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Abstract: The localization theorem is known for compact G -spaces, where G is a compact Lie group. In this study,
we show that the localization theorem remains true for finite-dimensional compact group actions, and Borel’s fixed point
theorem holds not only for torus actions but for arbitrary finite-dimensional compact connected abelian group actions.
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1. Introduction
The abelian localization theorem of Borel, Atiyah-Segal, and Quillen was introduced in [1, 2, 13]. Furthermore,
Hsiang [7] stated the general form of the localization theorem as follows:

Theorem 1.1 Let G be a compact Lie group and X be a compact or a paracompact space of finite cohomological
dimension and finitely many orbit types. Let S ⊆ H∗(BG,Q) be a multiplicative system (i.e. multiplicative
semigroup with {1} ⊆ S ) and

XS = {x ∈ X : no element of S maps to zero in H∗(BG,Q)→ H∗(BGx ,Q)}.

Then the localized restriction homomorphism

S−1H∗
G (X,Q)→ S−1H∗

G

(
XS ,Q

)
is an isomorphism.

Remark 1.2 The localization theorem above was extended by Deo et al. [4] for compact Lie group actions on
finitistic spaces with finitely many orbit types.

The localization theorem is a powerful tool for cohomology theory of compact, especially compact abelian,
transformation groups. One of the most profound results of the localization theorem is to determine the
cohomology structure of a fixed point set by the equivariant cohomology of the space for the torus or p -torus
actions.

The following well-known Borel’s fixed point theorem is one of the important consequences of the
localization theorem.
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Theorem 1.3 Let G be a finite-dimensional torus and X be a compact G-space. Then the fixed point set
XG ̸= ∅ if and only if H∗ (BG,Q)→ H∗

G (X,Q) is injective [2].

In this paper, the localization theorem has been proved for finite-dimensional compact group actions
on compact spaces and as a corollary we extend Borel’s fixed point theorem to finite-dimensional compact
connected abelian transformation groups.

2. Preliminaries
The Borel construction is a powerful tool for cohomology theory of topological transformation groups. It is
defined as follows:

For any topological group G , we have a universal principal G -bundle EG → BG (see Milnor [9, 10]).
BG is unique up to homotopy equivalence and is called the classifying space of G .

Let X be a G -space. There is the diagonal action on EG ×X and the Borel construction is defined to
be the orbit space (EG ×X)/G and denoted by XG . This leads to the following commutative diagram:

X

�� iG $$J
JJ

JJ
JJ

JJ
J EG ×Xoo //

��

EG

��
X/G XGπ2

oo
π1

// BG

where π1 is a fiber bundle mapping with fiber X and structure group G/K where K is the ineffective kernel
of the G action on X , π2 is a mapping such that π−1

2 (x∗) = BGx
, where x∗ ∈ X/G , and x ∈ x∗ . Moreover,

H∗ (XG, k) is an algebra over H∗ (BG, k) by π∗
1 : H∗ (BG, k) → H∗ (XG, k) , which is called the equivariant

graded cohomology algebra of X with coefficient k and denoted by H∗
G (X; k) .

Remark 2.1 Some results in Alexander–Spanier cohomology are in need of some compactness assumptions (for
example, Proposition 3.1.). Even if G is a compact group and X is a compact G-space, BG and XG are
not necessarily compact. It is often convenient to consider N -classifying space BN

G (compact) instead of BG .
Since the morphisms Hi

(
BN+1

G ,Q
)
→ Hi

(
BN

G ,Q
)

are isomorphisms for all i < N [6, III; Proposition 1.8],
then Hi (BG,Q) is canonically isomorphic to Hi

(
BN

G ,Q
)

for all i < N . To prove any result for equivariant
cohomology, H∗ (BN

G ,Q
)

can be taken into H∗ (BG,Q) for sufficiently large N without loss of generality.
Similarly, let EN

G be the inverse image of BN
G under the map EG → BG . Let us define XN

G = X×GEN
G . Note

that EN
G is compact and (N − 1)-connected (i.e. Hi

(
EN

G ,Q
)
= Hi (pt,Q) for all i < N ), and so XN

G is also
compact. By Vietoris–Begle mapping theorem for sheaf cohomology [13], the inclusion XN

G → XG induces an
isomorphism

Hi (XG,Q)→ Hi
(
XN

G ,Q
)

for i < N . One can assume H∗ (XN
G ,Q

)
instead of H∗ (XG,Q) for sufficiently large N without loss of

generality.

The Mayer–Vietoris exact sequence for equivariant cohomology follows from its ordinary nonequivariant
version. If A and B are closed invariant subspaces of the G -space X , there is a long exact sequence
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· · · → Hi
G (A ∪B, k)→ Hi

G (A, k)⊕Hi
G (B, k)→ Hi

G (A ∩B, k)→ Hi+1
G (A ∪B, k)→ · · ·

of H∗(BG) -modules.

This paper deals with finite-dimensional compact groups. Therefore, we need to recall the dimension of
a compact Hausdorff topological space.

Definition 2.2 Let X be a compact Hausdorff space. We say that X has dimension n ≥ 0 if the following
two conditions are satisfied:

1) For every finite covering of X by open sets there exists a finite covering Σ by closed sets that refines
the given covering and, for each x ∈ X , the number of the sets of Σ that contain x is at most n+ 1 .

2)There exists a finite covering of X by open sets such that if Σ is a finite closed refinement of this
covering then the number of the sets of Σ that contain x exceeds n . If the dimension of X is n then we denote
dimX = n .

If G is a compact group (we always include the Hausdorff separation axiom) then the dimension of G is
the dimension of the space G . Of course, we say that G is finite-dimensional compact group if dimG = n for
some n ≥ 0 .

Remark 2.3 1. There are various dimension functions. Topological dimension, small inductive dimension,
local large inductive dimension, cohomological dimension, and sheaf theoretical dimension are frequently used.
For an arbitrary compact group G , all these dimensions agree, and when finite dimG = rankĜ where Ĝ is a
character group of G .

2. An important fact about finite-dimensional compact groups is that they have a totally disconnected
closed normal subgroup such that the factor group is a compact Lie group with the same dimension (see for
details [12, Theorem 69]).

We need a few facts about finite-dimensional compact groups.

Theorem 2.4 (Nagami, [11]) Any closed subgroup of a locally compact, finite-dimensional group has a local
cross section.

According to the above, if G is a finite-dimensional compact group and N is a closed normal subgroup of G ,
then the quotient map G→ G/N is a principal N -bundle.

The proof of the next theorem can also be found in the 1974 work of Bruner et al.
(https://www.math.uchicago.edu/ may/CHAR/charclasses.pdf).

Theorem 2.5 If G is a finite-dimensional compact group and N is a closed normal subgroup of G , then
up to homotopy, the sequence BN → BG → BG/N , induced by the inclusion N ↪→ G and the quotient map
G→ G/N , is a fiber sequence.

Proof Let EG → BG and EG/N → BG/N be universal bundles for G and G/N and take EG → EG/N = BN

to be the universal bundle for N . We may assume given a map Ej : EG → EG/N such that (Ej) (yg) =
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(Ej) (y) j (g) . Since j (n) = e for n ∈ N , Ej factors through BN and we obtain a bundle map

BN
//

Bi

��

EG/N

��
BG

Bj
/ / BG/N

In particular, this square is a pullback. We can replace the map Bj by a fibration. The fiber of this fibration
is the homotopy fiber F (Bj) of Bj , where the homotopy fiber of Bj is defined by the pullback diagram

F (Bj) //

��

PBG/N

��
BG

Bj
// BG/N

We shall show that F (Bj) is homotopy equivalence to BN . Notice that PBG/N is homotopy equivalence
to EG/N since EG/N is contractible.

We see by the universal property of pullbacks that there is a map θ : BN → F (Bj) such that the
following diagram commutes.

G/N //

ζ

��

BN
//

θ

��

BG

ΩBG/N
// F (Bj) // BG

By Zeeman’s comparison theorem [14], since ζ is homotopy equivalance, θ induces an isomorphism on
homotopy groups and is thus a homotopy equivalence. The result follows. 2

Throughout the present article Alexander–Spanier cohomology with rational coefficients is used. Indeed,
Alexander–Spanier cohomology, C̆ech cohomology, and Sheaf cohomology are naturally equivalent for para-
compact spaces [3].

3. Main results
Since each finite-dimensional compact group has a totally disconnected (i.e. zero-dimensional) closed normal
subgroup such that the factor group is a compact Lie group (see Remark 2.3.), the compact totally disconnected
group actions play an important role for compact transformation group theory. We give a few well-known
propositions for totally disconnected group actions.

Proposition 3.1 If G is a totally disconnected compact group and X is a compact G-space, then the orbit
map π : X → X/G induces an isomorphism

H∗ (X/G,Q) ≃ (H∗ (X,Q))
G

where (H∗ (X,Q))
G is the invariant subspace of H∗ (X,Q) under the induced action of G on H∗ (X,Q) .

Proposition 3.2 Let G be a compact totally disconnected group. Then H∗ (BG,Q) = Q .
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The proofs of Propositions 3.1. and 3.2. are trivial from continuity of cohomology and can be found in [8].
From now on, unless otherwise stated, G is a finite-dimensional compact group and N is a totally

disconnected closed normal subgroup of G such that the factor group G/N is a compact Lie group with the
same dimension as G . Let X be a compact G -space and S ⊆ H∗(BG,Q) be a multiplicative system (i.e.
multiplicative semigroup with {1} ⊆ S ).

Moreover, we set, in the sense of Hsiang’s book [7],

XS = {x ∈ X : no element of S maps to zero in H∗(BG,Q)→ H∗(BGx
,Q)}.

Note that if X is a paracompact space and one is using Alexander–Spanier cohomology, then XS is a
closed invariant subspace of X .

Lemma 3.3 The homomorphism Bπ∗ : H∗ (BG/N ,Q
)
→ H∗ (BG,Q) is induced by the quotient map π : G→

G/N is an isomorphism.

Proof We recall by Theorem 2.5. that there is a Serre fibration BN
Bi→ BG

Bπ→ BG/N , induced by the inclusion
i : N ↪→ G and the quotient map π : G → G/N . Moreover, there is naturally a spectral sequence with
Ep,q

2
∼= Hp(BG/N ,Hq) where Hq is the coefficient system x 7→ Hq((Bπ)−1(x),Q) . Since BN is acyclic, i.e.

H∗(BN ,Q) = H∗(pt,Q) , then the fundamental group of BG/N acts trivially on the cohomology of the fiber
BN . Therefore, from the results of Leray–Serre spectral sequences Ep,q

2
∼= Hp(BG/N ,Q)⊗Hq(BN ,Q) .

Since the spectral sequence converges to H∗(BG,Q) and Hp(BN ,Q) = 0 for p ̸= 0 , then

Hn(BG,Q) ∼=
⊕

r+s=n

Er,s
∞
∼=

⊕
r+s=n

Er,s
2
∼= En,0

2 .

On the other hand, since Bπn : Hn
(
BG/N ,Q

)
→ Hn (BG,Q) is composite Hn

(
BG/N ,Q

)
= En,0

2 ↠ En,0
3 ↠

· · ·↠ En,0
n+1 = En,0

∞
∼= Hn(BG,Q) for each n and then the result follows. 2

Now consider the multiplicative system R = (Bπ∗)−1(S) in H∗(BG/N ,Q) , which is a copy of S and induced
finite-dimensional compact Lie group G/N action on the orbit space X/N .

Lemma 3.4 The orbit map p : X → X/N induces the map XS → (X/N)R .

Proof Let x ∈ XS and assume that x∗ = N (x) /∈ (X/N)R . In this case, Bj∗(r) = 0 for some r ∈ R , where

Bj∗ : H∗(BG/N ,Q)→ H∗(B(G/N)x∗ ,Q).

Put s = (Bπ∗)(r) ∈ S . From the following commutative diagram,

H∗(BG/N ,Q)
Bj∗ //

Bπ∗

��

H∗(B(G/N)x∗ ,Q)

��
H∗(BG,Q)

Bi∗ // H∗(BGx ,Q)

s ∈ S maps to zero under Bi∗ : H∗(BG,Q)→ H∗(BGx
,Q) . This contradicts x ∈ XS . 2
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Remark 3.5 The isotropy subgroups of the induced action of G/N on X/N are explicitly discussed in [5,
Prop.10.31]. We have

(G/N)x∗ = GxN/N ≃ Gx/(Gx ∩N).

Furthermore, since Gx ∩ N is a totally disconnected closed normal subgroup of Gx , H∗ (BGx∩N ,Q) = Q .
Thus, as in Lemma 3.3., the right vertical map of the above diagram is induced by the canonical map
Gx → GxN/N is also an isomorphism by considering the Leray–Serre spectral sequence of the homotopy-fiber
sequence BGx∩N → BGx→BGx/Gx∩N .

Corollary 3.6 XS/N = (X/N)
R .

Proof Consider the previous diagram.
If XS = ∅ , then there exists an s ∈ S such that s maps to zero in H∗(BG,Q) → H∗(BGx

,Q) .
Set r = (Bπ∗)

−1
(s) . Since H∗ (B(G/N)x∗ ,Q

)
→ H∗ (BGx

,Q) is an isomorphism from Remark 3.5., then

Bj∗ (r) = 0 , which implies that (X/N)
R
= ∅ .

Suppose XS ̸= ∅ . It is easy to see that Lemma 3.4. implies XS/N ⊆ (X/N)
R . We take now

N (x) ∈ (X/N)
R . Assume that x /∈ XS . Then Bi∗ (s) = 0 for some s ∈ S . Set r = (Bπ∗)

−1
(s) . Since

H∗ (B(G/N)x∗ ,Q
)
→ H∗ (BGx ,Q) is an isomorphism, then Bj∗ (r) = 0 . This contradicts N (x) ∈ (X/N)

R .

Hence, x ∈ XS , which implies N (x) ∈ XS/N . 2

First we prove the localization theorem for finite-dimensional compact connected group action on a
compact space.

Theorem 3.7 Let G be a finite-dimensional compact connected group and X be a compact G-space. Then the
localized restriction homomorphism

S−1H∗
G (X,Q)→ S−1H∗

G

(
XS ,Q

)
is an isomorphism.

Proof Since G is connected, its action (and hence that of N ) on H∗ (X,Q) is trivial (see [3, II.10.6 cf.
II.11.11]). Therefore, Proposition 3.1. implies that the orbit map X → X/N induces the isomorphism

H∗ (X,Q) ≃ H∗ (X/N,Q) .

We now prove the theorem by reducing the G action on X to the G/N action on the compact space
X/N .

By the localization theorem for compact Lie transformation groups,

R−1H∗
G/N (X/N,Q)→ R−1H∗

G/N

(
(X/N)

R
,Q

)
is an isomorphism.

On the other hand, from Zeeman’s comparison theorem [14], we have that

H∗
G/N (X/N,Q)→ H∗

G (X,Q)
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is an isomorphism by comparing the spectral sequence of the bundles X → XG → BG and X/N →
(X/N)G/N → BG/N . Thus,

R−1H∗
G/N (X/N,Q) ≃ S−1H∗

G (X,Q) .

Similarly, we have
R−1H∗

G/N

(
XS/N,Q

)
≃ S−1H∗

G

(
XS ,Q

)
by considering restricted G -action on XS . Therefore, we have

R−1H∗
G/N

(
(X/N)

R
,Q

)
≃ S−1H∗

G

(
XS ,Q

)
from Corollary 3.6.

Because of the following commutative diagram,

R−1H∗
G/N (X/N,Q)

≃ //

≃
��

R−1H∗
G/N ((X/N)R,Q)

≃
��

S−1H∗
G(X,Q) // S−1H∗

G(X
S ,Q)

we obtain the isomorphism S−1H∗
G (X,Q)→ S−1H∗

G

(
XS ,Q

)
. 2

The next theorem implies that the localization theorem is provided for general finite-dimensional compact
group actions.

Theorem 3.8 Let G be a finite-dimensional compact group, X be a compact G-space, and S ⊆ H∗(BG,Q)

be a multiplicative system. Then the localized restriction homomorphism

S−1H∗
G (X,Q)→ S−1H∗

G

(
XS ,Q

)
is an isomorphism.

Proof Let G0 ⊆ G denote the connected component of the identity element, which is a closed normal subgroup
of G and G/G0 is a totally disconnected compact group (see [12, Section 22] for details).

Since G0 acts freely on EG , we may take for EG0
= EG and BG0

the quotient space EG/G0 . There are
then obvious induced G/G0 -actions on XG0

and BG0
. Since G/G0 is totally disconnected, then, by Proposi-

tion 3.1., the orbit maps XG0
→ XG and BG0

→ BG induce the monomorphisms H∗(XG,Q) → H∗(XG0
,Q)

and H∗(BG,Q)→ H∗(BG0
,Q) .

Case 1: First we assume that XS = ∅ . Let T be the direct image of S in H∗(BG0 ,Q) . Then, by consid-
ering restricted finite-dimensional compact connected group G0 , action on X , and the following commutative
diagram,

H∗(BG,Q) //

��

H∗(BGx ,Q)

��
H∗(BG0

,Q) // H∗(B(G0)x ,Q)
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it is easy to see that XT = ∅ . Hence, Theorem 3.7. implies that there is an element t of T such that the
image of t under H∗(BG0

,Q) → H∗(XG0
,Q) is zero. Set s is the preimage of t under the monomorphism

H∗(BG,Q)→ H∗(BG0
,Q) . Now consider the following commutative diagram,

H∗(BG,Q) //

��

H∗(XG,Q)

��
H∗(BG0

,Q) // H∗(XG0
,Q)

which is induced by the following commutative diagram of the bundles:

X //

��

XG0
//

��

BG0

��
X // XG

// BG

Since the orbit map XG0
→ XG induces the monomorphism H∗(XG,Q)→ H∗(XG0

,Q) , it is easy to see that
s maps to zero under H∗ (BG,Q)→ H∗ (XG,Q) , which means S−1H∗

G (X,Q) = {0} .

Case 2: Now assume that XS ̸= ∅ . Let B be a closed invariant neighborhood of XS in X and B′ =

X − int (B) . Thus, consider the long exact sequence

· · · → H∗
G (X,Q)→ H∗

G (B,Q)⊕H∗
G (B′,Q)→ H∗

G (B ∩B′,Q)→ · · ·

Hence, by exactness of localization, we have

· · · → S−1H∗
G (X,Q)→ S−1H∗

G (B,Q)⊕ S−1H∗
G (B′,Q)→ S−1H∗

G (B ∩B′,Q)→ · · ·

Since (B′)
S
= ∅ and (B ∩B′)

S
= ∅ , we obtain that S−1H∗

G (B′,Q) = {0} and S−1H∗
G (B ∩B′,Q) = {0} from

Case 1. Now S−1H∗
G (X,Q) → S−1H∗

G (B,Q) is an isomorphism. Taking the inverse limit as B run over all
invariant closed neighborhoods of XS , because of the continuity property of Alexander–Spanier cohomology, one
has H∗

G

(
XS ,Q

)
= lim←−B⊃XSH∗

G (B,Q) . Using the continuity property and the fact the localization commutes
with the inverse limit, we obtain

S−1H∗
G

(
XS ,Q

)
= S−1(lim←−B⊃XSH∗

G (B,Q))

= lim←−B⊃XSS−1H∗
G (B,Q)

≃ lim←−B⊃XSS−1H∗
G (X,Q) = S−1H∗

G (X,Q) .

2

We will then shift our attention to the abelian case. In the next theorem, Hofmann and Mostert [6] give
the cohomology algebra structure of the classifying space of compact (connected) abelian groups, which is
irrespective of the choice of the classifying space.

Theorem 3.9 ([6, pp.206, 212]). For any compact abelian group G , the homogeneous component H2(BG,Z)

of degree 2 is naturally isomorphic to the character group Ĝ . If G is connected, the entire cohomology algebra
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H∗(BG,Z) is the symmetric Z-algebra P (Ĝ) generated by this component of homogeneous degree 2. Also, in
this case, the homogeneous component H1(G,Z) of degree 1 of the space cohomology is also naturally isomorphic

to Ĝ , and the entire cohomology algebra H∗(G,Z) is the exterior algebra
∧
(H1(G,Z) .

In particular, for any commutative unital ring R and compact connected abelian G ,

H∗(BG, R) ∼= R⊗ P (Ĝ) ∼= P (R⊗ Ĝ).

Remark 3.10 If G is a compact abelian group and N is any closed normal subgroup of G , then, by duality,
the inclusion morphism i : N → G induces a quotient morphism î : Ĝ→ N̂ with kernel

ker î = N⊥ = {χ ∈ Ĝ : χ(n) = 0 for all n ∈ N}

where N⊥ is called the annihilator of N in Ĝ . Therefore, H2 (Bi,Z) : H2 (BG,Z)→ H2 (BN ,Z) is injective
if and only if N = G , and if G is connected, this conclusion persists upon tensoring with Q ; that is,
H2 (Bi,Q) : H2 (BG,Q)→ H2 (BN ,Q) is injective if and only if N = G .

This observation applies to a compact connected abelian group G acting on X with N = Gx . Then one
does obtain the statement that x is a fixed point of the action if and only if Bi∗ : H∗(BG,Q)→ H∗(BGx ,Q) is
injective for the inclusion map i : Gx → G .

Thus, if a compact connected abelian group G acts on X , then XS = XG for the multiplicative system
S = H∗(BG,Q)− {0} ⊂ H∗(BG,Q) .

Thus, we obtain an extension of Borel’s fixed point theorem to finite-dimensional compact connected
abelian group actions.

Corollary 3.11 Let G be a finite-dimensional compact connected abelian group and X be a compact G-space.
Then the localized restriction homomorphism

S−1H∗
G (X,Q)→ S−1H∗

G

(
XG,Q

)
= H∗ (XG,Q

)
⊗Q

(
S−1H∗ (BG,Q)

)
is an isomorphism where S = H∗(BG,Q)− {0} .

Corollary 3.12 Let G be a finite-dimensional compact connected abelian group and X be a compact G-space.
Then XG ̸= ∅ if and only if H∗ (BG,Q)→ H∗

G (X,Q) is injective.

Proof ⇒: Suppose that XG ̸= ∅ and x ∈ XG . Thus, BG → {x}G ⊆ XG is a cross-section of the fiber bundle
XG → BG and consequently H∗ (pt,Q) = H∗ (BG,Q)→ H∗

G (X,Q) must be an injective map.
⇐: If H∗ (BG,Q)→ H∗

G (X,Q) is injective, then 1 ∈ H∗
G (X,Q) is torsion-free and hence S−1H∗

G (X,Q) ̸=
{0} . Therefore, it follows from Corollary 3.11. that S−1H∗

G

(
XG,Q

)
≃ S−1H∗

G (X,Q) ̸= {0} . This clearly
implies XG ̸= ∅ . 2
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