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Abstract: A bounded linear operator T on a Banach space X is J -reflexive if every bounded operator on X that
leaves invariant the sets J(T, x) for all x is contained in the closure of orb(T ) in the strong operator topology. We
discuss some properties of J -reflexive operators. We also give and prove some necessary and sufficient conditions under
which an operator is J -reflexive. We show that isomorphisms preserve J -reflexivity and some examples are considered.
Finally, we extend the J -reflexive property in terms of subsets.
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1. Introduction
One of the most challenging problems in operator theory is the “invariant subspace problem”, which asks whether
every operator on a Hilbert space (more generally, a Banach space) admits a nontrivial invariant subspace. Here,
“operator” means “continuous linear transformation” and “invariant subspace” means “closed linear manifold
such that the operator maps it to itself”. A subspace is nontrivial if it is neither the zero subspace nor the
whole space. An example constructed by Enflo [7] shows that for some Banach spaces there do exist operators
with only trivial invariant subspaces. For a Hilbert space, however, the invariant subspace problem remains
open. There is a deep connection between invariant subspaces of an operator and its reflexivity. Reflexive
operators are those that can be identified by their nontrivial invariant subspaces and they have been studied
for a few decades. For a good source on reflexivity, see [12] by Halmos. An operator T is reflexive if any
operator that leaves invariant, T -invariant subspaces belongs to the closure of {P (T ) : P is a polynomial} in
the weak operator topology [12, 17]. In [11], the authors introduced orbit-reflexivity: an operator T on a
Hilbert space is orbit-reflexive if the only operators that leave invariant every norm closed T -invariant subset
are contained in the closure of orb(T ) in the strong operator topology. For example, compact operators, normal
operators, contractions, and weighted shifts on the Hilbert spaces are orbit-reflexive [11]. Hadwin et al. in
[10] also introduced and studied the notion of null-orbit reflexivity, which is a slight perturbation of the notion
of orbit-reflexivity. The class of null-orbit reflexive operators includes the classes of hyponormal, algebraic,
compact, strictly block-upper (lower) triangular operators, and operators whose spectral radius is not 1. They
also proved that every polynomially bounded operator on a Hilbert space is both orbit-reflexive and null-orbit
reflexive. For further references on these topics, see [8–11, 13, 14].
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In this paper, our purpose is to characterize operators on Banach spaces that can be identified by their
J -sets. First, we give some preliminaries that we need to give our results.

Let X be a complex Banach space and denote by B(X) the space of all bounded linear operators on X .
For T ∈ B(X) , the set orb(T ) = {Tn : n ≥ 0} is called the orbit of T .

If X is a separable Banach space and orb(T, x) = {Tnx : n ≥ 0} is dense in X for some x , then T is
called a hypercyclic operator and we call x a hypercyclic vector.

The J -set of T under x , J(T, x) , is defined by:

J(T, x) = {y : there exists a strictly increasing sequence of positive integers

(kn) and a sequence (xn) ⊂ X such that xn → x, T knxn → y}.
The set

Jmix(T, x) = {y : there exists a sequence (xn) ⊂ X such that xn → x and

Tnxn → y}

is called the Jmix -set of T under x . The sets J(T, x) and Jmix(T, x) are closed T -invariant subsets of X . If
T is invertible, then all J -sets are T−1 -invariant. For more details, see [6].

Recall that we say T ∈ B(X) is power bounded with a power bound M > 0 whenever ∥Tn∥ ≤ M for
all positive integers n . In [6, Proposition 2.10] it was shown that if T is power bounded we have the following:

J(T, x) = {y : there exists a strictly increasing sequence of positive integers

(kn) such that T knx → y}.

An operator T ∈ B(X) is called a J -class (Jmix -class) operator if J(T, x) = X (Jmix(T, x) = X ) for
some x ∈ X\{0}. The set of all x ∈ X satisfying J(T, x) = X (Jmix(T, x) = X) is denoted by AT (Amix

T ) and
its elements are called the J -vectors (Jmix -vectors) for T . It is well known that AT is a closed subset of X

and Amix
T is a closed subspace of X . We know that T ∈ B(X) is hypercyclic if and only if AT = X. For a

good source on these topics we refer the reader to [1, 3–6, 15, 16, 18].
Recall that x ∈ X\{0} is called a periodic point for T ∈ B(X) if Tnx = x for some positive integer n .

The smallest such number n is called the period of x .

2. Some properties of J -sets
Here we state and prove some properties of J -sets that will be used in the proof of our main results. The proof
of the following lemma is straightforward and so we omit it.

Lemma 2.1 Suppose that T ∈ B(X) . Then for all x, y ∈ X we have:
a) J(T, x) ⊆ J(T, Tx) ⊆ J(T, T 2x) ⊆ · · ·,
b) Jmix(T, x) ⊆ Jmix(T, Tx) ⊆ Jmix(T, T 2x) ⊆ · · ·,
and equality holds if T has a bounded inverse.
c) J(Tm, x) ⊆ J(T, x) for all m ∈ N.

Lemma 2.2 Suppose that T ∈ B(X) . We have:
(a) If (Tn)n is a Cauchy sequence and it has a subsequence that converges to a bounded operator U in the
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strong operator topology, then for every x , both sets J(T, x) and Jmix(T, x) are equal to the singleton {Ux} .
(b) If (Tn)n converges to an operator U in the strong operator topology, then

2J(T, x1 + x2)− U(x1 + x2) ⊆ J(T, x1) + J(T, x2)

for all x1, x2 ∈ X. The same result holds for Jmix -sets.

Proof a) Note that T is power bounded. Since for every x ∈ X , (Tnx)n is a Cauchy sequence that has a
subsequence converging to Ux , Tnx → Ux . Hence, Jmix(T, x) = J(T, x) = {Ux}.
b) Suppose that y ∈ J(T, x1+x2) . Then there exists a sequence (wn)n in X and a strictly increasing sequence
of positive integers (kn)n such that wn → x1 + x2 and T knwn → y. Now we have

wn − x1 → x2, T kn(wn − x1) → y − Ux1

and
wn − x2 → x1, T kn(wn − x2) → y − Ux2.

Hence, we get
y − Ux1 ∈ J(T, x2), y − Ux2 ∈ J(T, x1),

and so
2y − U(x1 + x2) ∈ J(T, x1) + J(T, x2),

which gives the result. Putting kn = n , by the same method we conclude (b) for Jmix -sets. 2

Recall that for T ∈ B(X) , by {T}′ we mean the collection of all bounded operators on X , which
commutes with T .

Lemma 2.3 Suppose that T ∈ B(X) and U ∈ {T}′ . For all positive integers m and x ∈ X, we have:
a) Um(J(T, x)) ⊆ J(T,Umx),

b) Um(Jmix(T, x)) ⊆ Jmix(T,Umx),

and equality holds if U has a bounded inverse. Moreover, if U is surjective, then AT is a U -invariant subset
and Amix

T is a U -invariant subspace of X .

Proof See Lemma 2.6 in [2] for parts (a) and (b). If U has a bounded inverse, then for z ∈ J(T,Umx) , there
exists a strictly increasing sequence of positive integers (kn)n and a sequence (un)n in X such that un → Umx

and T knun → z. We therefore get

U−mun → x, T kn(U−mun) → U−mz.

This yields that U−mz ∈ J(T, x) and hence z ∈ Um(J(T, x)). Putting kn = n , we can prove it for Jmix -sets.
Now if x ∈ AT , then J(T, x) = X , and so we have

X = U(X) = U(J(T, x)) ⊆ J(T,Ux) ⊆ X.

Hence, U(AT ) ⊆ AT . Similarly, we can prove that Amix
T is a U-invariant subspace. 2

A simple consequence of Lemma 2.11 in [6] yields that if x is a J -vector (Jmix -vector) for T , then for
any nonzero scalar λ , λx is a J -vector (Jmix -vector) for T . If AT (Amix

T ) is nonempty, then it is an infinite
set.
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3. On the property of J -reflexive operators
In this section, we first define the J -reflexive property, and then some properties of J -reflexive operators are
investigated. We also state and prove necessary and sufficient conditions for an operator to be J -reflexive.
Finally, we express J -reflexivity in terms of subsets. From now on, for simplicity, we denote the closure of a

subset A in the strong operator topology by A
SOT .

Definition 3.1 We call T ∈ B(X) a J -reflexive operator if every bounded operator that leaves invariant

J(T, x) (for all x in X) is contained in the orb(T )
SOT . Jmix -reflexivity can also be defined in a similar way.

It is clear that every J -reflexive operator on a Hilbert space is orbit-reflexive, but there exists an orbit-
reflexive operator that is not J -reflexive. See the following example.

Example 3.2 Suppose that U is a bilateral shift on l2(Z) , i.e. Uf(n) = f(n − 1) where f ∈ l2(Z) . Then
U is orbit-reflexive, since U is a normal operator [11]. We know that U−1f(n) = f(n + 1) , so U−1 does not

belong to orb(U)
SOT . By Proposition 2.8 in [6], U−1 leaves invariant J -sets of U , so U is not J -reflexive.

It is easy to see that if T ∈ B(X) , and for all x ∈ X , J(T, x) is an empty set or the whole space X

or the singleton {0} , then T is not J -reflexive. For example, hypercyclic operators are not J -reflexive, since
their J -sets are the whole space. However, the identity operator I is the only bounded operator for which
J(I, x) = {x} for all x . Obviously, I is J -reflexive.

Recall that if T is an operator, then the set {λ ∈ C : λI − T is not invertible} is called the spectrum of
T and it is denoted by σ(T ) . Now we investigate some properties of J -reflexive operators.

Theorem 3.3 Let T ∈ B(X) be a J -reflexive operator. Then we have the following:
(a) If T is invertible, then (Tn)n has a subsequence that converges to I in the strong operator topology.
(b) If T is not identity and (Tn)n is a Cauchy sequence, then 0 ∈ σ(T ).

(c) If T is not identity and is invertible, then (Tn)n diverges.

Proof a) Since by Proposition 2.8 in [6] , T−1 leaves invariant J(T, x) for all x , by the hypothesis there exists
a sequence (nk)k of positive integers such that T−1x = limkT

nkx for all x . Thus, Tnk+1 → I in the strong
operator topology.
b) On the contrary, suppose that 0 /∈ σ(T ), so T is invertible, and by part (a), there exists a sequence of positive
integers (nk)k such that Tnk → I in the strong operator topology. Since B(X) is a Banach space and (Tn)n

is a Cauchy sequence, it follows that Tn → I in the strong operator topology. Similarly, since Tnk+1 → T

in the strong operator topology, we have Tn → T in the strong operator topology and so T = I , which is a
contradiction.
c) If (Tn)n converges, then by part (b), 0 ∈ σ(T ) , which is a contradiction. 2

Lemma 3.4 If T ∈ B(X) is a J -reflexive operator, then ∥T∥ ≥ 1 .

Proof Suppose that ∥T∥ < 1 . Then, since ∥Tnx∥ ≤ ∥T∥n∥x∥ , we have

Jmix(T, x) = J(T, x) = {0}

for all x . Hence, T can not be J -reflexive, which is a contradiction. 2
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Isomorphisms preserve the J -reflexive property, as follows.

Theorem 3.5 Suppose that X and Y are Banach spaces and S : X → Y is an isomorphism. If T is a
J -reflexive operator on X , then STS−1 is also a J -reflexive operator on Y.

Proof First, we show that J(STS−1, y) = S(J(T, S−1y)) . Note that since S is an isomorphism, S and S−1

are bounded. If z ∈ J(STS−1, y), then there exist (yn)n in Y and a strictly increasing sequence of positive
integers (kn)n such that yn → y and limn ST

knS−1yn = z . Since S−1yn → S−1y , we get S−1z ∈ J(T, S−1y)

and so z ∈ S(J(T, S−1y)) . Thus,
J(STS−1, y) ⊆ S(J(T, S−1y)).

Conversely, if z ∈ S(J(T, S−1y)) , then there exist x ∈ X , (un)n ⊆ X , and a strictly increasing sequence of
positive integers (kn)n such that

z = Sx, un → S−1y and lim
n

T knun = x.

Putting vn = Sun , then vn → y and we have

z = Sx = lim
n

ST knS−1vn.

Hence, z ∈ J(STS−1, y) . Now if W ∈ B(Y ) leaves invariant the sets J(STS−1, y) , then for all y ∈ Y, we have

WS(J(T, S−1y)) ⊆ S(J(T, S−1y)).

Therefore, we get
S−1WS(J(T, S−1y)) ⊆ J(T, S−1y).

By the J -reflexivity of T , there exists a sequence (nk)k of positive integers such that

S−1WSx = lim
k

Tnkx

for all x ∈ X . Putting u = Sx , we have

Wu = lim
k
(STS−1)nku

for all u ∈ Y and the proof is complete. 2

In the following theorem, the sufficient conditions for the J -reflexivity of an operator are given.

Theorem 3.6 Let T ∈ B(X) . If T satisfies one of the following statements, then T is J -reflexive:
a) T is a power bounded operator that has no periodic point and x ∈ J(T, x) for all x ∈ X .
b) T is power bounded and invertible, and there exists m ∈ N such that Tmx ∈ J(T, x) for all x ∈ X .
c) T is invertible and there exists positive integer m such that Tm = I .

Proof Let T satisfy in (a) and suppose on the contrary that T is not J -reflexive. Then there exists an

operator S ∈ B(X)\orb(T )
SOT such that

S(J(T, x)) ⊆ J(T, x)
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for all x ∈ X . Therefore, there exist x0 ∈ X and δ > 0 such that B(Sx0; δ) ∩ orb(T, x0) is a finite set.
Since x0 ∈ J(T, x0) , Sx0 ∈ J(T, x0) , and this means that there exists a strictly increasing sequence of positive
integers (kn)n such that

Sx0 = lim
n

T knx0.

This is possible only if x0 is a periodic point for T , which is a contradiction. Now suppose that (b) holds. Let
W ∈ B(X) be such that W (J(T, x)) ⊆ J(T, x) for all x . The surjectivity of T yields the surjectivity of Tm

and therefore for every z ∈ X there exists x ∈ X such that z = Tmx . Since for all x , Tmx ∈ J(T, x) , we have
W (Tmx) ∈ J(T, x) and therefore there exists a strictly increasing sequence of positive integers (kn)n such that

Wz = W (Tmx) = lim
n

T knx = lim
n

T kn−mz.

Thus, W ∈ orb(T )
SOT and T is J -reflexive. Finally, assume that (c) holds. Since Tm = I , orb(T ) is a finite

set and therefore T is power bounded. On the other hand, for all x , Tx ∈ J(Tm, Tx) , and then by Lemma 2.1
(c), Tx ∈ J(T, Tx). Eventually, Lemma 2.1 (a) (equality holds) yields that Tx ∈ J(T, x) . Now by using (b),
we get the desired result. 2

Recall that the space of convergent sequences is usually denoted by c . This is a Banach space over C or
R under the supremum norm.

Example 3.7 Define T : c → c by

T (x1, x2, x3, · · ·) = (x2, x1, x3, · · ·).

Clearly T is invertible, and ∥T∥ = 1 . Since for any x ∈ X and all n ∈ N we have T 2n+1x = Tx , thus
(T 2)n(Tx) = Tx and so Tx ∈ J(T 2, x). Now Tx ∈ J(T, x) by Lemma 2.1 (c). Indeed, J(T, x) = {x, Tx} for
all x . Hence, T is J -reflexive by Theorem 3.6 (b).

Example 3.8 Let p(A) be a permutation p on a finite set A . Define Sij on c by

Sij(x1, x2, · · ·) = (x1, · · ·, xi−1, p{xi, · · ·, xj}, xj+1, · · ·).

If m is the smallest positive integer satisfying pm+1 = p , then Sm+1
ij x = Sijx . Thus, Sijx ∈ J(Sm

ij , x) and by
Lemma 2.1 (c), Sijx ∈ J(Sij , x). Indeed,

J(Sij , x) = {x, Sijx, · · ·, Sm−1
ij x}.

Now by Theorem 3.6 (b), it follows that Sij is J -reflexive.

Example 3.9 Let H be a real Hilbert space and Λ : B(H) → B(H) be defined by Λ(T ) = T ∗ . Then Λ2 = I

and Λ is J -reflexive by Theorem 3.6 (c).

Next we present some examples of J -reflexive and non-J -reflexive operators on finite dimensional spaces.

Example 3.10 Let T be defined on the space of complex n × n matrices by T (A) = At where At is the
transpose of A . Since T 2 = I , T is J -reflexive by Theorem 3.6 (c).
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Example 3.11 Suppose that dim X = 1 and T is defined on X by Tx = (1/2)x . Then ∥T∥ < 1 , and by
Lemma 3.4, it follows that T is not J -reflexive.

The concept of J -reflexivity can be expressed in terms of subsets as follows.

Definition 3.12 Let T be a bounded linear operator on a Banach space X and M be a subset of X . We call

T M -J -reflexive if every W ∈ B(X) that leaves invariant J(T, x) for all x in M is contained in orb(T )
SOT .

M -Jmix -reflexivity can also be defined in a similar way.

It is clear that M -J -reflexivity implies J -reflexivity. The converse is true for power bounded operators
and dense subsets.

Theorem 3.13 If T ∈ B(X) is J -reflexive and power bounded and M is a dense subset of X , then T is
M -J -reflexive.

Proof Assume that W ∈ B(X) leaves invariant J(T, z) for all z ∈ M . It is enough to show that W leaves
invariant J(T, x) for all x ∈ X . Suppose that x ∈ X and y ∈ J(T, x) . Then there exists a strictly increasing
sequence of positive integers (kn)n such that y = limn T

knx . By density of M , we can find sequences (xn)n

and (yn)n in M such that xn → x and yn → y . Thus, for every ϵ > 0 , there exists N ∈ N such that for all
n ≥ N , we have

∥xn − x∥ < ϵ/3L, ∥yn − y∥ < ϵ/3, ∥y − T knx∥ < ϵ/3

, where L is a power bound of T . Now for m,n ≥ N , we get

∥ym − T knxm∥ ≤ ∥ym − y∥+ ∥y − T knx∥+ ∥T kn∥∥x− xm∥ < ϵ.

Thus, ym ∈ J(T, xm) and therefore Wym ∈ J(T, xm) for m ≥ N . Since Wym tends to Wy , by applying
the same method that has been used in the proof of Lemma 2.5 in [5], we obtain that Wy ∈ J(T, x) . This
completes the proof. 2
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