
Turk J Math
(2018) 42: 1779 – 1794
© TÜBİTAK
doi:10.3906/mat-1707-14

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Block classical Gram–Schmidt-based block updating in low-rank matrix
approximation

Hasan ERBAY1,∗ , Fatih VARÇIN1 , Fahrettin HORASAN1 , Cenker BİÇER2

1Department of Computer Engineering, Faculty of Engineering, Kırıkkale University, Yahşihan, Kırıkkale, Turkey
2Department of Statistics, Faculty of Arts & Science, Kırıkkale University, Yahşihan, Kırıkkale, Turkey

Received: 06.07.2017 • Accepted/Published Online: 28.03.2018 • Final Version: 24.07.2018

Abstract: Low-rank matrix approximations have recently gained broad popularity in scientific computing areas. They
are used to extract correlations and remove noise from matrix-structured data with limited loss of information. Truncated
singular value decomposition (SVD) is the main tool for computing low-rank approximation. However, in applications
such as latent semantic indexing where document collections are dynamic over time, i.e. the term document matrix
is subject to repeated updates, SVD becomes prohibitive due to the high computational expense. Alternative decom-
positions have been proposed for these applications such as low-rank ULV/URV decompositions and truncated ULV
decomposition. Herein, we propose a BLAS-3 compatible block updating truncated ULV decomposition algorithm based
on the block classical Gram–Schmidt process. The simulation results presented show that the block update algorithm is
promising.
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1. Introduction
Low-rank matrix approximations have recently gained broad popularity in scientific computing areas such as
information retrieval [5, 6, 8, 21], signal processing [9, 20, 23], web search [17, 18], and machine learning
[11, 14]. They are used to extract correlations and remove noise from matrix-structured data with limited loss
of information.

The low-rank approximation of a given matrix X ∈ Rm×n and positive constant k ≪ max(m,n) is the
matrix Xk that satisfies

min ∥X −Xk∥ subject to rankXk = k, (1)

where ∥ · · · ∥ represents either two-norm or Frobenius-norm. The existence of such a matrix follows from the
singular value decomposition (SVD) of X . Moreover, with no doubt, the truncated SVD is the main tool
for computing the low-rank approximation. However, in applications such as latent semantic indexing where
document collections are dynamic over time, i.e. the term document matrix is subject to repeated updates, SVD
becomes prohibitive due to the high computational expense. Alternative decompositions have been proposed for
these applications such as low-rank ULV/URV decompositions [12] and truncated ULV decomposition [2], but
these are not suitable for block updates. In addition to updating, the initial costs of computing the low-rank

∗Correspondence: hasan_erbay@yahoo.com
2010 AMS Mathematics Subject Classification: 65F05, 65F30, 65F50

1779

https://orcid.org/0000-0002-7555-541X
https://orcid.org/0000-0002-5100-3012
https://orcid.org/0000-0001-5118-0783
https://orcid.org/0000-0003-2222-3208


ERBAY et al./Turk J Math

ULV/URV decompositions and the truncated ULV decomposition are better than those of SVD [12].
Truncated ULV decomposition has been used to extract matrix information such as numerical rank and

numerical subspaces, and especially numerical null space. It can also be used to solve block update problems:
given the truncated ULV decomposition of X , find the truncated ULV decomposition of the matrix

X̄ =

(
X
AT

)
, (2)

where A ∈ Rn×p is the new arrival block matrix.
In this manuscript, we develop a Level-3 Basic Linear Algebra Subprograms (BLAS-3) [10] compatible

block update algorithm. The algorithm is based on the block classical Gram–Schmidt algorithm [1, 3, 22],
which is detailed in Section 2. Since the update algorithm is built upon matrix–matrix operation rather than
matrix–vector operation, it makes effective use of caching to avoid excessive movement of data to/from the
memory.

The rest of the manuscript is organized as follows. In Section 2 we introduce some notations, cover
critical background materials in numerical linear algebra, and develop some matrix computational tools. In
Section 3 we give the steps of the block update algorithm and show how the refinement algorithm in [2] may
be used as a “clean up” procedure. In Section 4 we present some simulation results from our numerical tests of
the algorithm.

2. Notations, definitions, and computational tools
2.1. Notations
Throughout the paper, uppercase letters such as X denote matrices. The n × n identity matrix is denoted
by In . Moreover, the norm ∥ · · · ∥ denotes the spectral norm and ∥ · · · ∥F denotes the Frobenius norm. The
notation Rm×n represents the set of m× n real matrices.

2.2. Definitions
Definition 1 (The singular value decomposition) For a matrix X ∈ Rm×n with m ≥ n the SVD is

X =W

(
Σ
0

)
Y T , (3)

where left and right singular matrices W and Y are orthogonal matrices and Σ = diag(σ1, · · · , σn) is a diagonal
matrix with the ordering

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. (4)

The diagonal entries of Σ are called the singular values of X .

For a given positive integer k ≪ n≪ m , we block-partition the SVD in (3) as

X =
(
Wk W0 W⊥

)Σk 0
0 Σ0

0 0

(
Yk Y0

)T
, (5)

with Σk = diag(σ1, · · · , σk) and Σ0 = diag(σk+1, · · · , σn) being diagonal matrices containing the k largest and
n− k smallest singular values of X , respectively. The matrix Xk defined by

Xk =WkΣkY
T
k (6)
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is called rank-k matrix approximation to X . For some tolerance ϵM proportional to the machine unit, if the
singular values satisfy

σ1 ≥ σ2 ≥ · · · ≥ σk ≫ ϵM ≥ σk+1 ≥ · · ·σn ≥ 0, (7)

then the value k is called the numerical rank of the matrix X . However, we are aware that the determination
of numerical rank is a sensitive computation, especially when there are no well-defined gaps between singular
values [13, 24]. Moreover, in some situations, like the example in [13, §5.4.1], the tolerance ϵM is chosen slightly
larger.

Definition 2 (The truncated ULV decomposition) For a matrix X ∈ Rm×n with numerical rank k ≪
n≪ m , the truncated ULV decomposition (truncated ULV) is

X = U1LV
T
1 + E, (8)

where L ∈ Rk×k is a nonsingular lower triangular matrix, U1 ∈ Rm×k and V1 ∈ Rn×k are left orthogonal
matrices (i.e. UT1U1 = V T1 V1 = Ik ), and E ∈ Rm×n is an error matrix.

The theoretical constraints on L and E are

min ∥L−1∥2 ≤ ϵ−1
M , ∥E∥2 < ϵM , UT1 E = 0. (9)

However, these cannot be achieved, in general, without using the SVD. Thus, we weaken these conditions to an
almost equivalent problem:

min ∥L−1∥F subject to ∥E∥F < ϵM , UT1 E = 0. (10)

To meet these conditions, we enforce the constraint on ∥E∥F .
To be able to say that the truncated ULV decomposition in (8) is a rank-k matrix approximation to X ,

the singular values of L approximate the k largest singular values of X . Moreover, the matrices U1 and V1 in
(8) are good approximations to singular subspaces Wk and Yk , respectively.

Proposition 3 Let X = U1LV
T
1 + E be a truncated ULV of the matrix X ∈ Rm×n with rank k . Then

E = PX, P = Im − U1U
+
1 , (11)

where U+
1 is the left pseudoinverse of U1 .

Proof See [2]. 2

2.3. Computational tools
Local QR The primary matrix computational tool is the orthogonal factorization routine local_qr, which
inputs a rectangular matrix Z ∈ Rm×p , p ≤ n≪ m , and outputs an upper triangular matrix R ∈ Rp×p and a
left orthogonal matrix Q ∈ Rm×p such that Q and R satisfy∥∥Ip −QTQ

∥∥ ≤ ϵMΩ(m, p) ≪ 1 (12)
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and, in the backward errors sense,

Z +∆Z = QR, ∥∆Z∥ ≤ ϵMΩ(m, p) ∥Z∥ , (13)

where Ω(m, p) is a slightly growing function. The routine local_qr can be implemented using Householder
reflections or Givens rotations. An error analysis on Householder QR factorization given in [15, §19.3] yields
Ω(m, p) = cmp3/2 , where c is a constant. Our local_qr is just the MATLAB function qr(Z,0), but it can be
coded appropriately to BLAS-3 operations using skinny QR as discussed in [16]. We note that, by symmetric
matrix eigenvalue/singular value relationship, condition (12) implies

∥Q∥ ≤ 1 +
1

2
ϵMΩ(m, p) ≤

√
2. (14)

The block classical Gram–Schmidt The block classical Gram–Schmidt process named BCGS and outlined
in Algorithm 1 takes a left orthogonal matrix U ∈ Rm×q satisfying the condition

Algorithm 1 The block classical Gram–Schmidt.

function [Q,R, S] = BCGS(U,B)

% Input:

% U left orthogonal matrix

% B rectangular matrix

% Output:

% Q left orthogonal matrix

% R upper triangular matrix

S = UTB;

Z = B − US;

[Q,R] = local_QR(Z);

end BCGS

∥∥It − UTU
∥∥ ≤ ϵMΩ(m, p, q) ≪ 1 (15)

for a modest funtion Ω(m, p, q) and a rectangular matrix B ∈ Rm×p with p+q ≤ n to output a left orthogonal
matrix Q ∈ Rm×p , an upper triangular matrix R ∈ Rp×p , and a rectangular matrix S ∈ Rq×p such that, in
exact arithmetic,

Z =
(
Im − UUT

)
B, (16)

Z = QR, QTQ = Ip, (17)

B = US +QR, S = UTB. (18)
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However, in floating point arithmetic, Algorithm 1 actually computes

S + δS = UTB, ∥δS∥ ≤ ϵMΨ(m, p, q) ∥B∥ , (19)

Z + δZ = B − US, ∥δZ∥ ≤ ϵMΥ(m, p) ∥B∥ . (20)

The definitions of the functions Ψ(m, p, q) and Υ(m, p) can be found in [3, §3]. Note that the output Q

satisfies (12) and along with (20) yields

B = US +QR+ δZ −∆Z. (21)

Also note that the upper triangular matrix R together with Q and Z satisfies (13). The operation count of
the BCGS procedure is O(mp(p+ q)) .

Two block classical Gram–Schmidt An important subproblem in the truncated ULV block update algo-
rithm is for a given near left orthogonal matrix U ∈ Rm×q satisfying condition (15) along with B ∈ Rm×p ,
p + q ≤ n , to find a left orthogonal matrix QB ∈ Rm×p , an upper triangular matrix RB ∈ Rp×p , and a
rectangular matrix SB ∈ Rq×p such that, in exact aritmetic,

Algorithm 2 Two steps of block CGS.

function [QB , RB , SB ] =T_BCGS(U,B)

% Input:

% U left orthogonal matrix

% B rectangular matrix

% Output:

% QB left orthogonal matrix

% RB upper triangular matrix

[Q1, R1, S1] = BCGS(U,B);

[QB , R2, S2] = BCGS(U,Q1);

SB = S1 + S2R1;

RB = R2R1

end T_BCGS

B = USB +QBRB , (22)

UTQB = 0, SB = UTB. (23)

The two block classical Gram–Schmidt algorithm (T_BCGS) that basically consists of two applications of the
BCGS and is detailed in Algorithm 2 numerically solves the subproblem. The residual of (22) is bounded by

∥B − (USB +QBRB)∥ ≤ ϵMΓ (m, p, q) ∥B∥ , (24)
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where Γ (m, p, q) is a modest function given in [3, eq 3.5 in §3]. Moreover, the output QB obtained from
local_qr satisfies ∥∥Ip −QTBQB

∥∥ ≤ ϵMΩ(m, p) ≪ 1 (25)

and together with U satisfies ∥∥UTQTB∥∥ ≤ 5ϵMΦ(m, p, q) ≪ 1. (26)

The detailed error analysis can be found in [3, §3].

Refinement To reconstruct the truncated ULV decomposition in (8), we also use a refinement algorithm that
reduces ∥E∥F , detects rank degeneracy, corrects it, and sharpens the approximation. The algorithm inputs X ,
U1 , L , V1 , and ∥E∥F with the condition

Algorithm 3 Vector-matrix product.

function y =E_product(X,U, v)

% Input:

% X data matrix

% U left orthogonal matrix

% v vector

% Output:

% y vector

z = Xv;

f1 = UT z; r1 = z − Uf1;

f2U
T r1; y = r1 − Uf2;

if(∥y∥2 < sqrt( 45 )∥r1∥2)

j = min
1≤i≤m

∥UT ei∥2; % ei, ith column of the identity matrix

t1 = UT ej ; s1 = ej − Ut1;

UT s1; s2 = s1 − Ut2;

w = s2/∥s2∥2;

y = (wT y)w;

end

end E_product

ϵM < ∥E∥F ≤
√
ϵ2M + ∥E∥2 (27)
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and outputs Ū1 ∈ Rm×s , L̄ ∈ Rs×k , V̄1 ∈ Rn×s for s ∈ {k, k + 1, k + 2, · · · , k + p} and such that

X = Ū1L̄V̄
T
1 + Ē, ∥Ē∥F < ϵM . (28)

The main steps of the algorithm are given in Algorithm 4. To keep computational complexity of the projections

Ev1 = (I − U1U
+
1 )Xv1, (29)

ETu1 = XT (I − U1U
+
1 )u1. (30)

less than O(mn) , instead of constructing the error matrix E , we use the procedure E_product outlined in
Algorithm 3. The time complexity of the procedure is equal to

TE_product =

{
4mk + ϕ+O(m) ∥y∥2 ≥ sqrt( 45 )∥r1∥2
8mk + ϕ+O(m) otherwise,

(31)

where ϕ is the number of operations to compute Xv . For more details including operations count and accuracy
issues, see [4]. The procedure modified_lanczos in Algorithm 4 uses E_product and its operation count is
2× num_iter × TE_product . The operations count of the procedure inverse_iteration is num_iter × k2 .

Moreover, the procedure CGS_ORTH in the refinement algorithm inputs z ∈ Rn and V1 ∈ Rn×k left
orthogonal and outputs d ∈ Rk+1 and vk+1Rn such that

V T1 vk+1 = 0, (V1 vk+1)d = z, ∥vk+1∥2 = 1. (32)

The time complexity of CGS_ORTH is O(nk) . The justification of the procedure is described in [4].
Thus, the overall time complexity of the refinement procedure is O(p(mk2 + mn)) . Some theoretical

results of the procedure can be found in [2].

3. Truncated ULV block update algorithm

For a matrix X ∈ Rm×n , m ≫ n , assumed to have numerical rank k ≪ n , with the truncated ULV given in
(8), the matrix X̄ given in (2) with p < n can be rewritten as

X̄ =

(
U1LV

T
1 + E
AT

)
=

(
U1LV

T
1

AT

)
+

(
E
0

)
. (33)

On the other hand, the algorithm T_BCGS with the input matrices A and V1 produces the matrices Vnew ,
Lnew , and Snew such that

AT = STnewV
T
1 + LnewV

T
new. (34)

Then, with the aid of equation (33), X̄ can also be rewritten as

X̄ =

(
U1 0
0 Ip

)(
L 0

STnew Lnew

)(
V T1
V Tnew

)
+

(
E
0

)
.
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Algorithm 4 Refinement.

function
[
Ū1, L̄, V̄1

]
= refinement(X,U1, L, V1, norm_E )

% Input:

% X data matrix

% U1 near left orthogonal matrix

% V1 near left orthogonal matrix

% L lower triangular matrix

% Output:

% Ū1 near left orthogonal matrix

% V̄1 near left orthogonal matrix

% L̄ lower triangular matrix

[u1, σ1, v1] = modified_lanczos(X,U1, num_iter, initial_guess);

z = XTu1(= ETu1);

[d, vk+1] = CGS_ORTH(V1, z); f = d(1 : k); α = d(k + 1);

norm_Ē = sqrt((norm_E)2 − σ2
1);

L̄ =
[
L 0
fT α

]
; Ū1 = [U1 u1] ; V̄1 = [V1 vk+1] ; k = k + 1;

[yk, σk, zk] = inverse_iteration(L̄, num_iter, initial_guess);

while(sqrt(σ2
k + (norm_Ē)2) ≤ ϵF )

QT zk = ek; % Q orthogonal matrix

QT L̄Z =
[
L̄ 0
0 σk

]
; % Z orthogonal matrix, maintains a lower triangular matrix[

Ū1 ū1
]
= [U1 u1]Q;

[
V̄1 v̄k+1

]
= [V1 vk+1]Z; norm_Ē = sqrt(σ2

k+1 + (norm_Ē)2); k = k − 1;

[yk, σk, zk] = inverse_iteration(L̄, num_iter, initial_guess);

end while

end refinement

Furthermore, by defining

Ū1 =

(
U1 0
0 Ip

)
, L̄ =

(
L 0

STnew Lnew

)
, V̄1 =

(
V1 Vnew

)
, and Ē =

(
E
0

)
we obtain

X̄ = Ū1L̄V̄
T
1 + Ē. (35)

In order to say that the latter equation is the truncated ULV of matrix X̄ , we have to show that the conditions
in Definition 2 are satisfied. First, it is obvious that matrix L̄ is a lower triangular matrix; however, it is not so
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obvious that it protects its rank-revealing property, i.e. the rank is between k and k + p . We clarify this issue
later.

Second, matrices Ū1 and V̄1 are left orthogonal. To prove the first, we consider

ŪT1 Ū1 =

(
UT1 0
0 Ip

)(
U1 0
0 Ip

)
=

(
UT1 U1 0

0 Ip

)
,

and thus the left orthogonality of Ū1 follows from the left orthogonality of U1 . For the left orthogonality of
V̄1 , we consider

V̄ T1 V̄1 =

(
V T1
V Tnew

)(
V1 Vnew

)
=

(
V T1 V1 V T1 Vnew
V TnewV1 V TnewVnew

)
.

The off diagonal block entries are zero by equation (23), so the left orthogonality of V1 implies that V̄1 is left
orthogonal.

Third, matrices L̄ and Ē satisfy the latter condition in (10), which is given in the following theorem.

Theorem 4 Let X be an m× n matrix of numerical rank k ≪ n≪ m with the truncated ULV in (8). Let X̄
be an (m+ p)× n matrix as in (2) with the decomposition as in (35). Then ŪT1 Ē = 0.

Proof Before we work on ŪT1 Ē we first recall that, by equation (10), UT1 E = 0 . Then,

ŪT1 Ē = ŪT1
(
X̄ − Ū1L̄V̄

T
1

)
= ŪT1 X̄ − ŪT1 Ū1L̄V̄

T
1

= ŪT1 X̄ − L̄V̄ T1

=

(
UT1 0
0 I

)(
X
AT

)
−
(

L 0
STnew Lnew

)(
V T1
V Tnew

)
=

(
UT1 X
AT

)
−
(

LV T1
STnewV

T
1 + LnewV

T
new

)
=

(
UT1 X − LV T1

AT − STnewV
T
1 − LnewV

T
new

)
= 0.

2

The decomposition in (35) has a similar property as described in Proposition 3. Before stating the
property we recall some auxiliary results of the Moore–Pensore pseudoinverse of Ū1 from [13]. Define Ū+

1 , a
unique matrix, to be the Moore-Pensore pseudoinverse of Ū1 . Then it satisfies

Ū1Ū
+
1 Ū1 = Ū1, (36)
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Ū+
1 Ū1Ū

+
1 = Ū+

1 , (37)

(Ū1Ū
+
1 )T = Ū1Ū

+
1 , (38)

(Ū+
1 U)T = Ū+

1 Ū1. (39)

Proposition 5 Let X̄ = Ū1L̄V̄
T
1 + Ē be a decomposition of the matrix X̄ ∈ R(m+p)×n with rank k ≪ n as in

(35). Then
Ē = P̄ X̄,

where P̄ = I − Ū1Ū
+
1 .

Proof Let us multiply X̄ from left by P̄ to obtain

P̄ X̄ =
(
I − Ū1Ū

+
1

)
X̄

= X̄ − Ū1Ū
+
1 X̄

= X̄ − Ū1Ū
+
1

(
Ū1L̄V̄

T
1 + Ē

)
= X̄ − Ū1Ū

+
1 Ū1L̄V̄

T
1 + Ū1Ū

+
1 Ē.

Equations (36) and (38) yield

P̄ X̄ = X̄ − Ū1L̄V̄
T
1 +

(
Ū1Ū

+
1

)T
Ē

= Ē −
(
Ū+
1

)T
ŪT1 Ē.

The proof follows from Theorem 4. 2

The proposition allows that we do not have to store Ē .
We now turn our attention to the conditions in (10). With the result stated in Theorem 4, to meet all

conditions we have to consider the problem

min ∥L̄−1∥F subject to ∥Ē∥F < ϵM . (40)

Here, we enforce the condition on the constraint on ∥Ē∥F . To do so, we use the refinement algorithm discussed
in Subsection 2.3. The refinement algorithm assures us that ∥Ē∥F < ϵM is always maintained.

The block-truncated ULV update algorithm is summarized in Algorithm 5. The overall time complexity
of the algorithm is O(mp(k2 + n) + np(k + p)) .

4. Numerical tests
In this section we present some simulation results from our numerical experiments. We use the so-called block
exponential window process, at time step t , described as

X(t+ 1) =

(
αX(t)
AT (t)

)
,
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Algorithm 5 Truncated ULV block update

function
[
Ū1, L̄, V̄1

]
= truncated_ULV_block_update(X,U1, L, V1, A)

% Input:

% X data matrix

% U1 near left orthogonal matrix

% V1 near left orthogonal matrix

% L lower triangular matrix

% A new data matrix to be added

% Output:

% Ū1 near left orthogonal matrix

% V̄1 near left orthogonal matrix

% L̄ lower triangular matrix

X̄ =
[
X
AT

]
;[

Vnew, L
T
new, Snew

]
= T_BCGS (V1, A) ;

Ũ1 =
[
U1 0
0 I

]
; L̃ =

[
L 0

STnew Lnew

]
; Ṽ1 = [V1 Vnew] ; norm_Ẽ = norm_E; % Ẽ =

[
E
0

]
[
Ū1, L̄, V̄1

]
= refinement(X̄, Ũ1, L̃, Ṽ1, norm_Ẽ);

end truncated_ULV_block_update

where 0 < α ≤ 1 is called the forgetting factor.
The data matrix, say Xdata , is an M -by-n random matrix, chosen from a uniform distribution on the

interval (0, 1) , but scale r randomly selected rows by factor η so that rank changes occur often.
At the initial step t = 0 , the decomposition of the data matrix X(0) ∈ Rm×n containing the first m

rows of Xdata is obtained by using the MATLAB function lulv in the UTV tools software package [12]. If we
let

M = 2ω, m = 2ψ, n = 2η with η < ψ < ω,

then, at steps t > 0 , the data block with the block size p = 2µ, µ < η , defined as

A(t) = XT
data(m+ p ∗ (t− 1) : m+ p ∗ t, :),

is applied to the block exponential window process. The number of steps ν throughout the exponential window
process is

ν = 2ψ−µ(2ω−ψ − 1).

For each t = 0, · · · ν , we check the left orthogonality of the matrices U1(t) and V1(t) by computing

∥∥I − UT1 (t)U1(t)
∥∥
F
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and ∥∥I − V T1 (t)V1(t)
∥∥
F
,

respectively. We measure the decomposition error

∥E(t)∥F =
∥∥X(t)− U1(t)L(t)V

T
1 (t)

∥∥
F

and, by using the equation (11), compute ∥∥UT1 (t)E(t)
∥∥
F

after each truncated ULV block update. We plot these quantities on log 10 scale.
We also track the numerical rank k(t) of matrix X(t) at each step t and plot it.
On the other hand, we compute the SVD of X(t) using MATLAB’s svd function to obtain

X(t) =W (t)

(
Σ(t)
0

)
Y T (t)

as a reference in checking the accuracy at each step t . We partition the right orthogonal factor as(
Yk(t)(t) Y0(t)

)
.

In the Davis–Kahan [7] framework the accuracy of the right subspace errors is characterized by

|(sin θ)(t)| =
∥∥V T1 (t)Y0(t)

∥∥
F
.

For each t , we compute (sin θ)(t) and plot this on log 10 scale.
Moreover, at each block step t , we compare the block-truncated ULV update with the SVD block update

algorithm given in [19] in terms of speed and plot this on log 10 scale as well.

Example 6 For the data matrix Xdata , the initial matrix X(0) , and the data block, we let ω = 14 , ψ = 13 ,
η = 9 , and µ = 8 . Later, we multiply r = ⌊95%M⌋ randomly selected rows of Xdata by η = 10−9 . The rank
tolerance ϵ = 10−8 and the forgetting factor α = 0.9 .

Example 7 For the data matrix Xdata , the initial matrix X(0) , and the data block, we let ω = 14 , ψ = 13 ,
η = 9 , and µ = 8 . Later, we multiply r = ⌊95%M⌋ randomly selected rows of Xdata by η = 10−9 . The rank
tolerance ϵ = 10−8 and the forgetting factor α = 0.7 .

Example 8 For the data matrix Xdata , the initial matrix X(0) , and the data block, we let ω = 14 , ψ = 13 ,
η = 9 , and µ = 8 . Later, we multiply r = ⌊95%M⌋ randomly selected rows of Xdata by η = 10−9 . The rank
tolerance ϵ = 10−8 and the forgetting factor α = 0.5 .

Figures 1, 3, and 2 show the ability of the block update algorithm. The graphs demonstrate that the
algorithm is robust and promising. Moreover, the block-truncated ULV update algorithm performs better than
the block SVD update in [19].
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Figure 1. Numerical results by Example 6.
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Figure 2. Numerical results by Example 7.
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Figure 3. Numerical results by Example 7.

5. Conclusion

We have proposed a BLAS-3 compatible block update algorithm based on the block classical Gram–Schmidt
process. Since the update algorithm is built upon matrix–matrix operation rather than matrix–vector operation,
it makes effective use of caching to avoid excessive movement of data to/from memory. We have seen that the
analysis and the numerical results are consistent.
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