http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2018) 42: $1795-1802$
© TÜBİTAK
doi:10.3906/mat-1707-9

On the J-reflexive operators

Parviz SADAT HOSSEINI* ${ }^{*}$, Bahmann YOUSEFI ${ }^{(1)}$
Department of Mathematics, Payame Noor University, Tehran, Iran

Received: 05.07.2017 • Accepted/Published Online: 28.03.2018 \quad Final Version: 24.07 .2018

Abstract

A bounded linear operator T on a Banach space X is J-reflexive if every bounded operator on X that leaves invariant the sets $J(T, x)$ for all x is contained in the closure of $\operatorname{orb}(T)$ in the strong operator topology. We discuss some properties of J-reflexive operators. We also give and prove some necessary and sufficient conditions under which an operator is J-reflexive. We show that isomorphisms preserve J-reflexivity and some examples are considered. Finally, we extend the J-reflexive property in terms of subsets.

Key words: Orbit of an operator, J-sets, $J^{m i x}$-sets, J-class operator, reflexive operator

1. Introduction

One of the most challenging problems in operator theory is the "invariant subspace problem", which asks whether every operator on a Hilbert space (more generally, a Banach space) admits a nontrivial invariant subspace. Here, "operator" means "continuous linear transformation" and "invariant subspace" means "closed linear manifold such that the operator maps it to itself". A subspace is nontrivial if it is neither the zero subspace nor the whole space. An example constructed by Enflo [7] shows that for some Banach spaces there do exist operators with only trivial invariant subspaces. For a Hilbert space, however, the invariant subspace problem remains open. There is a deep connection between invariant subspaces of an operator and its reflexivity. Reflexive operators are those that can be identified by their nontrivial invariant subspaces and they have been studied for a few decades. For a good source on reflexivity, see [12] by Halmos. An operator T is reflexive if any operator that leaves invariant, T-invariant subspaces belongs to the closure of $\{P(T): P$ is a polynomial $\}$ in the weak operator topology [12, 17]. In [11], the authors introduced orbit-reflexivity: an operator T on a Hilbert space is orbit-reflexive if the only operators that leave invariant every norm closed T-invariant subset are contained in the closure of $\operatorname{orb}(T)$ in the strong operator topology. For example, compact operators, normal operators, contractions, and weighted shifts on the Hilbert spaces are orbit-reflexive [11]. Hadwin et al. in [10] also introduced and studied the notion of null-orbit reflexivity, which is a slight perturbation of the notion of orbit-reflexivity. The class of null-orbit reflexive operators includes the classes of hyponormal, algebraic, compact, strictly block-upper (lower) triangular operators, and operators whose spectral radius is not 1 . They also proved that every polynomially bounded operator on a Hilbert space is both orbit-reflexive and null-orbit reflexive. For further references on these topics, see [$8-11,13,14]$.

[^0]
SADAT HOSSEINI and YOUSEFI/Turk J Math

In this paper, our purpose is to characterize operators on Banach spaces that can be identified by their J-sets. First, we give some preliminaries that we need to give our results.

Let X be a complex Banach space and denote by $B(X)$ the space of all bounded linear operators on X. For $T \in B(X)$, the set $\operatorname{orb}(T)=\left\{T^{n}: n \geq 0\right\}$ is called the orbit of T.

If X is a separable Banach space and $\operatorname{orb}(T, x)=\left\{T^{n} x: n \geq 0\right\}$ is dense in X for some x, then T is called a hypercyclic operator and we call x a hypercyclic vector.

The J-set of T under $x, J(T, x)$, is defined by:

$$
J(T, x)=\{y: \text { there exists a strictly increasing sequence of positive integers }
$$

$\left(k_{n}\right)$ and a sequence $\left(x_{n}\right) \subset X$ such that $\left.x_{n} \rightarrow x, T^{k_{n}} x_{n} \rightarrow y\right\}$.
The set

$$
\begin{aligned}
& J^{m i x}(T, x)=\left\{y: \text { there exists a sequence }\left(x_{n}\right) \subset X \text { such that } x_{n} \rightarrow x\right. \text { and } \\
& \left.\qquad T^{n} x_{n} \rightarrow y\right\}
\end{aligned}
$$

is called the $J^{\text {mix }}$-set of T under x. The sets $J(T, x)$ and $J^{m i x}(T, x)$ are closed T-invariant subsets of X. If T is invertible, then all J-sets are T^{-1}-invariant. For more details, see [6].

Recall that we say $T \in B(X)$ is power bounded with a power bound $M>0$ whenever $\left\|T^{n}\right\| \leq M$ for all positive integers n. In [6, Proposition 2.10] it was shown that if T is power bounded we have the following:

$$
J(T, x)=\{y: \text { there exists a strictly increasing sequence of positive integers }
$$

$\left(k_{n}\right)$ such that $\left.T^{k_{n}} x \rightarrow y\right\}$.
An operator $T \in B(X)$ is called a J-class ($J^{\text {mix }}$-class) operator if $J(T, x)=X\left(J^{m i x}(T, x)=X\right)$ for some $x \in X \backslash\{0\}$. The set of all $x \in X$ satisfying $J(T, x)=X\left(J^{m i x}(T, x)=X\right)$ is denoted by $A_{T}\left(A_{T}^{m i x}\right)$ and its elements are called the J-vectors ($J^{m i x}$-vectors) for T. It is well known that A_{T} is a closed subset of X and $A_{T}^{m i x}$ is a closed subspace of X. We know that $T \in B(X)$ is hypercyclic if and only if $A_{T}=X$. For a good source on these topics we refer the reader to $[1,3-6,15,16,18]$.

Recall that $x \in X \backslash\{0\}$ is called a periodic point for $T \in B(X)$ if $T^{n} x=x$ for some positive integer n. The smallest such number n is called the period of x.

2. Some properties of J-sets

Here we state and prove some properties of J-sets that will be used in the proof of our main results. The proof of the following lemma is straightforward and so we omit it.

Lemma 2.1 Suppose that $T \in B(X)$. Then for all $x, y \in X$ we have:
a) $J(T, x) \subseteq J(T, T x) \subseteq J\left(T, T^{2} x\right) \subseteq \cdots$,
b) $J^{m i x}(T, x) \subseteq J^{m i x}(T, T x) \subseteq J^{m i x}\left(T, T^{2} x\right) \subseteq \cdots$,
and equality holds if T has a bounded inverse.
c) $J\left(T^{m}, x\right) \subseteq J(T, x)$ for all $m \in \mathbb{N}$.

Lemma 2.2 Suppose that $T \in B(X)$. We have:
(a) If $\left(T^{n}\right)_{n}$ is a Cauchy sequence and it has a subsequence that converges to a bounded operator U in the
strong operator topology, then for every x, both sets $J(T, x)$ and $J^{m i x}(T, x)$ are equal to the singleton $\{U x\}$. (b) If $\left(T^{n}\right)_{n}$ converges to an operator U in the strong operator topology, then

$$
2 J\left(T, x_{1}+x_{2}\right)-U\left(x_{1}+x_{2}\right) \subseteq J\left(T, x_{1}\right)+J\left(T, x_{2}\right)
$$

for all $x_{1}, x_{2} \in X$. The same result holds for $J^{m i x}$-sets.
Proof a) Note that T is power bounded. Since for every $x \in X,\left(T^{n} x\right)_{n}$ is a Cauchy sequence that has a subsequence converging to $U x, T^{n} x \rightarrow U x$. Hence, $J^{m i x}(T, x)=J(T, x)=\{U x\}$.
b) Suppose that $y \in J\left(T, x_{1}+x_{2}\right)$. Then there exists a sequence $\left(w_{n}\right)_{n}$ in X and a strictly increasing sequence of positive integers $\left(k_{n}\right)_{n}$ such that $w_{n} \rightarrow x_{1}+x_{2}$ and $T^{k_{n}} w_{n} \rightarrow y$. Now we have

$$
w_{n}-x_{1} \rightarrow x_{2}, \quad T^{k_{n}}\left(w_{n}-x_{1}\right) \rightarrow y-U x_{1}
$$

and

$$
w_{n}-x_{2} \rightarrow x_{1}, \quad T^{k_{n}}\left(w_{n}-x_{2}\right) \rightarrow y-U x_{2}
$$

Hence, we get

$$
y-U x_{1} \in J\left(T, x_{2}\right), \quad y-U x_{2} \in J\left(T, x_{1}\right)
$$

and so

$$
2 y-U\left(x_{1}+x_{2}\right) \in J\left(T, x_{1}\right)+J\left(T, x_{2}\right)
$$

which gives the result. Putting $k_{n}=n$, by the same method we conclude (b) for $J^{m i x}$-sets.
Recall that for $T \in B(X)$, by $\{T\}^{\prime}$ we mean the collection of all bounded operators on X, which commutes with T.

Lemma 2.3 Suppose that $T \in B(X)$ and $U \in\{T\}^{\prime}$. For all positive integers m and $x \in X$, we have:
a) $U^{m}(J(T, x)) \subseteq J\left(T, U^{m} x\right)$,
b) $U^{m}\left(J^{m i x}(T, x)\right) \subseteq J^{m i x}\left(T, U^{m} x\right)$,
and equality holds if U has a bounded inverse. Moreover, if U is surjective, then A_{T} is a U-invariant subset and $A_{T}^{m i x}$ is a U-invariant subspace of X.

Proof See Lemma 2.6 in [2] for parts (a) and (b). If U has a bounded inverse, then for $z \in J\left(T, U^{m} x\right)$, there exists a strictly increasing sequence of positive integers $\left(k_{n}\right)_{n}$ and a sequence $\left(u_{n}\right)_{n}$ in X such that $u_{n} \rightarrow U^{m} x$ and $T^{k_{n}} u_{n} \rightarrow z$. We therefore get

$$
U^{-m} u_{n} \rightarrow x, \quad T^{k_{n}}\left(U^{-m} u_{n}\right) \rightarrow U^{-m} z
$$

This yields that $U^{-m} z \in J(T, x)$ and hence $z \in U^{m}(J(T, x))$. Putting $k_{n}=n$, we can prove it for $J^{m i x}$-sets. Now if $x \in A_{T}$, then $J(T, x)=X$, and so we have

$$
X=U(X)=U(J(T, x)) \subseteq J(T, U x) \subseteq X
$$

Hence, $U\left(A_{T}\right) \subseteq A_{T}$. Similarly, we can prove that $A_{T}^{m i x}$ is a U-invariant subspace.
A simple consequence of Lemma 2.11 in [6] yields that if x is a J-vector ($J^{m i x}$-vector) for T, then for any nonzero scalar $\lambda, \lambda x$ is a J-vector $\left(J^{m i x}\right.$-vector) for T. If $A_{T}\left(A_{T}^{m i x}\right)$ is nonempty, then it is an infinite set.

SADAT HOSSEINI and YOUSEFI/Turk J Math

3. On the property of J-reflexive operators

In this section, we first define the J-reflexive property, and then some properties of J-reflexive operators are investigated. We also state and prove necessary and sufficient conditions for an operator to be J-reflexive. Finally, we express J-reflexivity in terms of subsets. From now on, for simplicity, we denote the closure of a subset A in the strong operator topology by $\bar{A}^{S O T}$.

Definition 3.1 We call $T \in B(X)$ a J-reflexive operator if every bounded operator that leaves invariant $J(T, x)$ (for all x in X) is contained in the $\overline{\operatorname{orb}(T)}^{S O T}$. $J^{m i x}$-reflexivity can also be defined in a similar way.

It is clear that every J-reflexive operator on a Hilbert space is orbit-reflexive, but there exists an orbitreflexive operator that is not J-reflexive. See the following example.

Example 3.2 Suppose that U is a bilateral shift on $l^{2}(\mathbb{Z})$, i.e. $U f(n)=f(n-1)$ where $f \in l^{2}(\mathbb{Z})$. Then U is orbit-reflexive, since U is a normal operator [11]. We know that $U^{-1} f(n)=f(n+1)$, so U^{-1} does not belong to $\overline{\operatorname{orb}(U)}^{S O T}$. By Proposition 2.8 in [6], U^{-1} leaves invariant J-sets of U, so U is not J-reflexive.

It is easy to see that if $T \in B(X)$, and for all $x \in X, J(T, x)$ is an empty set or the whole space X or the singleton $\{0\}$, then T is not J-reflexive. For example, hypercyclic operators are not J-reflexive, since their J-sets are the whole space. However, the identity operator I is the only bounded operator for which $J(I, x)=\{x\}$ for all x. Obviously, I is J-reflexive.

Recall that if T is an operator, then the set $\{\lambda \in \mathbb{C}: \lambda I-T$ is not invertible $\}$ is called the spectrum of T and it is denoted by $\sigma(T)$. Now we investigate some properties of J-reflexive operators.

Theorem 3.3 Let $T \in B(X)$ be a J-reflexive operator. Then we have the following:
(a) If T is invertible, then $\left(T^{n}\right)_{n}$ has a subsequence that converges to I in the strong operator topology.
(b) If T is not identity and $\left(T^{n}\right)_{n}$ is a Cauchy sequence, then $0 \in \sigma(T)$.
(c) If T is not identity and is invertible, then $\left(T^{n}\right)_{n}$ diverges.

Proof a) Since by Proposition 2.8 in [6], T^{-1} leaves invariant $J(T, x)$ for all x, by the hypothesis there exists a sequence $\left(n_{k}\right)_{k}$ of positive integers such that $T^{-1} x=\lim _{k} T^{n_{k}} x$ for all x. Thus, $T^{n_{k}+1} \rightarrow I$ in the strong operator topology.
b) On the contrary, suppose that $0 \notin \sigma(T)$, so T is invertible, and by part (a), there exists a sequence of positive integers $\left(n_{k}\right)_{k}$ such that $T^{n_{k}} \rightarrow I$ in the strong operator topology. Since $\mathrm{B}(\mathrm{X})$ is a Banach space and $\left(T^{n}\right)_{n}$ is a Cauchy sequence, it follows that $T^{n} \rightarrow I$ in the strong operator topology. Similarly, since $T^{n_{k}+1} \rightarrow T$ in the strong operator topology, we have $T^{n} \rightarrow T$ in the strong operator topology and so $T=I$, which is a contradiction.
c) If $\left(T^{n}\right)_{n}$ converges, then by part (b), $0 \in \sigma(T)$, which is a contradiction.

Lemma 3.4 If $T \in B(X)$ is a J-reflexive operator, then $\|T\| \geq 1$.
Proof Suppose that $\|T\|<1$. Then, since $\left\|T^{n} x\right\| \leq\|T\|^{n}\|x\|$, we have

$$
J^{m i x}(T, x)=J(T, x)=\{0\}
$$

for all x. Hence, T can not be J-reflexive, which is a contradiction.

SADAT HOSSEINI and YOUSEFI/Turk J Math

Isomorphisms preserve the J-reflexive property, as follows.

Theorem 3.5 Suppose that X and Y are Banach spaces and $S: X \rightarrow Y$ is an isomorphism. If T is a J-reflexive operator on X, then $S T S^{-1}$ is also a J-reflexive operator on Y.

Proof First, we show that $J\left(S T S^{-1}, y\right)=S\left(J\left(T, S^{-1} y\right)\right)$. Note that since S is an isomorphism, S and S^{-1} are bounded. If $z \in J\left(S T S^{-1}, y\right)$, then there exist $\left(y_{n}\right)_{n}$ in Y and a strictly increasing sequence of positive integers $\left(k_{n}\right)_{n}$ such that $y_{n} \rightarrow y$ and $\lim _{n} S T^{k_{n}} S^{-1} y_{n}=z$. Since $S^{-1} y_{n} \rightarrow S^{-1} y$, we get $S^{-1} z \in J\left(T, S^{-1} y\right)$ and so $z \in S\left(J\left(T, S^{-1} y\right)\right)$. Thus,

$$
J\left(S T S^{-1}, y\right) \subseteq S\left(J\left(T, S^{-1} y\right)\right)
$$

Conversely, if $z \in S\left(J\left(T, S^{-1} y\right)\right)$, then there exist $x \in X,\left(u_{n}\right)_{n} \subseteq X$, and a strictly increasing sequence of positive integers $\left(k_{n}\right)_{n}$ such that

$$
z=S x, u_{n} \rightarrow S^{-1} y \text { and } \lim _{n} T^{k_{n}} u_{n}=x
$$

Putting $v_{n}=S u_{n}$, then $v_{n} \rightarrow y$ and we have

$$
z=S x=\lim _{n} S T^{k_{n}} S^{-1} v_{n}
$$

Hence, $z \in J\left(S T S^{-1}, y\right)$. Now if $W \in B(Y)$ leaves invariant the sets $J\left(S T S^{-1}, y\right)$, then for all $y \in Y$, we have

$$
W S\left(J\left(T, S^{-1} y\right)\right) \subseteq S\left(J\left(T, S^{-1} y\right)\right)
$$

Therefore, we get

$$
S^{-1} W S\left(J\left(T, S^{-1} y\right)\right) \subseteq J\left(T, S^{-1} y\right)
$$

By the J-reflexivity of T, there exists a sequence $\left(n_{k}\right)_{k}$ of positive integers such that

$$
S^{-1} W S x=\lim _{k} T^{n_{k}} x
$$

for all $x \in X$. Putting $u=S x$, we have

$$
W u=\lim _{k}\left(S T S^{-1}\right)^{n_{k}} u
$$

for all $u \in Y$ and the proof is complete.
In the following theorem, the sufficient conditions for the J-reflexivity of an operator are given.

Theorem 3.6 Let $T \in B(X)$. If T satisfies one of the following statements, then T is J-reflexive:
a) T is a power bounded operator that has no periodic point and $x \in J(T, x)$ for all $x \in X$.
b) T is power bounded and invertible, and there exists $m \in \mathbb{N}$ such that $T^{m} x \in J(T, x)$ for all $x \in X$.
c) T is invertible and there exists positive integer m such that $T^{m}=I$.

Proof Let T satisfy in (a) and suppose on the contrary that T is not J-reflexive. Then there exists an operator $S \in B(X) \backslash \overline{\operatorname{orb}(T)}^{S O T}$ such that

$$
S(J(T, x)) \subseteq J(T, x)
$$

SADAT HOSSEINI and YOUSEFI/Turk J Math

for all $x \in X$. Therefore, there exist $x_{0} \in X$ and $\delta>0$ such that $B\left(S x_{0} ; \delta\right) \cap \operatorname{orb}\left(T, x_{0}\right)$ is a finite set. Since $x_{0} \in J\left(T, x_{0}\right), S x_{0} \in J\left(T, x_{0}\right)$, and this means that there exists a strictly increasing sequence of positive integers $\left(k_{n}\right)_{n}$ such that

$$
S x_{0}=\lim _{n} T^{k_{n}} x_{0} .
$$

This is possible only if x_{0} is a periodic point for T, which is a contradiction. Now suppose that (b) holds. Let $W \in B(X)$ be such that $W(J(T, x)) \subseteq J(T, x)$ for all x. The surjectivity of T yields the surjectivity of T^{m} and therefore for every $z \in X$ there exists $x \in X$ such that $z=T^{m} x$. Since for all $x, T^{m} x \in J(T, x)$, we have $W\left(T^{m} x\right) \in J(T, x)$ and therefore there exists a strictly increasing sequence of positive integers $\left(k_{n}\right)_{n}$ such that

$$
W z=W\left(T^{m} x\right)=\lim _{n} T^{k_{n}} x=\lim _{n} T^{k_{n}-m} z
$$

Thus, $W \in \overline{\operatorname{orb}(T)}^{S O T}$ and T is J-reflexive. Finally, assume that (c) holds. Since $T^{m}=I$, $\operatorname{orb}(T)$ is a finite set and therefore T is power bounded. On the other hand, for all $x, T x \in J\left(T^{m}, T x\right)$, and then by Lemma 2.1 (c), $T x \in J(T, T x)$. Eventually, Lemma 2.1 (a) (equality holds) yields that $T x \in J(T, x)$. Now by using (b), we get the desired result.

Recall that the space of convergent sequences is usually denoted by c. This is a Banach space over \mathbb{C} or \mathbb{R} under the supremum norm.

Example 3.7 Define $T: c \rightarrow c$ by

$$
T\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(x_{2}, x_{1}, x_{3}, \cdots\right) .
$$

Clearly T is invertible, and $\|T\|=1$. Since for any $x \in X$ and all $n \in \mathbb{N}$ we have $T^{2 n+1} x=T x$, thus $\left(T^{2}\right)^{n}(T x)=T x$ and so $T x \in J\left(T^{2}, x\right)$. Now $T x \in J(T, x)$ by Lemma 2.1 (c). Indeed, $J(T, x)=\{x, T x\}$ for all x. Hence, T is J-reflexive by Theorem 3.6 (b).

Example 3.8 Let $p(A)$ be a permutation p on a finite set A. Define $S_{i j}$ on c by

$$
S_{i j}\left(x_{1}, x_{2}, \cdots\right)=\left(x_{1}, \cdots, x_{i-1}, p\left\{x_{i}, \cdots, x_{j}\right\}, x_{j+1}, \cdots\right) .
$$

If m is the smallest positive integer satisfying $p^{m+1}=p$, then $S_{i j}^{m+1} x=S_{i j} x$. Thus, $S_{i j} x \in J\left(S_{i j}^{m}, x\right)$ and by Lemma 2.1 (c), $S_{i j} x \in J\left(S_{i j}, x\right)$. Indeed,

$$
J\left(S_{i j}, x\right)=\left\{x, S_{i j} x, \cdots, S_{i j}^{m-1} x\right\}
$$

Now by Theorem 3.6 (b), it follows that $S_{i j}$ is J-reflexive.
Example 3.9 Let H be a real Hilbert space and $\Lambda: B(H) \rightarrow B(H)$ be defined by $\Lambda(T)=T^{*}$. Then $\Lambda^{2}=I$ and Λ is J-reflexive by Theorem 3.6 (c).

Next we present some examples of J-reflexive and non- J-reflexive operators on finite dimensional spaces.
Example 3.10 Let T be defined on the space of complex $n \times n$ matrices by $T(A)=A^{t}$ where A^{t} is the transpose of A. Since $T^{2}=I, T$ is J-reflexive by Theorem 3.6 (c).

Example 3.11 Suppose that $\operatorname{dim} X=1$ and T is defined on X by $T x=(1 / 2) x$. Then $\|T\|<1$, and by Lemma 3.4, it follows that T is not J-reflexive.

The concept of J-reflexivity can be expressed in terms of subsets as follows.
Definition 3.12 Let T be a bounded linear operator on a Banach space X and M be a subset of X. We call $T M-J$-reflexive if every $W \in B(X)$ that leaves invariant $J(T, x)$ for all x in M is contained in $\overline{\text { orb }}(T)^{\text {SOT. }}$. $M-J^{m i x}$-reflexivity can also be defined in a similar way.

It is clear that M - J-reflexivity implies J-reflexivity. The converse is true for power bounded operators and dense subsets.

Theorem 3.13 If $T \in B(X)$ is J-reflexive and power bounded and M is a dense subset of X, then T is $M-J$-reflexive.

Proof Assume that $W \in B(X)$ leaves invariant $J(T, z)$ for all $z \in M$. It is enough to show that W leaves invariant $J(T, x)$ for all $x \in X$. Suppose that $x \in X$ and $y \in J(T, x)$. Then there exists a strictly increasing sequence of positive integers $\left(k_{n}\right)_{n}$ such that $y=\lim _{n} T^{k_{n}} x$. By density of M, we can find sequences $\left(x_{n}\right)_{n}$ and $\left(y_{n}\right)_{n}$ in M such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$. Thus, for every $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, we have

$$
\left\|x_{n}-x\right\|<\epsilon / 3 L,\left\|y_{n}-y\right\|<\epsilon / 3,\left\|y-T^{k_{n}} x\right\|<\epsilon / 3
$$

, where L is a power bound of T. Now for $m, n \geq N$, we get

$$
\left\|y_{m}-T^{k_{n}} x_{m}\right\| \leq\left\|y_{m}-y\right\|+\left\|y-T^{k_{n}} x\right\|+\left\|T^{k_{n}}\right\|\left\|x-x_{m}\right\|<\epsilon
$$

Thus, $y_{m} \in J\left(T, x_{m}\right)$ and therefore $W y_{m} \in J\left(T, x_{m}\right)$ for $m \geq N$. Since $W y_{m}$ tends to $W y$, by applying the same method that has been used in the proof of Lemma 2.5 in [5], we obtain that $W y \in J(T, x)$. This completes the proof.

References

[1] Ayadi A, Marzougui H. J-class abelian semigroups of matrices on \mathbb{C}^{n} and hypercyclicity. RACSAM Rev R Acad A 2014; 108: 557-566.
[2] Azimi MR. J-class sequences of linear operators. Complex Anal Oper Th 2018; 12: 293-303.
[3] Azimi MR, Müler V. A note on J-sets of linear operators. RACSAM Rev R Acad A 2011; 105: 449-453.
[4] Bayart F, Matheron É. Dynamics of Linear Operators. New York, NY, USA: Cambridge University Press, 2009.
[5] Costakis G, Manoussos A. J-class weighted shifts on the space of bounded sequences of complex numbers. Integr Equat Oper Th 2008; 62: 149-158.
[6] Costakis G, Manoussos A. J-class operators and hypercyclicity. J Operat Theor 2012; 67: 101-119.
[7] Enflo P. On the invariant subspace problem for Banach spaces. Acta Math-Djursholm 1987; 158: 213-313.
[8] Esterle J. Operators of Read's type are not orbit-reflexive. Integr Equat Oper Th 2009; 63: 591-593.
[9] Hadwin D, Ionascu I, McHugh M, Yousefi H. \mathbb{C}-orbit reflexive operators. Oper Matrices 2011; 5: 511-527.
[10] Hadwin D, Ionascu I, Yousefi H. Null-orbit reflexive operators. Oper Matrices 2012; 6: 567-576.
[11] Hadwin D, Nordgren E, Radjavi H, Rosenthal P. Orbit-reflexive operators. J Lond Math Soc 1986; 34: 111-119.
[12] Halmos PR. Invariant subspaces. In: Butzer PL, Szökefalvi-Nagy B, editors. Abstract Spaces and Approximation Proceedings of the Conference; 18-27 July 1968; Mathematical Research Institute of Oberwolfach, Germany. Basel, Switzerland: Birkhäuser, 1969, pp. 26-30.
[13] McHugh M. Orbit-reflexivity. PhD, University of New Hampshire, Durham, NH, USA, 1995.
[14] Müller V, Vrsovsky L. On orbit reflexive operators. J Lond Math Soc 2009; 79: 497-510.
[15] Nasseri AB. J-class operators on certain Banach spaces. PhD, Technical University of Dortmund, Dortmund, Germany, 2013.
[16] Nasseri AB. Operators on l^{∞} with totally disconnected spectrum and applications to J-class operators. J Math Anal Appl 2014; 410: 94-100.
[17] Radjavi H, Rosenthal P. Invariant Subspaces. New York, NY, USA: Springer-Verlag, 1973.
[18] Tian G, Hou BN. Limits of J-class operators. P Am Math Soc 2014; 142: 1663-1667.

[^0]: *Correspondence: psadath@farspnu.ac.ir
 2010 AMS Mathematics Subject Classification: Primary 47A65; Secondary 47B99

