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Abstract: In the definition of weak convergence of probability measures it is assumed that the limit is a probability
measure as well. We get rid of this assumption and require that the limit merely needs to be a Choquet-capacity
functional. In terms of random variables this means that the distributional limit no longer is a random point, but
a random closed set, namely one uniquely determined by the Choquet capacity. For our extended notion of weak
convergence there is a counterpart of the portmanteau theorem. Moreover, we demonstrate basic relations to the
theory of random closed sets with emphasis on weak convergence in hyperspace topologies including two correspondence
theorems. Finally, the approach carries over to sequences of Choquet capacities.
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1. Introduction
Let E with topology G be a locally compact second countable Hausdorff space (lcscH). In particular, by
Uryson’s Metrization Lemma there exists a metric d on E . The pertaining classes of all closed, compact, and
Borel subsets are denoted by F ,K , and B , respectively. We make F a topological space by endowing it with
the Fell topology τFell , which is generated from a subbase

{M(K) : K ∈ K} ∪ {H(G) : G ∈ G},

where M(D) := {F ∈ F : F ∩ D = ∅} is a missing set and H(D) := {F ∈ F : F ∩ D ̸= ∅} is a hitting
set for every subset D of E . From [10] we know that (F , τFell) is compact, second countable, and Hausdorff.
Convergence in the Fell topology has nice equivalent characterizations:

Fn → F in τFell ⇔ K − lim
n→∞

Fn = F ⇔ δ(Fn, F ) → 0. (1.1)

Here K − limn→∞ Fn means the Painlevé–Kuratowski limit of (Fn) and δ is the Kuratowski metric;
confer [17,19]. Let BFell := σ(τFell) denote the Borel-σ algebra on F pertaining to τFell and let (Ω,A,P) be
a probability space. Then a measurable mapping C : (Ω,A) → (F ,BFell) is called a random closed set in E .
For any random closed set C the set function TC : K → R defined by

TC(K) := P(C ∩K ̸= ∅), K ∈ K,

is called the capacity functional of C. The properties of P lead to the following characteristics of TC :
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(T1) TC(∅) = 0 ; 0 ≤ TC ≤ 1 ;

(T2) TC is continuous from above on K , i.e. Kn ↓ K in K ⇒ TC(Kn) ↓ TC(K) ;

(T3) TC is monotone increasing on K and for K1,K2, . . . ,Kn ∈ K, n ≥ 2 ,

TC

( n∩
i=1

Ki

)
≤

∑
∅̸=I⊆{1,...,n}

(−1)|I|+1TC

(∪
i∈I

Ki

)
.

Every functional T : K → R satisfying (T1)–(T3) is called Choquet capacity (functional). The following
two results on Choquet capacities are well known in the theory of random closed sets; confer [10–12].

Theorem 1.1 (Choquet) Every probability measure Q on (F ,BFell) determines a Choquet capacity functional
T on K through the correspondence

T (K) = Q(H(K)) ∀ K ∈ K. (1.2)

Conversely, every Choquet capacity functional T on K determines a unique probability measure Q on
(F ,BFell) that satisfies the relation (1.2).

We see that Choquet’s Theorem is the counterpart of the well-known one-to-one correspondence between
a distribution function on Rd and a probability measure on the usual Borel-σ algebra B(Rd) on Rd, d ∈ N .
Given a Choquet capacity T there exists a random closed set C in E such that T is equal to the capacity
functional TC of C . Let us agree to say in this case that C is associated with T . As to the existence, simply
put (Ω,A,P) := (F ,BFell, Q) , where Q is the probability measure (uniquely) determined by T according to
Choquet’s Theorem. Then C := identity map is a random closed set with TC = T by construction. For any
other random closed set D in E with TD = T it follows from Choquet’s Theorem that D and C are equal in
distribution. Each Choquet capacity T can be extended onto the Borel-σ algebra B by

T (B) := sup{T (K) : K ∈ K,K ⊆ B}, B ∈ B.

Theorem 1.2 (Matheron) The extension T : B → [0, 1] is consistent in the sense that T (B) = Q(H(B)) ∀ B ∈
B , where the hitting sets H(B) = {F ∈ F : F ∩B ̸= ∅} in fact belong to BFell .

Therefore, from now on a Choquet capacity is a set function on the entire Borel-σ algebra B . In general,
it is not a probability measure on B , because it is not σ -additive, but merely sub-σ -additive. Obviously, every
probability measure satisfies (T1)–(T3) and thus is a Choquet capacity. Conversely, a Choquet capacity is in
fact a probability measure if and only if the associated random set is a singleton with probability one; confer
Proposition 2.7 below.

The definition of weak convergence of probability measures defined on the Borel-σ algebra of general
topological spaces, confer Topsøe [22], includes that the limit is a probability measure as well. We extend this
by allowing the limit to be a Choquet capacity. In view of the ”limsup characterization” of weak convergence
as given in the portmanteau theorem, confer Theorem 8.1 of Topsøe [22], we arrive at:
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Definition 1.3 Let Pn, n ∈ N, be probability measures on (E,B) and let T be a Choquet capacity. If

lim sup
n→∞

Pn(F ) ≤ T (F ) ∀ F ∈ F , (1.3)

then we say that Pn converges weakly to T and denote this by Pn
w−→ T .

Definition 1.4 For every n ∈ N let ξn : (Ωn,An,Pn) → (E,B) be a random variable with values in E and
with distribution Pn ◦ ξ−1

n . If Pn ◦ ξ−1
n

w−→ T , then we say that ξn converges in distribution to C , where C is
the random closed set associated with T . In short we write:

ξn
L−→ C. (1.4)

Remark 1.5 Notice that E is closed, whence from (1.3) and (T1) it follows that T (E) = 1 , which in turn
yields that C ̸= ∅ a.s. Observe that the ξn are random points in the space E , whereas the limit C is a random
(closed) subset of E . By definition the convergence in (1.4) is equivalent to

lim sup
n→∞

Pn(ξn ∈ F ) ≤ P(C ∩ F ̸= ∅) ∀ F ∈ F , (1.5)

where (Ω,A,P) is the underlying probability space of C . If C = {ξ} is a singleton a.s. then P(C ∩ F ̸=
∅) = P(ξ ∈ F ) . Thus (1.5) and the (traditional) portmanteau theorem yield classical distributional convergence

ξn
L−→ ξ .

Remark 1.6 The limit T in (1.3) is not uniquely determined, since whenever T is dominated by some other
Choquet capacity T̃ , i.e. T ≤ T̃ , then T̃ fulfills (1.3) and therefore is a limit as well. In particular, T̃ = TE

is the degenerated limit, which always exists. In terms of random closed sets this means that ξn
L−→ C implies

that ξn
L−→ D for every random closed set D such that C ⊆ D a.s. and so ξn

L−→ E in any case.

Remark 1.7 If T actually is a probability measure, then we are back in the classical situation (as in Remark
1.5 above). To stress this we write Pn

w⇒ T .
The following example shows an applicability of our convergence concept (1.4) in statistics for the

construction of confidence regions based on the well-established principle of M-estimation.

Example 1.8 In a statistical model let θ ∈ Rd be the parameter of interest and let θ̂n be an M-estimator, i.e.
θ̂n is any infimizing point of some random cadlag (rcll) criterion function Mn(t), t ∈ Rd . As the usual starting
point one has to investigate the asymptotic distributional behavior of αn(θ̂n − θ), n ∈ N , with suitable sequence
αn → ∞ . The basic idea here is to introduce the rescaled Mn -process Xn defined as

Xn(t) := γn{Mn(θ + α−1
n t)−Mn(θ)}, t ∈ Rd,

where γn are appropriate positive constants. In fact, by Lemma 2.2 in Ferger [7] the rescaling t → θ + α−1
n t

yields that αn(θ̂n − θ) is an infimizing point of the cadlag process Xn . Now, if Xn
L→ X in the multivariate

Skorokhod-space (D(Rd), s) and if the sequence αn(θ̂n−θ), n ∈ N , is stochastically bounded, then Theorem 3.11
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in [7] guarantees that αn(θ̂n − θ)
L→ C , where C is the random closed set consisting of all infimizing points of

the limit process X . Next, put

Rn := θ̂n − α−1
n G := {θ̂n − α−1

n x : x ∈ G}

with open G ⊆ Rd . Then {θ ∈ Rn} = {αn(θ̂n − θ) ∈ G} , whence

lim inf
n→∞

P(θ ∈ Rn) = lim inf
n→∞

P(αn(θ̂n − θ) ∈ G) = 1− lim sup
n→∞

P(αn(θ̂n − θ) ∈ Gc)

≥ 1− P(C ∩Gc ̸= ∅) = P(C ∩Gc = ∅) = P(C ⊆ G), (1.6)

where the inequality in (1.6) holds by (1.5), because the complement Gc of G is closed. Thus, if for a given level
α ∈ (0, 1) of significance one chooses in the definition of Rn the open set G = Gα such that P(C ⊆ G) ≥ 1−α ,
then

lim inf
n→∞

P(θ ∈ Rn) ≥ 1− α

and thereby Rn is an asymptotic confidence region for θ at level 1−α . For instance, let G be the open rectangle
(−r, r)d with positive r . Then the pertaining confidence region is given by

Rn = (θ̂n,1 − α−1
n r, θ̂n,1 + α−1

n r)× · · · × (θ̂n,d − α−1
n r, θ̂n,d + α−1

n r),

where θ̂n,i is the i− th component of θ̂n = (θ̂n,1, . . . , θ̂n,d) . Notice that in the literature up to now the construction

of asymptotic confidence regions required classical distributional convergence αn(θ̂n − θ)
L→ ξ to a limit point

ξ . Thus, the essential innovation here is that distributional convergence αn(θ̂n − θ)
L→ C to a limit set C

suffices for the construction, even if C is not a singleton. (If C = {ξ} a.s. then both notions of convergence
coincide.)

This paper is organized as follows. In section 2 we derive several necessary conditions for Pn
w−→ T ,

which are even sufficient, if the set C associated with T is compact a.s. If T actually is a measure we obtain
the classical portmanteau theorem as presented in [8,22]. Recall that by Proposition 2.7 below T is a measure if
and only if C is a singleton a.s. Indeed, singletons play a peculiar role in our theory. They are the most simple
nonempty random closed sets. We investigate them in section 3 and show that once a sequence of singletons
converges in distribution in the hyperspace (F , τFell) then the limit set must be a singleton too. In this sense
singletons are ”closed”. In section 4 we demonstrate how traditional distributional convergence in the carrier
space (E,G) and distributional convergence (of singletons) in the hyperspace are linked to each other as well as
to our convergence (1.4). Moreover, if τFell is replaced by the so-called upper Vietoris topology τuV it turns out
that (1.4) is equivalent to distributional convergence of the singletons {ξn} in the new hyperspace (F , τuV ) .
Finally, in the last section the probability measures Pn in Definition 1.3 are replaced by Choquet capacities Tn .
This yields a new notion of weak convergence for Choquet capacities, which corresponds to a suitable topology
on the set T of all Choquet capacities. This topology is coarser than the narrow and the vague topology. At
first sight one could expect that it coincides with the weak convergence in the Choquet sense as introduced
by Feng and Nguyen [6]. However, the last one is strictly stronger and it coincides with the classical weak
convergence, if in turn one considers the special case that Tn = Pn . Then the weak limit in the Choquet sense
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inevitably must be a probability measure as well. This does not apply to Pn
w−→ T , because here T needs not

to be a probability measure as demonstrated by examples. In fact this is the reason why our notion of weak
convergence is more flexible in statistical application, in particular when constructing confidence regions.

2. Portmanteau theorem
We will derive our main result in this section step by step. Given a Choquet capacity T = TC with associated
random set C there is the pertaining so-called containment functional T ∗ = T ∗

C given by T ∗(B) := P(C ⊆
B), B ∈ B . Clearly, T ∗(B) = 1 − T (Bc) , where Bc = E \ B denotes the complement for (any) set B ⊆ E .
Therefore, our first lemma follows from Definition 1.3 simply by complementation.

Lemma 2.1 Pn converges weakly to T if and only if lim infn→∞ Pn(G) ≥ T ∗(G) ∀ G ∈ G .

Our next result involves the definition of the Choquet integral with respect to T . For any B -measurable
function f : E → R one defines∫

fdT :=

∫ ∞

0

T (f ≥ t)λ(dt) +

∫ 0

−∞
[T (f ≥ t)− T (E)]λ(dt), (2.1)

where λ denotes the Lebesgue measure on R . A careful introduction and several properties of the Choquet
integral are given in [12]. In fact, the integral is well-defined for any monotone set-function T on B and ≥
can be replaced by > without changing the value. It coincides with the standard integral in the case T is a
finite measure. In the following we will work with upper semicontinuous (usc) and lower semicontinuous (lsc)
functions f : E → R .

Proposition 2.2 If Pn
w−→ T , then

lim sup
n→∞

∫
fdPn ≤

∫
fdT for all functions f : E → R usc and bounded.

Proof Let f be usc and bounded. Then there exist reals a < 0 < b such that a ≤ f < b . Observe that

T (f ≥ t) = T (∅) = 0 for every t ≥ b , whence
∫∞
0

T (f ≥ t)λ(dt) =
∫ b

0
T (f ≥ t)λ(dt). Similarly, for t ≤ a one

has that T (f ≥ t)−T (E) = T (E)−T (E) = 0 and so
∫ 0

−∞[T (f ≥ t)−T (E)]λ(dt) =
∫ 0

a
[T (f ≥ t)−T (E)]λ(dt) .

By definition (2.1) and linearity we arrive at

∫
fdT =

∫ b

a

T (f ≥ t)λ(dt) + aT (E) =

∫ b

a

T (f ≥ t)λ(dt) + a, (2.2)

where the second equality follows, because T (E) = 1 by Remark 1.5. Next, for every k ∈ N we introduce the
equidistant points ti := a + i b−a

k , 0 ≤ i ≤ k , and the sets Fi := {f ≥ ti}, 0 ≤ i ≤ k , which by upper
semicontinuity of f are closed subsets of E with E = F0 ⊇ F1 ⊇ . . . ⊇ Fk = ∅ . Since

f =

k∑
i=1

1{ti−1≤f<ti}f <

k∑
i=1

1{ti−1≤f<ti}ti = a+ (b− a)
1

k

k∑
i=1

i (1Fi−1
− 1Fi

),

we obtain that

1751



FERGER/Turk J Math

∫
fdPn ≤ a+ (b− a)

1

k

k∑
i=1

i (Pn(Fi−1)− Pn(Fi)).

Use Pn(F0) = 1 and Pn(Fk) = 0 when rearranging the sum in the above formula:

k∑
i=1

i (Pn(Fi−1)− Pn(Fi)) = 1 +

k∑
i=1

Pn(Fi).

This yields that ∫
fdPn ≤ a+ (b− a)

1

k
(1 +

k∑
i=1

Pn(Fi)) = a+
b− a

k
+

b− a

k

k∑
i=1

Pn(Fi).

Consequently, for every k ∈ N it is

lim sup
n→∞

∫
fdPn ≤ a+

b− a

k
+

b− a

k

k∑
i=1

lim sup
n→∞

Pn(Fi) ≤ a+
b− a

k
+

b− a

k

k∑
i=1

T (Fi), (2.3)

where the last equality holds by (1.3), since Fi ∈ F , 1 ≤ i ≤ k . Notice that ti − ti−1 = (b − a)/k for every
1 ≤ i ≤ k . Therefore,

Sk :=
b− a

k

k∑
i=1

T (Fi) =

k∑
i=1

T (f ≥ ti)(ti − ti−1).

This means that Sk is a Riemann sum of the (bounded) function g(t) := T (f ≥ t), t ∈ [a, b] . Monotonicity of
T ensures that g is decreasing and thus its pertaining set of all discontinuity points is at most countable and
consequently has Lebesgue measure zero. From Lebesgue and Riemann integration theory, we can infer that g

is Riemann-integrable and that its Riemann integral coincides with the Lebesgue integral. Conclude that

Sk →
∫ b

a

T (f ≥ t)dt =

∫ b

a

T (f ≥ t)λ(dt), k → ∞.

Thus taking the limit k → ∞ in (2.3) yields the desired result upon noticing the equality. (2.2) 2

For the next step on our way to the portmanteau theorem we use the following equality, which can easily
be verified: ∫

fdT ∗ = −
∫

−fdT. (2.4)

With (2.4) the proof of the next lemma is elementary upon noticing that f is lsc if and only if −f is usc.

Lemma 2.3 The following two statements are equivalent:

(i) lim supn→∞
∫
fdPn ≤

∫
fdT for all functions f : E → R usc and bounded.

(ii) lim infn→∞
∫
fdPn ≥

∫
fdT ∗ for all functions f : E → R lsc and bounded.

The next result gives the reverse conclusion in Proposition 2.2.
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Proposition 2.4 Let T be such that its associated C is compact a.s. If

lim sup
n→∞

∫
fdPn ≤

∫
fdT (2.5)

for all functions f : E → R uniformly continuous (uc) and bounded, then Pn
w→ T .

Proof First, recall that there is a metric d on E . For a given nonempty set F ∈ F we introduce
for every k ∈ N functions fk : E → R by fk(x) := ϕ(kd(x, F )), x ∈ E , where ϕ : [0,∞) → [0, 1] is
defined by ϕ(t) := 1[0,1](t)(1 − t), t ≥ 0 , and d(x, F ) is the distance of the point x from the set F , i.e.
d(x, F ) := inf{d(x, y) : y ∈ F} . It is well known that

|d(x, F )− d(y, F )| ≤ d(x, y) ∀ x, y ∈ E and that d(x, F ) = 0 ⇔ x ∈ F. (2.6)

Infer from this that fk is uniformly continuous and bounded and that fk ↓ 1F , k → ∞ . In particular, 1F ≤ fk

for all k , and thus

lim sup
n→∞

Pn(F ) = lim sup
n→∞

∫
1F dPn ≤ lim sup

n→∞

∫
fkdPn ≤

∫
fkdT ∀ k ∈ N, (2.7)

where the last inequality follows from (2.5). Thus it remains to show that∫
fkdT → T (F ), k → ∞.

To see this notice that 0 ≤ fk ≤ 1 by construction, and so the Choquet integral of fk simplifies, confer (2.2)
above, to ∫

fkdT =

∫ 1

0

T (fk ≥ t)λ(dt).

We consider the integrand gk(t) := T (fk ≥ t) = P(Ak(t)), t ∈ [0, 1] , with Ak(t) := {C ∩ {fk ≥ t} ̸= ∅} . Since
(fk) is monotone decreasing, Ak(t) ↓ for every t ∈ [0, 1] , whence (gk) is monotone decreasing as well. Moreover,
limk→∞ gk(t) = T (F ) ∀ t ∈ [0, 1] . This follows from

∩
k≥1 Ak(t) = {C ∩F ̸= ∅} . Indeed, assume that the event

on the left-hand side occurs, that is C ∩ {fk ≥ t} ̸= ∅ ∀ k ≥ 1 . Then for every k ≥ 1 there exists a point
xk ∈ C with fk(xk) ≥ t . W.l.o.g. we may assume that C is compact on the entire sample space Ω . Therefore,
we find a subsequence (xkl

) in C such that xkl
→ x ∈ C as l → ∞ . It is easy to check that fkl

(xkl
) ≥ t if and

only if 0 ≤ d(xkl
, F ) ≤ (1 − t)/kl . Taking the limit l → ∞ yields that d(x, F ) = 0 by continuity of d(·, F ) .

Consequently, x ∈ F by the second part in (2.6), but also x ∈ C , and so C ∩ F ̸= ∅ . Conversely, if C ∩ F ̸= ∅
we find some x ∈ C ∩ F . Since x ∈ F , it follows that fk(x) = ϕ(kd(x, F )) = ϕ(0) = 1 ≥ t for all t ∈ [0, 1] and
for every k ≥ 1 . This means that x ∈ {fk ≥ t} , but also x ∈ C , whence C ∩ {fk ≥ t} ̸= ∅ for all k ≥ 1 as
desired.

To sum up, (gk) is monotone decreasing with (constant) limit T (F ) . By the monotone convergence
theorem we obtain ∫

fkdT =

∫ 1

0

gk(t)λ(dt) →
∫ 1

0

T (F )λ(dt) = T (F ), k → ∞.

Hence, taking the limit k → ∞ in (2.7) yields lim supn→∞ Pn(F ) ≤ T (F ) for all nonempty closed subsets F .
For F = ∅ this relation is trivially fulfilled and we can conclude that Pn

w→ T . 2
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Theorem 2.5 (Portmanteau theorem) Let T be a Choquet capacity with associated random closed set C .
Consider the following statements:

(1) Pn
w→ T .

(2) lim supn→∞ Pn(F ) ≤ T (F ) for all closed subsets F ⊆ E .

(3) lim infn→∞ Pn(G) ≥ T ∗(G) for all open subsets G ⊆ E .

(4) lim supn→∞
∫
fdPn ≤

∫
fdT for all usc and bounded functions f .

(5) lim infn→∞
∫
fdPn ≥

∫
fdT ∗ for all lsc and bounded functions f .

(6) lim supn→∞
∫
fdPn ≤

∫
fdT for all continuous and bounded functions f .

(7) lim infn→∞
∫
fdPn ≥

∫
fdT ∗ for all continuous and bounded functions f .

(8) lim supn→∞
∫
fdPn ≤

∫
fdT for all uc and bounded functions f .

(9) lim infn→∞
∫
fdPn ≥

∫
fdT ∗ for all uc and bounded functions f .

Then the following relations hold:

(1) ⇔ (2) ⇔ (3) ⇒ (4) ⇔ (5) ⇒ (6) ⇔ (7) ⇒ (8) ⇔ (9).

If C is compact a.s., then all statements are equivalent.

Proof (1) ⇔ (2) by definition. (2) ⇔ (3) by Lemma 2.1. (3) ⇒ (4) is valid by Proposition 2.2. (4) ⇔ (5)

follows from Lemma 2.3. (5) ⇒ (6) is trivial. (6) ⇔ (7) and (8) ⇔ (9) can be shown exactly in the same
fashion as Lemma 2.3. (7) ⇒ (8) is trivial. If C is compact, then (9) ⇒ (1) by Proposition 2.4, which finally
gives the assertion. 2

Since Theorem 2.5 extends Theorem 8.1 of Topsøe [22] we adopt his denomination ”portmanteau theo-
rem”. This type of results giving various equivalent conditions for convergence of measures, is also known as
”Alexandrov’s theorem”. We refer the reader to Pfanzagl [16] for historical comments and for different naming
conventions.

Remark 2.6 Salinetti and Wets [21] consider the space SCu(F ; [0, 1]) of all usc functions on (F , τFell) with
values in [0, 1] equipped with the hypo-topology Thypo . (Actually, they use the Wijsman topology τW , but for
our E lcscH it is well known that τFell = τW .) They show that for every probability measure P on B there
exists exactly one probability sc-measure λ and vice versa (notation: P ↔ λ). Moreover, let P and Pn, n ∈ N,
be probability measures on B with corresponding probability sc-measures λ and λn, n ∈ N , that is P ↔ λ and
Pn ↔ λn for all n ∈ N . Then it is proved that

Pn
w→ P ⇔ λn → λ in (SCu(F ; [0, 1]), Thypo). (2.8)

Now what can be said if P in (2.8) is replaced by a Choquet capacity T ? To answer this question, assume that
the restriction T : (F , τFell) → [0, 1] is usc, then it follows with the same arguments of [21] for the validity of
⇐ in (2.8) that

Pn
w→ T ⇐ λn → T in (SCu(F ; [0, 1]), Thypo). (2.9)
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The other direction ⇒ in (2.9) cannot hold, because the hypo-limit is uniquely determined in contrast
to our weak limit T ; confer Remark 1.6. As to the assumption on T notice that according to Wei et al. [25]
T : (F , τFell) → [0, 1] is usc if and only if T is continuous from above on F , which in general is stronger than
continuity from above on K as required by definition in (T2). In particular, any T is usc as long as E is
compact, and for noncompact E this is in general not true; confer Example 3.1 of Wei et al. [25]. Therefore,
the approach reported by Salinetti and Wets [21] works very well for traditional weak convergence via the
correspondence theorem (2.8), but for our extended notion of weak convergence it is of little use. However, in
Theorem 4.2 below we will give a suitable corresponding relation for Pn

w→ T in terms of the associated random
closed sets.

We end this section with a necessary and sufficient condition via the Choquet capacity functional of a
random closed set C , which in particular guarantees that C is a singleton. It will be a very useful tool in the
next sections. A proof is given in [7].

Proposition 2.7 Let TC be the capacity functional of a random closed set C defined on some probability space
(Ω,A,P) . Then the following statements are equivalent:

(i) TC is a probability measure.

(ii) C = {ξ} P - a.s. for some random variable ξ : (Ω,A) → (E,B) .

We would like to mention that there is a weaker version of the above proposition, where the almost sure
equality in (ii) is replaced by equality in distribution. This follows easily from Theorem 1.1 of Choquet.

3. Distributional convergence of singletons in hyperspaces

As before let ξn : (Ωn,An,Pn) → (E,B) be random variables with values in E , n ∈ N . Then the singletons

{ξn}, n ∈ N , are random closed sets. We wish to relate ξn
L→ C to distributional convergence of the singletons

{ξn} in appropriate hyperspaces and also to distributional convergence of ξn in the basic space (E,G) . The
following proposition will help to give an answer. In short it says that the distributional limit of singletons

necessarily has to be a singleton as well. Here we use the notation Cn
L→ C in (F , τFell) to indicate that the

random closed sets Cn as random variables in the measurable space (F ,BFell) converge in distribution to the
random closed set C . More precisely, the distributions of Cn as probability measures on BFell converge weakly
in the sense of Topsøe [22] to the distribution of C .

Proposition 3.1 If {ξn}
L→ C in (F , τFell) , where C is a random closed set on (Ω,A,P) with C ̸= ∅ P-a.s.,

then there exists a random variable ξ : (Ω,A) → (E,B) such that C = {ξ} P-a.s.

Proof Let T := TC be the capacity functional of C with corresponding probability measure Q . By Proposition
2.7 we have to show that TC is a probability measure. To begin with consider KT := {K ∈ K : T (K) =

T (Ko)} = {K ∈ K : Q(∂H(K) = 0} , where the second equality holds according to Lemma 7.2 in [12]. (This
lemma is formulated only for E = Rd , but its proof carries over analogously to general E lcscH.) From Theorem
2.1 of Norberg [13] we can conclude that Pn(ξn ∈ K) = Pn({ξn} ∩K ̸= ∅} → T (K) ∀ K ∈ KT , whence

lim
n→∞

Pn(ξn /∈ K) = 1− T (K) ∀ K ∈ KT . (3.1)
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With a look at (3.1) we will construct a sequence (Ki) ⊆ KT such that T (Ki) ↑ 1, i → ∞ . For that
purpose fix some x0 ∈ E and let Br := B(x0, r) := {x ∈ E : d(x, x0) ≤ r}, r > 0. These closed balls are
compact. By (1.10) of [20],

∂H(K) = {F ∈ F : ∅ ̸= F ∩K ⊆ ∂K} = {F ∈ F : F ∩K ̸= ∅, F ∩Ko = ∅} (3.2)

for every compact K . Therefore, the sets

Dr := ∂H(Br), r > 0, are pairwise disjoint. (3.3)

To see this, assume there exist 0 < r < s such that ∂H(Br) ∩ ∂H(Bs) ̸= ∅. Consequently, there exists a closed
set F ∈ ∂H(Br) ∩ ∂H(Bs) , which by (3.2) satisfies:

(i) ∅ ̸= F ∩ Br ⊆ ∂Br ⊆ {x ∈ E : d(x, x0) = r} and (ii) ∅ ̸= F ∩ Bs ⊆ ∂Bs ⊆ {x ∈ E : d(x, x0) = s} .
According to (i) we find some x ∈ F ∩ Br such that d(x, x0) = r . Since Br ⊆ Bs it is x ∈ F ∩ Bs , which by
(ii) means that d(x, x0) = s . However, this is a contradiction to r ̸= s .

From (3.3) we can conclude with a standard argument from measure theory that R+ := {r > 0 : Q(Dr) >

0} is denumerable. Therefore, R0 := {r > 0 : Q(Dr) = 0} lies dense in [0,∞) . In particular, we can find a
sequence (ri)i≥1 ⊆ R0 with ri ↑ ∞, i → ∞ . Define Ki := Bri , i ≥ 1 . Then (Ki) ⊆ KT by construction, so
that by (3.1) it follows that

lim
n→∞

Pn(ξn /∈ Ki) = 1− T (Ki) ∀ i ≥ 1. (3.4)

Notice that T (Ki) = P(Ai) , where Ai = {C ∩ Ki ̸= ∅} . It is easy to see that Ai ↑ {C ̸= ∅} , whence
T (Ki) ↑ 1 , because P(C ̸= ∅) = 1 by our assumption on C . Thus by taking the limit i → ∞ in (3.4) we
obtain that limi→∞ limn→∞ Pn(ξn /∈ Ki) = 0. If Pn := Pn ◦ ξ−1

n , n ≥ 1 , this implies that the sequence (Pn)n≥1

is tight. According to Prohorov’s theorem, (Pn)n≥1 is relatively compact, so that there exists a subsequence

(Pnk
)k≥1 of (Pn)n≥1 and a probability measure P ′ on (E,B) such that Pnk

w⇒ P ′, k → ∞ . By, e.g., the
canonical construction we find a probability space (Ω′,A′,P′) and a random variable ξ′ : (Ω′,A′) → (E,B)

with P ′ = P′ ◦ ξ′
−1 . It follows that ξnk

L→ ξ′, k → ∞. Let i : (E,G) → (F , τFell) be the map defined by
i(x) := {x}, x ∈ E . The map i is continuous on its entire domain, because for every x ∈ E and every sequence
xn → x one easily shows that K− limn→∞{xn} = {x} and the assertion follows from (1.1). Thus an application
of the continuous mapping theorem yields that

{ξnk
} L→ {ξ′}, k → ∞. (3.5)

On the other hand, our assumption entails that

{ξnk
} L→ C, k → ∞. (3.6)

From (3.5) and (3.6) we can infer that P ◦ C−1 = P′ ◦ {ξ′}−1 , because (F , τFell) is compact and metrizable;
hence it is a polish space and according to [8], p.344, the weak limit is unique in that case. Consequently,
TC = P′ ◦ ξ′−1 is a probability measure and the assertion follows from Proposition 2.7. 2
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4. Relating the different types of distributional convergence

Recall our aim to establish relationships between distributional convergence to a random closed set and distri-
butional convergence in hyperspaces and, if possible, in the basic space, respectively. It turns out that these
concepts of convergence all coincide as long as the limit set is a singleton.

Theorem 4.1 The following statements are equivalent:

(1) ξn
L→ {ξ} for some random variable ξ : (Ω,A) → (E,B) .

(2) {ξn}
L→ C in (F , τFell) for some random closed set C ̸= ∅ a.s.

(3) ξn
L→ ξ in (E,G) for some random variable ξ : (Ω,A) → (E,B) .

In each case, C = {ξ} a.s.

Proof (1) ⇒ (2) : By definition we have that

lim sup
n→∞

P(ξn ∈ F ) ≤ P({ξ} ∩ F ̸= ∅) = P(ξ ∈ F ) ∀ F ∈ F ,

whence ξn
L→ ξ in (E,G) by the (classical) portmanteau theorem. Another application of the portmanteau

theorem yields
lim
n→∞

P(ξn ∈ B) ∀ B ∈ B with P(ξ ∈ ∂B) = 0. (4.1)

Put D := {ξ} , which is a random closed set, and define

SD := {B ∈ B : B ∈ K,P(D ∩B ̸= ∅) = P(D ∩Bo ̸= ∅)}
= {B ∈ B : B ∈ K,P(ξ ∈ B) = P(ξ ∈ Bo)} ⊆ {B ∈ B : P(ξ ∈ ∂B) = 0)},

where the inclusion follows from ∂B = B \Bo . Thus by (4.1) we obtain that

P({ξn} ∩B ̸= ∅) = P(ξn ∈ B) → P(ξ ∈ B) = P({ξ} ∩B ̸= ∅) = P(D ∩B ̸= ∅)

for all B ∈ SD . Therefore, an application of Theorem 6.5 of [11] gives (2) with C = D = {ξ} .
(2) ⇒ (3) : By Proposition 3.1 there exists a random variable ξ : (Ω,A) → (E,B) such that C = {ξ}

a.s. Consequently, {ξn}
L→ {ξ} in (F , τFell) . Let Fs := {{x} : x ∈ E} ⊆ F be the subspace of all singletons.

We already know that the Kuratowski metric δ generates the Fell topology τFell ; confer (1.1). By Lemma

3.26 in [9] we can conclude that {ξn}
L→ {ξ} in (Fs, δ) . Let j : (Fs, δ) → (E,G) be the map defined by

j({x}) := x, x ∈ E . The map j is continuous on Fs . Indeed, observe that xn → x in E if (and only if)
K − limn→∞{xn} = {x} . Thus with (1.1) and the continuous mapping theorem we arrive at (3) .

(3) ⇒ (1) : A further application of the (classical) portmanteau theorem results in

lim sup
n→∞

P(ξn ∈ F ) ≤ P(ξ ∈ F ) = P({ξ} ∩ F ̸= ∅) ∀ F ∈ F ,

which by definition means that ξn
L→ {ξ} . 2
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Theorem 4.1 in particular tells us that ξn
L→ {ξ} is equivalent to {ξn}

L→ {ξ} in (F , τFell) . In other
words, convergence in distribution of (ξn) to a limit set C , which is a singleton a.s. corresponds to classical
weak convergence of the singletons ({ξn}) to C in the hyperspace (F , τFell) . Thus, the question arises, how
can we extend this result to general C ? The answer is: By changing the underlying hyperspace topology. Let
τuV be the upper Vietoris topology, which is generated from a subbase {M(F ) : F ∈ F} . This new topology
is neither coarser nor finer than the Fell topology, but the pertaining σ -algebras BuV := σ(τuV ) and BFell

coincide; confer [7]. Consequently, every random closed set in E is BuV -measurable. This is necessary when
talking about weak convergence in (F , τuV ) .

Theorem 4.2 (Correspondence theorem) The following statements are equivalent:

(1) ξn
L→ C .

(2) {ξn}
L→ C in (F , τuV ) .

Proof (1) ⇒ (2) : It follows from the portmanteau theorem, confer Theorem 8.1 of Topsøe [22], that (2) is
equivalent to

lim sup
n→∞

Pn({ξn} ∈ C) ≤ P(C ∈ C) for all τuV -closed C. (4.2)

Let C be an arbitrary τuV -closed set. Since {M(F ), F ∈ F} is a base for τuV , there exist Fi ∈ F , i ∈ I ,
where I is some index set, such that C = (

∪
i∈I M(Fi))

c =
∩

i∈I H(Fi) . Thus {{ξn} ∈ C} = {ξn ∈
∩

i∈I Fi} .
Now

∩
i∈I Fi ∈ F and so (1.5) gives

lim sup
n→∞

Pn({ξn} ∈ C) ≤ P(C ∩
∩
i∈I

Fi ̸= ∅) = P(C ∈ H(∩i∈IFi)).

Since H(∩i∈IFi) ⊆
∩

i∈I H(Fi) = C we obtain (4.2).
(2) ⇒ (1) : For every F ∈ F it is {ξn ∈ F} = {{ξn} ∈ H(F )} , where H(F ) = M(F )c is τuV -closed.

Thus, (4.2) yields (1.5) as desired. 2

There is a third hyperspace topology on F , namely the upper Fell topology τuF , which is generated by
the family {M(K) : K ∈ K} . By construction τuF is coarser than τuV . Vogel [24] shows (for E = Rd , but her
proof can easily be extended to E lcscH):

Fn → F in (F , τuF ) ⇔ K − lim sup
n→∞

Fn ⊆ F, (4.3)

where K − lim supn→∞ Fn denotes the Painlevé–Kuratowski outer limit of (Fn) . To set a simple example,
recall from Analysis that a sequence (xn) in a metric space E converges to a (closed) set A ⊆ E (notation
xn → A), if A contains all cluster points of the sequence. It follows from the definition of the outer limit that
xn → A if and only if K − lim supn→∞{xn} ⊆ A and therefore by (4.3) we obtain that {xn} → A in (F , τuF )

is equivalent to xn → A . The equivalent characterization (4.3) also shows that every superset of F is a limit
too. Consequently, the limit is not necessarily unique and thus (F , τuF ) is not a Hausdorff space.

1758



FERGER/Turk J Math

In Ferger [7] it is shown that BuF := σ(τuF ) = BFell , whence every random closed set in E is

BuF−measurable as well. Vogel [24] refers to distributional convergence Cn
L→ C in (F , τuF ) as inner

approximation in distribution or semiconvergence in distribution. Since τuF ⊆ τuV , we have that

Cn
L→ C in (F , τuV ) ⇒ Cn

L→ C in (F , τuF ) (4.4)

Thus, weak convergence in (F , τuV ) is stronger than that in (F , τuF ) . However, the reverse in (4.4) is
not true as will be shown below. The following result is the counterpart of our correspondence theorem. It sheds
more light on the connection between inner approximation in distribution (of singletons) and our convergence

concept. Recall that ξn
L→ C by definition means that

lim sup
n→∞

Pn(ξn ∈ F ) ≤ P(C ∩ F ̸= ∅) ∀ F ∈ F . (4.5)

Theorem 4.3 (Second correspondence theorem) The following statements are equivalent:

(1) lim supn→∞ Pn(ξn ∈ K) ≤ P(C ∩K ̸= ∅) ∀ K ∈ K.

(2) {ξn}
L→ C in (F , τuF ) .

Proof In the proof of Theorem 4.2 replace τuV by τuF and F by K . 2

Notice that in Theorem 4.3 the class K of all compact sets plays exactly the same role as F does in
Theorem 4.2. If E is noncompact, then K is strictly smaller than F , whence the reverse conclusion in (4.4)
should not hold. In fact, to see this let ξn := n for every n ∈ N . Then (1) in Theorem 4.3 is fulfilled with

C = ∅ and therefore {ξn}
L→ ∅ in (F , τuF ) , whereas by Theorem 4.2 in combination with Remark 1.5 {ξn}

L→ ∅
in (F , τuV ) is impossible.

Finally, from a statistician’s point of view it is important to note that semiconvergence in distribution
does not suffice for the construction of confidence regions as explained in Example 1.8. This is so, because the
complement of the open set G there (for instance the open rectangle G = (−r, r)d ) in general is only closed,
but not compact!

5. Weak convergence of Choquet capacities

Let T and Tn, n ∈ N, be Choquet capacities. We extend our Definition 1.3 by saying that Tn converges weakly
to T (Tn

w→ T ) , if
lim sup
n→∞

Tn(F ) ≤ T (F ) ∀ F ∈ F . (5.1)

Let Cn : (Ωn,An,Pn) → (F ,BFell), n ∈ N, and C : (Ω,A,P) → (F ,BFell) be random closed sets in
E with pertaining capacity functional Tn and T , respectively. If Tn

w→ T , then we say that Cn converges

capacitively in distribution to C and write Cn
c−L−→ C . Notice that this is equivalent to

lim sup
n→∞

Pn(Cn ∩ F ̸= ∅) ≤ P(C ∩ F ̸= ∅) ∀ F ∈ F . (5.2)
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Remark 1.5 and 1.6 are applicable in the general framework so that the limits T and C , respectively, are not

uniquely determined. Note that one has to distinguish between Cn
c−L−→ C and Cn

L−→ C in (F , τFell) .
Our concept of capacitive convergence in distribution leads to innovative confidence regions in the

situation of Example 1.8. Here we use the entire set of all M−estimators.

Example 5.1 In Example 1.8 let An be the set of all infimizing points of the criterion function Mn , i.e. An

consists of all M -estimators for the parameter θ . Consider

Cn := αn(An − θ) = {αn(t− θ) : t ∈ An}.

By Lemma 2.2 in Ferger [7] Cn is equal to the (random closed) set of all infimizing points of the rescaled process

Xn . If Xn
L−→ X in (D(Rd), s) and if the sequence (Cn) is stochastically bounded, that is

lim
k→∞

lim sup
n→∞

P(Cn ̸⊆ [−k, k]d) = 0,

then from Theorem 3.4 in Ferger [7] we can infer that Cn
c−L−→ C . Put

Un := An − α−1
n Gα = {t− α−1

n x : t ∈ An, x ∈ Gα}

and observe that {θ ∈ Un} ⊇ {αn(An − θ) ⊆ Gα} = {Cn ⊆ Gα} = {Cn ∩ Gc
α = ∅}, where Gc

α is closed.
Therefore, by (5.2) it follows that

lim inf
n→∞

P(θ ∈ Un) ≥ lim inf
n→∞

P(Cn ∩Gc
α = ∅)) = 1− lim sup

n→∞
P(Cn ∩Gc

α ̸= ∅)

≥ 1− P(C ∩Gc
α ̸= ∅) = P(C ∩Gc

α = ∅) = P(C ⊆ Gα) ≥ 1− α.

Thus, Un is an asymptotic confidence region for θ at level 1 − α . According to Theorem 3.4 in [7] these
statements remain valid, if An is replaced by any nonempty random closed set A∗

n with A∗
n ⊆ An . The special

choice A∗
n := {θ̂n} yields Un = Rn .

Feng and Nguyen [6] introduce another concept of weak convergence for capacity functionals by replacing
(5.1) through the requirement

lim
n→∞

∫
fdTn =

∫
fdT for all continuous and bounded functions f. (5.3)

In that case they say that Tn converges in the Choquet weak sense to T and denote this by Tn
C−W=⇒ T . It

turns out that this concept of convergence is strictly stronger than (5.1):

Proposition 5.2 If Tn
C−W=⇒ T then Tn

w→ T . The reverse conclusion is not true.

Proof For the first assertion, see Lemma 3.2 in [6]. As to the second one, assume that Tn
w→ T entails

Tn
C−W⇒ T . From Lemma 3.8 of [6] we can conclude that Qn

w⇒ Q , where Qn and Q are the probability
measures pertaining to Tn and T (Choquet theorem). Since the classical weak limit is uniquely determined,
confer [8], p. 344, it follows that T is uniquely determined, which in turn is a contradiction to Remark 1.5. 2
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Example 5.3 For every n ∈ N let Cn := B(ζn, ρn) := {x ∈ E : d(x, ζn) ≤ ρn} be the closed ball with random

center ζn and random radius ρn both defined on some common probability space (Ω,A,P) . If (ρn, ζn)
L→ (ρ, ζ)

in R+ × E , then

B(ζn, ρn)
c−L−→ B(ζ, ρ). (5.4)

Proof Let F be any nonempty closed subset of E . For every r ≥ 0 the r -neighborhood of F is defined by

F r := {x ∈ E : d(x, F ) ≤ r} = {x ∈ E : B(x, r) ∩ F ̸= ∅}, (5.5)

where the second equality can easily be verified upon noticing that, since F ̸= ∅ is closed, for each x ∈ E there
exists a y ∈ F such that d(x, F ) = d(x, y) . It follows that

{B(ζn, ρn) ∩ F ̸= ∅} =
∪
r≥0

{ρn = r,B(ζn, r) ∩ F ̸= ∅}

=
∪
r≥0

{(ρn, ζn) ∈ {r} × F r} by (5.5)

= {(ρn, ζn) ∈
∪
r≥0

({r} × F r)}. (5.6)

The set A := A(F ) :=
∪

r≥0({r}×F r) occurring in (5.6) is closed. To see this consider a sequence (rn, zn) in A

with (rn, zn) → (r, z) . For every n ∈ N we find some sn ≥ 0 such that rn = sn and zn ∈ F sn . Consequently,
d(zn, F ) ≤ sn = rn for all n ∈ N . Recall that the map x 7→ d(x, F ) is continuous, so that by taking the limit
n → ∞ we arrive at d(z, F ) ≤ r , because zn → z and rn → r ≥ 0 . Thus by (5.5) the limit (r, z) lies in A as
desired.

Now equality (5.6) ensures that

lim sup
n→∞

P(B(ζn, ρn) ∩ F ̸= ∅) = lim sup
n→∞

P((ρn, ζn) ∈ A(F )) ≤ P((ρ, ζ) ∈ A(F )),

where the inequality holds by the (classical) portmanteau theorem. Clearly, in the derivation of (5.6) we are
free to replace B(ζn, ρn) by B(ζ, ρ) and therefore P((ρ, ζ) ∈ A(F )) = P(B(ζ, ρ) ∩ F ̸= ∅) , which according to
(5.2) gives the assertion. 2

Our notion of capacitive convergence in distribution immediately yields a huge class of examples for
convergence in distribution of random points to a random set.

Lemma 5.4 Let C and Cn, n ∈ N, be random closed sets in E and let ξn be random variables with ξn ∈ Cn

a.s. for every n ∈ N . If Cn
c−L−→ C , then ξn

L→ C .

Proof The assertion follows at once from the inequality Pn(ξn ∈ F ) ≤ Pn(Cn ∩ F ̸= ∅) for all nonempty
closed F ⊆ E upon noticing (1.5) and (5.2). 2

As to the existence of the ξn occurring in the above lemma we refer to the measurable selection theorem;
confer Theorem 8.1.3 in [4]. It states that for every nonempty random closed set D : (Ω,A) → (F ,BFell) there
exists a measurable map ξ : (Ω,A) → (E,B) such that ξ(ω) ∈ D(ω) for all ω ∈ Ω . Here it is required that
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(E, d) is a complete, separable metric space. However, it is well known that every E lcscH has this property;
confer, e.g., [18], p. 260.

Finally, we consider the convergence in the Choquet weak sense in the special case that the Tn ’s are
actually probability measures. It turns out that in this situation it is the same as classical weak convergence.

Proposition 5.5 Let Pn,∈ N , be probability measures. Then Pn
C−W=⇒ T if and only if Pn

w⇒ T . In either
case T is a probability measure.

Proof For the proof of the direct half ⇒ recall that from Lemma 3.8 of [6] we can conclude that

Qn
w→ Q, (5.7)

where Qn and Q are the probability measures on (F ,BFell) , which by Choquet’s theorem are uniquely
determined through Pn and T , respectively. Let Cn and C be random closed sets on some probability space
(Ω,A,P) such that Cn and C have distribution Qn and Q , respectively, i.e. P ◦C−1

n = Qn and P ◦C−1 = Q .
Then by construction the capacity functional TCn

of Cn is equal to Pn , because TCn
(B) = P(Cn ∩ B ̸= ∅) =

P ◦ C−1
n (H(B)) = Qn(H(B)) = Pn(B) for all B ∈ B . Here notice that all involved sets are measurable by

Theorem 1.2 of Matheron [10]. Thus, TCn
is a probability measure and we may apply Proposition 2.7. It

guarantees the existence of random variables ξn on (Ω,A,P) with values in (E,B) such that Cn = {ξn} a.s.
Therefore from (5.7) we can deduce that

{ξn}
L→ C in (F , τFell). (5.8)

An application of Proposition 5.2 with Tn = Pn yields that Pn
w→ T , whence T (E) = 1 by Remark 1.5.

Repeating our arguments above with C instead of Cn shows that TC = T and we now know that C ̸= ∅
a.s. By (5.8) and Proposition 3.1 there exists a random variable ξ : (Ω,A) → (E,B) such that C = {ξ} a.s.
Consequently T = TC is a probability measure and the defining relation (5.3) (with Tn = Pn ) now coincides
with Pn

w⇒ T as desired. This also yields the converse half ⇐ because here T is a probability measure by
definition. 2

To sum up we have on the one hand Pn
C−W⇒ T iff Pn

w⇒ T , but on the other hand Pn
w→ T ̸⇒ Pn

w⇒ T ,
for otherwise we obtain a contradiction to the fact that T is not a probability measure in general; confer
Proposition 2.7 in combination with Example 5.3 and Lemma 5.4.

Remark 5.6 Our notion of weak convergence Tn
w→ T corresponds to a topology on the set T of all Choquet

capacities. The principle of its construction goes back to Topsøe [22], who in turn refers to previous research by
Alexandrov [1–3]. Let O be the topology on T generated by the family {{T ∈ T : T (F ) < x}, F ∈ F , x ∈ R} .
Thus, O is the coarsest topology on T such that the evaluation maps eF : T → R defined by eF (T ) := T (F ), T ∈
T , are upper semicontinuous for every F ∈ F . This construction ensures that

Tn → T in (T ,O) ⇔ lim sup
n→∞

Tn(F ) ≤ T (F ) ∀ F ∈ F . (5.9)

The equivalence (5.9) enables a direct comparison with the narrow topology On of O’Brien [14]. This
topology is generated by the family

{{T ∈ T : T (F ) < x}, F ∈ F , x ∈ R} ∪ {{T ∈ T : T (G) > x}, G ∈ G, x ∈ R}.
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Analogous to O it follows that

Tn → T in (T ,On) ⇔

lim sup
n→∞

Tn(F ) ≤ T (F ) ∀ F ∈ F , (5.10)

lim inf
n→∞

Tn(G) ≥ T (G) ∀ G ∈ G. (5.11)

Therefore, firstly, by definition (5.1) and relation (5.9) our concept of weak convergence Tn
w→ T coincides with

convergence in (T ,O) . Secondly, compared to narrow convergence Tn → T in (T ,On) , it incorporates only
the ”upper part” (5.10), but not the ”lower part” (5.11). If in the definition of the narrow topology the role
of F is taken over by K , one obtains the vague topology and convergence in that topology is equivalent to
(5.10) with K instead of F and (5.11). O’Brien [14] and O’Brien and Watson [15] actually consider set C of
capacities, where a capacity is a set function similar to but not the same as a Choquet capacity. They find
relations between the narrow and vague topology on C including a necessary and sufficient condition for relative
compactness in the narrow topology; confer also Vervaat [23] for previous work on that topic.

Concluding remark

In the theory of classical weak convergence there are various methods to derive Pn
w⇒ T . For example,

if E = Rd it suffices to show pointwise convergence of the pertaining distribution functions or characteristic
functions, respectively. Further, if E is equal to the function space C[0, 1] or D[0, 1] then convergence of the
finite dimensional distributions plus tightness ensure weak convergence; confer Billingsley [5], Theorem 8.1 or
Theorem 15.1, respectively. It turns out that a comparable result holds for capacitive convergence in distribution

Cn
c−L−→ C . In fact, assume that

(1) Cn
L→ C in (F , τuF ) and (2) ∀ϵ > 0 ∃K ∈ K : lim sup

n→∞
P(Cn ̸⊆ K) ≤ ϵ.

Then we prove (unpublished future work) that Cn
L→ C in (F , τuV ) , which in turn yields Cn

c−L−→ C . Notice that
in the case of singletons Cn = {ξn} condition (2) exactly means that the sequence (ξn) is tight. Occasionally,

the random closed sets are given as Cn = h(Zn), n ∈ N , and C = h(Z) , where Zn
L→ Z in some metric space

(S, σ) . Then by using the characterization (4.3) one shows that the map h : (S, σ) → (F , τuF ) is continuous
and condition (1) follows immediately.
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