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Abstract: In this paper we consider the following higher-order nonlinear difference equation

xn = αxn−k +
δxn−kxn−(k+l)

βxn−(k+l) + γxn−l
, n ∈ N0,

where k and l are fixed natural numbers, and the parameters α , β , γ , δ and the initial values x−i , i = 1, k + l , are
real numbers such that β2 + γ2 ̸= 0 . We solve the above-mentioned equation in closed form and considerably extend
some results in the literature. We also determine the asymptotic behavior of solutions and the forbidden set of the initial
values using the obtained formulae for the case l = 1 .
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1. Introduction and preliminaries
An interesting class of nonlinear difference equations is the class of solvable difference equations, and one of the
interesting problems is to find equations that belong to this class and to solve them in closed form or in explicit
form. The formulae found for the solutions of these types of equations can be used easily for description of
many features of the solutions of these equations. For this reason, finding a formula for solution of a nonlinear
difference equation is worthwhile as well as interesting. A basic prototype for nonlinear difference equations
that can be solved is the equation

xn =
a+ bxn−1

c+ dxn−1
, n ∈ N0, (1)

with real initial value x−1 , which will be used in this study. Eq. (1) is called Riccati difference equation. If∣∣∣∣ a b
c d

∣∣∣∣ = 0 , then Eq. (1) is trivial such that xn = a
c for n ∈ N0 . If d = 0 , then Eq. (1) reduces the linear

equation

xn =
b

c
xn−1 +

a

c
, n ∈ N0,

which is a degenerate case. If b+ c = 0 , then Eq. (1) can be written as
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xn =
a− cxn−1

c+ dxn−1
, n ∈ N0,

whose every solution is periodic with period two such that x2n−1 = x−1 , x2n = a−cx−1

c+dx−1
for n ∈ N0 . If

d ̸= 0 ̸= (b+ c) and
∣∣∣∣ a b
c d

∣∣∣∣ ̸= 0 , then, by means of the change of variables

xn =
b+ c

d
yn − c

d
,

Eq. (1) reduces to the difference equation

yn =
−R+ yn−1

yn−1
, n ∈ N0, (2)

with one parameter, where R = bc−ad
(b+c)2

, and it is called the Riccati number. Eq. (2) can be transformed into

the second-order linear equation
zn+1 = zn −Rzn−1, n ∈ N0, (3)

by means of the change of variables
yn =

zn+1

zn
, n ≥ −1.

It is easily seen that Eq. (3) has the characteristic equation

λ2 − λ+R = 0

with the roots λ1 = 1+
√
1−4R
2 and λ2 = 1−

√
1−4R
2 . If we choose the initial values z−1 = 1 and z0 = y−1 , then

the solution of Eq. (3) is

zn =

{ (λ1y−1−R)λn
1 −(λ2y−1−R)λn

2

λ1−λ2
if R ̸= 1

4 ,(
2y−1+(2y−1−1)n

2

) (
1
2

)n if R = 1
4 ,

n ∈ N0, (4)

where R = bc−ad
(b+c)2

.

In this case, the solution of Eq. (2) is given by

yn =

{
(λ1y−1−R)λn+1

1 −(λ2y−1−R)λn+1
2

(λ1y−1−R)λn
1 −(λ2y−1−R)λn

2
if R ̸= 1

4 ,
2y−1+(2y−1−1)(n+1)

4y−1+(4y−1−2)n if R = 1
4 ,

n ∈ N0. (5)

Furthermore, the solution of Eq. (1) is given by

xn =


b+c
d

(
λ1

dx−1+c

b+c −R
)
λn+1
1 −

(
λ2

dx−1+c

b+c −R
)
λn+1
2(

λ1
dx−1+c

b+c −R
)
λn
1 −
(
λ2

dx−1+c

b+c −R
)
λn
2

− c
d if R ̸= 1

4 ,

b+c
d

2
dx−1+c

b+c +
(
2

dx−1+c

b+c −1
)
(n+1)

4
dx−1+c

b+c +
(
4

dx−1+c

b+c −2
)
n

− c
d if R = 1

4 ,
n ∈ N0. (6)

For more details, see [12].
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In [7, 8], Elsayed investigated some properties of the solutions of the recursive sequences

xn+1 = axn +
bxnxn−1

cxn + dxn−1
, n ∈ N0, (7)

and

xn+1 = axn−1 +
bxn−1xn−3

cxn−1 + dxn−3
, n ∈ N0, (8)

and also gave the form of the solution of some special cases of these equations, respectively. McGrath and
Teixeira [14] considered the equation

xn+1 =
axn−1 + bxn

axn−1 + bxn
xn, n ∈ N0, (9)

where a , b , c , and d are real numbers, and the initial values are real numbers. The authors reduced Eq. (6)
to Eq. (1) and investigated the existence and behavior of the solutions of Eq. (6) by using the known results of
Eq. (1). Stević et al. [25] considered the following difference equation:

xn =
xn−kxn−l

axn−m + bxn−s
, n ∈ N0, (10)

where k , l , m , and s are fixed natural numbers, a , b ∈ R \ {0} , and the initial values x−i , i = 1, τ ,
τ := max {k, l,m, s} are real numbers. The authors showed that Eq. (10) is solvable in closed form, when

(i) k = m , l = s ,
(ii) k = s , l = m ,
(iii) l = m = k + s ,
and presented formulae for the solutions. They also studied the long-term behavior of the solutions of

the equation

xn =
xn−kxn−k−s

axn−k−s + bxn−s
, n ∈ N0, (11)

which corresponds to case (iii), by using the formulae for s = 1 . For more works on the topic, see, for example,
[1–13, 15–24, 26–38] and the references therein.
Motivated by the studies of [7, 8, 14, 25], in this paper we deal with the following higher-order nonlinear
difference equation

xn = αxn−k +
δxn−kxn−(k+l)

βxn−(k+l) + γxn−l
, n ∈ N0, (12)

where k and l are fixed natural numbers, and the parameters α , β , γ , δ and the initial values x−i , i = 1, k + l ,
are real numbers such that β2+γ2 ̸= 0 . We solve Eq. (12) in closed form and determine the asymptotic behavior
of solutions and the forbidden set of the initial values by using the obtained formulae for the case l = 1 . Note
that Eq. (12) is different from Eq. (11) with the term αxn−k and is a natural extension of Eq. (11). Eq. (12)
is also another natural extension of Eq. (7) to Eq. (8). Thus, we considerably extend results in the literature.
If we apply the change of variables

yn =
R

un
(13)
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to Eq. (2), then it becomes

un =
R

1− un−1
, n ∈ N0, (14)

which will be needed in the sequel. By considering (5) and (13), we get

un =

{
R

(λ1−u−1)λ
n
1 −(λ2−u−1)λ

n
2

(λ1−u−1)λ
n+1
1 −(λ2−u−1)λ

n+1
2

if R ̸= 1
4 ,

R 4R+(4R−2u−1)n
2R+(2R−u−1)(n+1) if R = 1

4 ,
n ∈ N0, (15)

where λ1 = 1+
√
1−4R
2 and λ2 = 1−

√
1−4R
2 .

2. Some special cases of Eq. (12)

In this section we consider some special cases of Eq. (12). Note that Eq. (12) is trivial, when α = δ = 0 . Eq.
(12) with β = a , γ = b and δ = 1 is Eq. (11), which was studied in [25], when α = 0 . Moreover, Eq. (12) is
undefined, when β = γ = 0 . Hence we consider defined ones of the remaining cases.

2.1. Case δ = 0

If δ = 0 , then Eq. (12) reduces to the following k -order linear difference equation:

xn = αxn−k, n ∈ N0. (16)

By writing kn+ i instead of n in (16), we have the equations

xkn+i = αxk(n−1)+i, n ∈ N0, i = 0, k − 1, (17)

which is a decomposition of (16). The equations in (17) have the solutions

xk(n−1)+i = αnxi−k, n ∈ N0, i = 0, k − 1, (18)

whose composition also is the solution of (16).

2.2. Case γ = 0

If γ = 0 , then Eq. (12) reduces to the following k -order linear difference equation

xn =

(
α+

δ

β

)
xn−k, n ∈ N0, (19)

which is essentially Eq. (16). From (18), we directly have that

xk(n−1)+i =

(
α+

δ

β

)n

xi−k, n ∈ N0, (20)

where i = 0, k − 1 .
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2.3. Case α = γ = 0

If α = γ = 0 , then Eq. (12) reduces to the equation

xn =
δ

β
xn−k, n ∈ N, (21)

which is essentially Eq. (16). From (18), we directly have that

xk(n−1)+i =

(
δ

β

)n

xi−k, n ∈ N0, (22)

where i = 0, k − 1 .

2.4. Case α = β = 0

If α = β = 0 , then Eq. (12) reduces to the following (k + l) -order nonlinear difference equation

xn =
δxn−kxn−(k+l)

γxn−l
, n ∈ N0. (23)

If x−i ̸= 0 , i = 1, k + l , then Eq. (23) can be written in the form of

xn

xn−k
=

δ

γ xn−l

xn−(k+l)

, n ∈ N0. (24)

By the change of variables

wn =
xn

xn−k
, n ≥ −l, (25)

Eq. (24) becomes

wn =
δ

γ

1

wn−l
= wn−2l = cj , n ≥ l, j = 1, 2l, (26)

where each cj is a constant that is dependent on the initial values x−i , i = 1, k + l . From the change of
variables (25), we get the equation

xn = wnxn−k, n ≥ −l. (27)

By applying the decomposition of indices n → kn1 + j1 , j1 = −l,−l + 1, . . . ,−l + k − 1 , n1 ∈ N0 to (27), it
becomes

xkn1+j1 = wkn1+j1xk(n1−1)+j1 , n1 ∈ N0, (28)

which has the solution

xk(n1−1)+j1 = xj1−k

n1−1∏
s=0

wks+j1 , n1 ∈ N0. (29)

Consequently, (26) and (29) give the solution in closed form of Eq. (23).
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2.5. Case β = 0

If β = 0 , then Eq. (12) reduces to the following (k + l) -order nonlinear difference equation

xn = αxn−k +
δxn−kxn−(k+l)

γxn−l
, n ∈ N0. (30)

If x−i ̸= 0 , i = 1, k + l , then Eq. (30) can be written in the form of

xn

xn−k
=

δ
γ + α xn−l

xn−(k+l)

xn−l

xn−(k+l)

, n ∈ N0. (31)

By applying the change of variables (25) to Eq. (31), we have

wn =

δ
γ + αwn−l

wn−l
, n ≥ 0. (32)

If we apply the decomposition of indices n → nl + j , j = 0, l − 1 , to (32) for l , then it becomes

wln+j =

δ
γ + αwl(n−1)+j

wl(n−1)+j
, n ≥ 0, (33)

which are first-order l−equations. Let wln+j = αy
(j)
n , n ≥ −1 , j = 0, l − 1 . Then Eq. (33) can be written as

the following:

y(j)n =

δ
γα2 + y

(j)
n−1

y
(j)
n−1

, n ≥ 0, (34)

which is essentially in the form of Eq. (2). Hence, from (5), we can write the solution of (34) by taking
−R = δ

γα2 as follows:

y(j)n =


(λ1y−l+j−R)λn+1

1 −(λ2y−l+j−R)λn+1
2

(λ1y−l+j−R)λn
1 −(λ2y−l+j−R)λn

2
if R ̸= 1

4 ,
2y−l+j+(2y−l+j−1)(n+1)

4y−l+j+(4y−l+j−2)n if R = 1
4 ,

n ≥ −1, j = 0, l − 1, (35)

where λ1 =
1+

√
1+4δ/γα2

2 and λ2 =
1−

√
1+4δ/γα2

2 . Moreover, we have

wln+j =


α
(λ1

w−l+j
α −R)λn+1

1 −(λ2
w−l+j

α −R)λn+1
2

(λ1
w−l+j

α −R)λn
1 −(λ2

w−l+j
α −R)λn

2

if R ̸= 1
4 ,

α
2

w−l+j
α +(2

w−l+j
α −1)(n+1)

4
w−l+j

α +(4
w−l+j

α −2)n
if R = 1

4 ,
n ≥ −1, j = 0, l − 1, (36)

Consequently, the solution in closed form of Eq. (30) follows from (29) and (36).

2.6. Case αβγδ ̸= 0

Here we deal with the case when αβγδ ̸= 0 . Since in this case Eq. (12) can be written in the form of

xn = αxn−k +
xn−kxn−(k+l)

bxn−(k+l) + cxn−l
, n ∈ N0,
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with b = β
δ and c = γ

δ , we may assume that δ = 1 . Hence we will consider the equation

xn = αxn−k +
xn−kxn−(k+l)

βxn−(k+l) + γxn−l
, n ∈ N0, (37)

from now on. Moreover, Eq. (37) can be written in the form of

xn

xn−k
=

(αβ + 1) + αγ xn−l

xn−(k+l)

β + γ xn−l

xn−(k+l)

, n ∈ N0. (38)

Remark 1 For αβγ ̸= 0 in Eq. (12), it is easy to see that there is the degenerate case
∣∣∣∣ αβ + δ αγ

β γ

∣∣∣∣ = 0 if

and only if δ = 0 . Hence, we avoid the degenerate case via the assumption δ ̸= 0 .

2.6.1. The case αγ + β = 0

If αγ + β = 0 , then we get the equation

xn

xn−k
=

(
1− β2

γ

)
− β xn−l

xn−(k+l)

β + γ xn−l

xn−(k+l)

, n ∈ N0 (39)

from (38). By using the change of variables (25), we get the equation

wn =

(
1− β2

γ

)
− βwn−l

β + γwn−l
, n ∈ N0,

which can be written as
β + γwn =

γ

β + γwn−l
, n ∈ N0. (40)

Next, by applying the substitution β + γwn = tn to Eq. (40), we obtain

tn =
γ

tn−l
= tn−2l = cj , n ≥ l, j = 1, 2l, (41)

where each cj is a constant that is dependent on the initial values x−i , i = 1, k + l . Consequently, by using
β + γwn = tn and considering (28), we get

xkn1+j1 =
tkn1+j1 − β

γ
xk(n1−1)+j1 , n1 ∈ N0, (42)

which has the solution

xk(n1−1)+j1 = xj1−k

n1−1∏
s=0

tks+j1 − β

γ
, (43)

where n1 ∈ N0 , j1 = −l,−l + 1, . . . ,−l + k − 1 . Consequently, (43) gives the solution in closed form of Eq.
(39).
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2.6.2. The case αγ + β ̸= 0

If αγ + β ̸= 0 , then, by using the change of variables

xn

xn−k
=

αγ + β

γ
wn − β

γ
, n ≥ −l, (44)

Eq. (38) is transformed into the following equation:

wn =
−R̃+ wn−l

wn−l
, n ∈ N0, (45)

where −R̃ = γ
(αγ+β)2

. If we apply the decomposition of indices n → nl+j , j = 0, l − 1 to (45), then it becomes

wln+j =
−R̃+ wl(n−1)+j

wl(n−1)+j
, n ∈ N0, j = 0, l − 1. (46)

which are first-order l -equations. Let wln+j = w
(j)
n , j = 0, l − 1 . Then Eq. (46) can be written as the following:

w(j)
n =

γ
(αγ+β)2

+ w
(j)
n−1

w
(j)
n−1

, n ≥ 0, (47)

which is essentially in the form of Eq. (2). Hence, from (5), we can write the solution of (46) by taking

−R̃ = γ
(αγ+β)2

as follows:

wln+j = w(j)
n =


(λ1w−l+j−R̃)λn+1

1 −(λ2w−l+j−R̃)λn+1
2

(λ1w−l+j−R̃)λn
1 −(λ2w−l+j−R̃)λn

2

if R̃ ̸= 1
4 ,

2w−l+j+(2w−l+j−1)(n+1)
4w−l+j+(4w−l+j−2)n if R̃ = 1

4 ,
n ≥ −1, j = 0, l − 1, (48)

where λ1 = 1+
√

1−4R̃
2 and λ2 = 1−

√
1−4R̃
2 . On the other hand, from (44), we get

xk(n1−1)+j1 = xj1−k

n1−1∏
s=0

(
αγ + β

γ
wks+j1 −

β

γ

)
, (49)

where n1 ∈ N0 , j1 = −l,−l + 1, . . . ,−l + k − 1 . Consequently, the solution in closed form of Eq. (37) follows
from (48) and (49).

3. A study of case αβγ ̸= 0 when l = 1

In this section, we determine the forbidden set of the initial values and the asymptotic behavior of the solutions
of Eq. (37) when l = 1 and αβγ ̸= 0 . In this case, Eq. (37) becomes

xn = αxn−k +
xn−kxn−k−1

βxn−k−1 + γxn−1
, n ∈ N0, (50)

where the initial values x−i , i = 1, k + 1 , are real numbers. The solution of Eq. (50) is given by

xk(n−1)+j1 = xj1−k

n−1∏
s=0

αγ + β

γ

(
λ1

1
αγ+β

(
γ

x−1

x−k−1
+ β

)
− R̃

)
λks+j1+1
1 −

(
λ2

1
αγ+β

(
γ

x−1

x−k−1
+ β

)
− R̃

)
λks+j1+1
2(

λ1
1

αγ+β

(
γ

x−1

x−k−1
+ β

)
− R̃

)
λks+j1
1 −

(
λ2

1
αγ+β

(
γ

x−1

x−k−1
+ β

)
− R̃

)
λks+j1
2

− β

γ

 ,

(51)
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where for each j ∈ {−1, 0, . . . , k − 2} , every n ∈ N0 and R̃ = γ
(αγ+β)2

, if R̃ ̸= 1
4 , and

xk(n−1)+j1 = xj1−k

n−1∏
s=0

αγ + β

γ

2
αγ+β

(
γ x−1

x−k−1
+ β

)
+
(

2
αγ+β

(
γ x−1

x−k−1
+ β

)
− 1
)
(ks+ j1 + 1)

4
αγ+β

(
γ x−1

x−k−1
+ β

)
+
(

4
αγ+β

(
γ x−1

x−k−1
+ β

)
− 2
)
(ks+ j1)

− β

γ

 , (52)

where for each j ∈ {−1, 0, . . . , k − 2} , every n ∈ N0 and R̃ = γ
(αγ+β)2

, if R̃ = 1
4 . In this section, we will also

consider the equation

wn =
−R̃+ wn−1

wn−1
, n ∈ N0, (53)

which is obtained from Eq. (46) by taking l = 1 .

Theorem 2 The forbidden set of Eq. (53) is the set

F =

{
→
X : x−j = 0, j = 1, k + 1,

}∪ k∪
j=0

{ ∪
n∈N0

{
→
X :

xj−1

xj−1−k
=

1

αγ + β
s̃n − β

γ

}}
, (54)

where
→
X = (x−k−1, x−k, · · · , x−1) and

s̃n =

R̃
λn+1
1 −λn+1

2

λn+2
1 −λn+2

2

if R̃ ̸= 1
4 ,

(n+1)
2(n+2) if R̃= 1

4 ,
.

Proof To prove, we will use Eq. (53) along with Eq. (50). If x−j = 0 for some j , j = 1, k + 1 , then xn

cannot be calculated after a term xn0 , n0 ∈ N0 . For example, if x−k = 0 , then x0 = 0 , and so x1 cannot be
calculated. For the other j = 1, k − 1 , the case is the same. If x−j ̸= 0 , j = 1, k + 1 , then we assume that,
by using Eq. (53), w−1 ̸= 0 but wn0 = 0 for n0 ∈ N0 . That is, the points w0, w1, · · · , wn0 = 0 , n0 ∈ N0 ,
can be calculated, and so wn0+1 cannot be calculated. Note that this case is equivalent to the case when
βxn0+1−k + γxn0+1 = 0 , n0 ∈ N0 , which can be verified from (44). Now we consider the following equation:

un = f−1 (un−1) , f (w) =
−R̃+ w

w
, u−1 = 0, n ∈ N0, (55)

where f is the function associated with Eq. (53) and f−1 is the inverse of f . Now note that difference equation

associated with the inverse function f−1 is Eq. (14) with R = R̃ . Thus, by applying (15) to (55), when R = R̃ ,
we get

w−1 = f−n0−1 (0) =

R̃
λn+1
1 −λn+1

2

λn+2
1 −λn+2

2

if R̃ ̸= 1
4 ,

(n+1)
2(n+2) if R̃= 1

4 ,
n ∈ N0,

which implies

x−1

x−1−k
=

 1
αγ+β R̃

λn+1
1 −λn+1

2

λn+2
1 −λn+2

2

− β
γ if R̃ ̸= 1

4 ,

1
αγ+β

(n+1)
2(n+2) −

β
γ if R̃= 1

4 ,
n ∈ N0.

Hence the forbidden set of Eq. (50) is the same as (54). 2
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Theorem 3 The following statements are true:
(i) If (1− α) (β + γ) = 1 , then Eq. (50) has a k−periodic solution,
(ii) If (1 + α) (γ − β) = 1 , then Eq. (50) has a 2k−periodic solution.

Proof (i)–(ii) Note that Eq. (50) can be written as

xn = xn−kg

(
xn−1

xn−k−1

)
, n ∈ N0 (56)

such that

g (u) = α+
1

β + γu
. (57)

It is easy to see that Eq. (56) has a k−periodic solution if and only if g (1) = 1 . Thus, from (57), we have

g (1) = α+
1

β + γ
= 1

which implies the equality (1− α) (β + γ) = 1 . Similarly, Eq. (56) has a 2k−periodic solution if and only if
g (−1) = −1 . Hence, from (57), we have

g (−1) = α+
1

β − γ
= −1,

which implies the equality (1 + α) (γ − β) = 1 . 2

Theorem 4 Suppose that αβγ ̸= 0 , R̃ = − γ
(αγ+β)2

< 1
4 and x−i ̸= 0 , i = 1, k + 1 . Then the following

statements hold.

(a) If |αγ+β
γ λ1 − β

γ | < 1 and λi

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ ̸= 0 , for i = 1, 2 , then xn → 0 , as n → ∞ .

(b) If |αγ+β
γ λ1 − β

γ | < 1 , λ1

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ ̸= 0 and λ2

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ = 0 , then xn → 0 ,

as n → ∞ .

(c) If |αγ+β
γ λ2 − β

γ | < 1 , λ1

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ = 0 and λ2

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ ̸= 0 , then xn → 0 ,

as n → ∞ .

(d) If |αγ+β
γ λ1 − β

γ | > 1 and λi

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ ̸= 0 , for i = 1, 2 , then |xn| → ∞ , as n → ∞ .

(e) If |αγ+β
γ λ1− β

γ | > 1 , λ1

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ ̸= 0 and λ2

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ = 0 , then |xn| → ∞ ,

as n → ∞ .

(f) If |αγ+β
γ λ2− β

γ | > 1 , λ1

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ = 0 and λ2

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ ̸= 0 , then |xn| → ∞ ,

as n → ∞ .

(g) If αγ+β
γ λ1 − β

γ = 1 and λi

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ ̸= 0 , for i = 1, 2 , then xn converges to (not

necessarily prime) k -periodic solution of Eq. (50), as n → ∞ .

(h) If αγ+β
γ λ1− β

γ = 1 , λ1

αγ+β

(
γ x−1

x−k−1
+ β

)
−R̃ ̸= 0 and λ2

αγ+β

(
γ x−1

x−k−1
+ β

)
−R̃ = 0 , then xn converges

to (not necessarily prime) k -periodic solution of Eq. (50), as n → ∞ .
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(i) If αγ+β
γ λ2− β

γ = 1 , λ1

αγ+β

(
γ x−1

x−k−1
+ β

)
−R̃ = 0 and λ2

αγ+β

(
γ x−1

x−k−1
+ β

)
−R̃ ̸= 0 , then xn converges

to (not necessarily prime) k -periodic solution of Eq. (50), as n → ∞ .

(j) If αγ+β
γ λ1 − β

γ = −1 and λi

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ ̸= 0 , for i = 1, 2 , then xn converges to (not

necessarily prime) 2k -periodic solution of Eq. (50), as n → ∞ .

(k) If αγ+β
γ λ1 − β

γ = −1 , λ1

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ ̸= 0 and λ2

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ = 0 for i = 1, 2 ,

then xn converges to (not necessarily prime) 2k -periodic solution of Eq. (50), as n → ∞ .

(l) If αγ+β
γ λ2 − β

γ = −1 , λ1

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ = 0 and λ2

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ ̸= 0 , then xn

converges to (not necessarily prime) 2k -periodic solution of Eq.(50), as n → ∞ .

Proof Since R̃ = − γ
(αγ+β)2

< 1
4 , we have λ1 = 1+

√
1−4R̃
2 , λ2 = 1−

√
1−4R̃
2 ∈ IR, |λ1| > |λ2| . Let

a(j1)s := −β

γ
+

αγ + β

γ

(
λ1

1
αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃

)
λks+j1+1
1 −

(
λ2

1
αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃

)
λks+j1+1
2(

λ1
1

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃

)
λks+j1
1 −

(
λ2

1
αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃

)
λks+j1
2

(58)

for s ∈ N0 and j1 = −1, 0, . . . , k − 2 . When λi

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ ̸= 0 , for i = 1, 2 , we get

lim
s→∞

a(j1)s =
−β

γ
+

αγ + β

γ
λ1 (59)

for each j1 ∈ {−1, 0, . . . , k− 2} . From (51) and (59), the results follow from the assumptions in (a) and (d). If
λ1

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ ̸= 0 and λ2

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ = 0 , then we can write

a(j1)s =
−β

γ
+

αγ + β

γ
λ1, (60)

for each j1 ∈ {−1, 0, . . . , k − 2} . From (51) and (60), the results in (b) and (e) can be seen easily. When
λ1

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ = 0 and λ2

αγ+β

(
γ x−1

x−k−1
+ β

)
− R̃ ̸= 0 , directly we get

a(j1)s =
−β

γ
+

αγ + β

γ
λ2, (61)

for each j1 ∈ {−1, 0, . . . , k − 2} . From (51) and (61), the results in (c) and (f) can be seen easily. For each
j1 ∈ {−1, 0, . . . , k − 2} and sufficiently large s , we can write

a(j1)s =
−β

γ
+

αγ + β

γ
λ1 +O

((
|λ2|
|λ1|

)ks
)
. (62)

From (51), (62), and Theorem 3, the results in (g) and (j) can be seen easily. We easily obtain the statements
in (h), (k) and (i), (l) from (51), (60) and (51), (61), respectively. 2
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Theorem 5 Suppose that αβγ ̸= 0 , R̃ = − γ
(αγ+β)2

= 1
4 and x−i ̸= 0 , i = 1, k + 1 . Then the following

statements hold:
(a) If |αγ−β

2γ | < 1 , then xn → 0 , as n → ∞ .

(b) If |αγ−β
2γ | > 1 , then |xn| → ∞ , as n → ∞ .

(c) If |αγ−β
2γ | = 1 and αγ−β

αγ+β > 0 , then |xn| → ∞ , as n → ∞ .

Proof When R̃ = − γ
(αγ+β)2

= 1
4 , we have λ1 = λ2 = 1

2 . Let

b(j1)s := −β

γ
+

αγ + β

γ

2
αγ+β

(
γ x−1

x−k−1
+ β

)
+
(

2
αγ+β

(
γ x−1

x−k−1
+ β

)
− 1
)
(ks+ j1 + 1)

4
αγ+β

(
γ x−1

x−k−1
+ β

)
+
(

4
αγ+β

(
γ x−1

x−k−1
+ β

)
− 2
)
(ks+ j1)

, (63)

for s ∈ N0 and j1 = −1, 0, . . . , k − 2 . If x−1

x−1−k
̸= αγ−β

2γ , then we get

lim
s→∞

b(j1)s =
αγ − β

2γ
, (64)

for each j1 ∈ {−1, 0, . . . , k − 2} . Otherwise, when x−1

x−1−k
= αγ−β

2γ , directly we have

b(j1)s =
αγ − β

2γ
(65)

for each j1 ∈ {−1, 0, . . . , k−2} and s ∈ N0 . From (52), (64), and (65), the results follow from the assumptions
in (a) and (b).

Now we consider the last case (c). For each j1 ∈ {−1, 0, . . . , k − 2} and sufficiently large s , we obtain

b(j1)s =
αγ − β

2γ
+

αγ − β

2γ αγ−β
αγ+β ks

+O
(

1

s2

)

= ±

(
1 +

1
αγ−β
αγ+β ks

+O
(

1

s2

))
(66)

= ± exp

(
1

αγ−β
αγ+β

ks
+O( 1

s2
)

)
.

From (52) and (66) and by using the fact that Σs
i=1 (1/i) → ∞ as s → ∞ , then we easily have |xn| → ∞ , as

n → ∞ . 2
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