity element
e ∈ G there is a finite subset F of G such that FU = G . It is known that a topological group G is precompact
if and only if it is a dense subgroup of a compact group G [33, 40]. Arhangel’skii and van Mill give a dichotomy
for precompact topological groups in [13]. Then we have:

Corollary 3.8 (MA+¬CH) Let G be a nonlocally compact precompact topological group with ω1 ≤ w(G) < c .
If G is not a Lindeöf p-space, then no remainder of G is productively Lindelöf.

Proof Since G is a nonlocally compact topological group, G is nowhere locally compact, and then any
remainder Y = bG \ G is also dense in bG (see, e.g., [8]). Therefore, G is a remainder of Y . By using
Theorem 2.1 in [7] Y is not a Lindeöf p-space. Following Theorem 3.1 in [13] there is no productively Lindelöf
remainder of G . 2

4. Remainders of Cp(X)

We denote by Cp(X,R) the space of all continuous real-valued functions on X with the topology of pointwise
convergence, i.e. the topology of Cp(X,R) is inherited from the Tychonoff product RX . We write Cp(X)

instead of Cp(X,R) , as usual.
It is well known that Cp(X) is metrizable if and only if X is countable [4]. Then we have:

Corollary 4.1 If X is a countable discrete space, then any remainder of Cp(X) is productively Lindelöf.

Proof Let X be a countable discrete space. Since Cp(X) is Čech-complete [37, p. 31], any remainder of
Cp(X) is productively Lindelöf. 2

Corollary 4.2 Any remainder of Cp(ω) is productively Lindelöf.

Note that if Cp(X) is normal, then it is countably paracompact [37, p. 33]. Therefore we have the
following result.

Corollary 4.3 If Cp(X) is not countably paracompact, then neither Cp(X) nor any remainder of Cp(X) is
productively Lindelöf.
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Proof Since Cp(X) is not countably paracompact, it is not normal, and it cannot be productively Lindelöf
(see also, Theorem 4 in [18]). Moreover, X is uncountable, since Cp(X) is not metrizable. Then following
Corollary 4.10 in [13] every remainder of Cp(X) is nonproductively Lindelöf. 2

Recall from [22] an infinite family A ⊂ P(ω) is an almost disjoint (AD) if the intersection of any two
distinct elements of A is finite. It is maximal almost disjoint (MAD) if it is not properly included in any larger
almost disjoint family.

A topological space is a Mrówka space (or ψ(A) space) if it is of the form ω ∪ A , where A is an almost
disjoint family, and its topology is generated by the following base: every point n in ω is isolated, and basic
neighborhoods of A ∈ A are of the form {A} ∪ (A \ F ) , where F is a finite subset of ω (see [22]).

Corollary 4.4 If A is a MAD family on ω , then neither Cp(ψ(A)) nor any remainder of Cp(ψ(A)) is
productively Lindelöf.

Proof It is well known that every MAD family is uncountable (see, e.g., [22], Proposition 1). By Corollary 4.10
in [13] and Proposition 1 in [17], the proof is immediate. 2

Let us note that if one is restricted to the subspace of two-valued continuous functions denoted by
Cp(ψ(A), {0, 1}) , then Cp(ψ(A), {0, 1}) may be Lindelöf under some set-theoretic assumptions; see [17] for
more details. Thus, we cannot guarantee that the Lindelöf property of Cp(ψ(A), {0, 1}) always fails for a MAD
family A . It follows that Corollary 4.4 could be not true for Cp(ψ(A), {0, 1}) .

We also have the following result.

Corollary 4.5 Assume b > ω1 . If A is an almost disjoint family on ω of size ω1 , then neither Cp(ψ(A)) nor
any remainder of Cp(ψ(A)) is productively Lindelöf.

Proof By Corollary 4.10 in [13] and Proposition 6 in [17], Cp(ψ(A)) and its remainder cannot be productively
Lindelöf. 2
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