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Abstract: The aim of this paper is to give various properties of homogeneous operators associated with Chan–Chyan–
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1. Introduction
The functions satisfying Laplace’s equation

∆u = uxx + uyy + uzz = 0

are called harmonic functions where ∆ is the Laplace operator. Spherical harmonics are the angular portion of a
set of solutions of Laplace’s equation. The spherical harmonics are orthogonal functions on the sphere and they
are also a frequency-space basis for indicating functions defined on the surface of a sphere (see [7],[8],[10],[11]).

Spherical harmonics play important roles in several theoretical and practical applications such as the
group of rotations in three dimensions, representation of gravitational fields, geoids and the magnetic fields of
planetary bodies, and the representation of electromagnetic fields. There are many applications of spherical
harmonics to 3D computer graphics in areas such as global illumination, precomputed radiance transfer, and
modeling of 3D shapes ([2],[11]). They are also used to solve partial differential equations, which are encountered
in mathematics and physical science. In particular, they arise in the solutions of Scrödinger’s equation in
spherical coordinates [9, p. 193].

In this paper, we derive harmonic functions by using the Chan–Chyan–Srivastava polynomials and
Lagrange polynomials. First, we recall that the Chan–Chyan–Srivastava polynomials of p+ q variables, which
are the multivariable extension of the classical Lagrange polynomials [4, p.267], are generated by [3] (see also
[1] [5], [6]):

p∏
i=1

{
(1− xit)

−αi

} q∏
j=1

{
(1− yjt)

−βj

}
=

∞∑
n=0

g(α,β)n (x,y) tn, (1.1)
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(
αi, βj ∈ C (i = 1, 2, ..., p ; j = 1, 2, ..., q) ;

|t| < min
{
|x1|−1

, ..., |xp|−1
, |y1|−1

, ..., |yq|−1
} )

,

where x =(x1, x2, ..., xp) , y = (y1, y2, ..., yq) , α = (α1, ..., αp) , and β = (β1, ..., βq) . From this generating
function, its explicit representation is as below:

g(α,β)n (x,y) =
∑

k1+...+kp+l1+...+lq=n
(ki,lj∈N0:={0}∪N)

(α1)k1
... (αp)kp

(β1)l1 ... (βq)lq
k1!...kp!l1!...lq!

xk1
1 ...x

kp
p y

l1
1 ...y

lq
q , (1.2)

where Chan–Chyan–Srivastava polynomials are of degree k (k = k1 + ...+ kp) and l (l = l1 + ...+ lq) with
respect to the variables x = (x1, x2, ..., xp) and y = (y1, y2, ..., yq) , respectively. It is clear that it is a
homogeneous function of total degree k + l = n.

Let us consider the ultrahyperbolic operator and Laplace operator, respectively:

L =

p∑
i=1

∂2

∂x2i
−

q∑
k=1

∂2

∂y2k
and ∆ =

p∑
i=1

∂2

∂x2i
. (1.3)

We organize the paper as follows. In Section 2, we investigate some properties of homogeneous operators
associated with Chan–Chyan–Srivastava polynomials of p+q variables and then by applying the ultrahyperbolic
operator to the Chan–Chyan–Srivastava polynomials by means of these properties we obtain the ultraspherical
harmonic function. In the next section, by using the results obtained in the previous section, we give the
ultraspherical harmonic function in terms of the Laplace operator and Chan–Chyan–Srivastava polynomials of
p (p ≥ 3) variables. Finally, for p = 2, a harmonic function is obtained via Lagrange polynomials and the
Laplace operator.

2. Some properties of homogeneous operators

Lemma 2.1 Let fn (x,y) be a homogeneous polynomial of total degree n (n = k+l) and let k and l denote the
degree of the polynomial with respect to the variables x = (x1, x2, ..., xp) and y = (y1, y2, ..., yq) , respectively.
Then

fn

(
∂

∂x ,
∂

∂y

)
g(α,β)n (x,y) = g(α,β)n

(
∂

∂x ,
∂

∂y

)
fn (x,y) (2.1)

holds where ∂
∂x =

(
∂

∂x1
, ..., ∂

∂xp

)
and ∂

∂y =
(

∂
∂y1

, ..., ∂
∂yq

)
.

Proof A homogeneous function fn (x,y) has representation in the form of

fn (x,y) =
∑

k1+...+kp+l1+...+lq=n
(ki,lj∈N0:={0}∪N)

Ak1,...,kp,l1,...,lqx
k1
1 ...x

kp
p y

l1
1 ...y

lq
q ,

which is of degree k (k = k1 + ...+ kp) and l (l = l1 + ...+ lq) with respect to the variables x = (x1, x2, ..., xp)

and y = (y1, y2, ..., yq) , respectively, and also is a homogeneous function of total degree n (n = k + l). The
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left side of equation (2.1) can be written as

fn

(
∂

∂x ,
∂

∂y

)
g(α,β)n (x,y) =

∑
k1+...+kp+l1+...+lq=n

Ak1,...,kp,l1,...,lq

(
∂

∂x1

)k1

...

(
∂

∂xp

)kp
(

∂

∂y1

)l1

...

(
∂

∂yq

)lq

×
∑

m1+...+mp+r1+...+rq=n

(α1)m1
... (αp)mp

(β1)r1 ... (βq)rq
m1!...mp!r1!...rq!

xm1
1 ...xmp

p yr11 ...y
rq
q

=
∑

k1+...+kp+l1+...+lq=n

Ak1,...,kp,l1,...,lq (α1)k1
... (αp)kp

(β1)l1 ... (βq)lq .

Similarly, the right side of (2.1) is equal to

g(α,β)n

(
∂

∂x ,
∂

∂y

)
fn (x,y) =

∑
m1+...+mp+r1+...+rq=n

(α1)m1
... (αp)mp

(β1)r1 ... (βq)rq
m1!...mp!r1!...rq!

(
∂

∂x1

)m1

...

(
∂

∂xp

)mp

×
(

∂

∂y1

)r1

...

(
∂

∂yq

)rq ∑
k1+...+kp+l1+...+lq=n

Ak1,...,kp,l1,...,lqx
k1
1 ...x

kp
p y

l1
1 ...y

lq
q

=
∑

k1+...+kp+l1+...+lq=n

Ak1,...,kp,l1,...,lq (α1)k1
... (αp)kp

(β1)l1 ... (βq)lq ,

which proves the lemma. 2

Lemma 2.2 Chan–Chyan–Srivastava polynomials g(α,β)s (u,v) satisfy the following relation:(
x1

∂

∂u1
+ x2

∂

∂u2
+ ...+ xp

∂

∂up
− y1

∂

∂v1
− y2

∂

∂v2
− ...− yq

∂

∂vq

)s

g(α,β)s (u,v) = (−1)
l
s!g(α,β)s (x,y) ,

where u = (u1, u2, ..., up) , v = (v1, v2, ..., vq) , and l (l = l1 + ...+ lq) denotes the degree of Chan–Chyan–

Srivastava polynomials g
(α,β)
s (x,y) with respect to the variable y = (y1, y2, ..., yq) and s (s = k + l) denotes

the total degree of g(α,β)s (x,y) with respect to the variables x = (x1, x2, ..., xp) and y = (y1, y2, ..., yq) .

Proof From the binomial theorem, we can write(
x1

∂

∂u1
+ x2

∂

∂u2
+ ...+ xp

∂

∂up
− y1

∂

∂v1
− y2

∂

∂v2
− ...− yq

∂

∂vq

)s

=
∑

k1+...+kp+l1+...+lq=s

s!

k1!...kp!l1!...lq!

(
x1

∂

∂u1

)k1

...

(
xp

∂

∂up

)kp
(
−y1

∂

∂v1

)l1

...

(
−yq

∂

∂vq

)lq

= (−1)
l

∑
k1+...+kp+l1+...+lq=s

s!

k1!...kp!l1!...lq!

(
x1

∂

∂u1

)k1

...

(
xp

∂

∂up

)kp
(
y1

∂

∂v1

)l1

...

(
yq

∂

∂vq

)lq

,

where l = l1+ ...+ lq. Applying this operator to the Chan–Chyan–Srivastava polynomials g(α,β)s (u,v) and then
using equality (1.2) again, we obtain the result. 2
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Theorem 2.3 Let g(α,β)n (x,y) be Chan–Chyan–Srivastava polynomials. Let w = ϕ (x,y) and F = F (w) be
functions that have continuous derivatives of n th order in the domain D ⊂ Rp+q. Then we have

g(α,β)n

(
∂

∂x ,
∂

∂y

)
F (w) = χ0 (x,y)

dnF

dwn
+ χ1 (x,y)

dn−1F

dwn−1
+ ...+ χn−1 (x,y)

dF

dw
. (2.2)

Proof In view of equality (1.2), one gets

g(α,β)n

(
∂

∂x ,
∂

∂y

)
F (w) =

∑
k1+...+kp+l1+...+lq=n

(α1)k1
... (αp)kp

(β1)l1 ... (βq)lq
k1!...kp!l1!...lq!

(
∂

∂x1

)k1

...

(
∂

∂xp

)kp

×
(

∂

∂y1

)l1

...

(
∂

∂yq

)lq

F (w) .

It is obvious that

∂k1

∂xk1
1

F (w) = B0
dk1

dwk1
F (w) +B1

dk1−1

dwk1−1
F (w) + ...+Bk1−1

d

dw
F (w) , (2.3)

where B0, B1, ..., Bk1−1 are functions of the variables x1, x2, ..., xp , y1, y2, ..., yq. If we take the derivative of
equality (2.3) k2 times with respect to the variable x2, we find

∂k1+k2

∂xk1
1 ∂x

k2
2

F (w) = C0
dk1+k2

dwk1+k2
F (w) + C1

dk1+k2−1

dwk1+k2−1
F (w) + ...+ Ck1+k2−1

d

dw
F (w) , (2.4)

where C0, C1, ..., Ck1+k2−1 are functions that depend on the variables x1, x2, ..., xp , y1, y2, ..., yq. Similarly,
differentiating consecutively equation (2.4) with respect to the variables x3, ..., xp , y1, y2, ..., yq, we obtain

∂n

∂xk1
1 ...∂x

kp
p ∂y

l1
1 ...∂y

lq
q

F (w) = D0
dn

dwn
F (w) +D1

dn−1

dwn−1
F (w) + ...+Dn−1

d

dw
F (w)

=

n−1∑
j=0

Dj
dn−j

dwn−j
F (w) ,

where n = k1 + ... + kp + l1 + ... + lq and Dj (j = 0, 1, ..., n − 1) are functions of x1, x2, ..., xp , y1, y2, ..., yq.
Taking into consideration the last equality in the first relation we conclude that

g(α,β)n

(
∂

∂x ,
∂

∂y

)
F (w) =

n−1∑
j=0

 ∑
k1+...+kp+l1+...+lq=n

Dj

(α1)k1
... (αp)kp

(β1)l1 ... (βq)lq
k1!...kp!l1!...lq!

 dn−j

dwn−j
F (w) ,

and by denoting the function in the bracket by χj, this implies the desired equality. 2

Now let us give some theorems to obtain the coefficients χj in Theorem 2.3.
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Theorem 2.4 Assume that w = ϕ (x,y) is a function which has n th order continuous derivatives in the domain
D ⊂ Rp+q. If we choose F (w) = wn = (ϕ (x,y))n in Theorem 2.3, equality (2.2) reduces to

g(α,β)n

(
∂

∂x ,
∂

∂y

)
(ϕ (x,y))n = n!

{
χ0 (x,y) + χ1 (x,y) ϕ (x,y) + ...+

1

m!
χm (x,y) (ϕ (x,y))m

+...+
1

(n− 1)!
χn−1 (x,y) (ϕ (x,y))n−1

}
.

Theorem 2.5 In view of Theorem 2.4, it follows that

g(α,β)n

(
∂

∂x ,
∂

∂y

)
(ϕ (x,y))n = lim

(u,v)→(0,0)
g(α,β)n

(
∂

∂u ,
∂

∂v

)
(ϕ (x + u,y + v))n ,

where u = (u1, u2, ..., up) , v = (v1, v2, ..., vq) ,
∂

∂u =

(
∂

∂u1
, ...,

∂

∂up

)
, and ∂

∂v =

(
∂

∂v1
, ...,

∂

∂vq

)
.

Proof Setting xi + ui, yj + vj (i = 1, 2, ..., p ; j = 1, 2, ..., q) instead of xi, yj(i = 1, 2, ..., p ; j = 1, 2, ..., q),

respectively, in Theorem 2.4, and then using

∂

∂ (xi + ui)
=

∂

∂ui
and ∂

∂ (yj + vj)
=

∂

∂vj

(i = 1, 2, ..., p ; j = 1, 2, ..., q)

we have

g(α,β)n

(
∂

∂u ,
∂

∂v

)
(ϕ (x + u,y + v))n = n! {χ0 (x + u,y + v) + χ1 (x + u,y + v) ϕ (x + u,y + v) + ...+

+
1

m!
χm (x + u,y + v) (ϕ (x + u,y + v))m + ...+

+
1

(n− 1)!
χn−1 (x + u,y + v) (ϕ (x + u,y + v))n−1

}
.

If we take the limit as (u,v) → (0,0) in the last equation and use Theorem 2.4, we complete the proof. 2

Now let us obtain the explicit forms of the coefficients χj, (j = 0, 1, ..., n− 1) .

Theorem 2.6 The coefficients χj (j = 0, 1, ..., n− 1) in Theorem 2.4 are given by

χj (x,y) =
1

(n− j)!
lim

(u,v)→(0,0)
g(α,β)n

(
∂

∂u ,
∂

∂v

)
(ϕ (x + u,y + v)− ϕ (x,y))n−j

.

Proof If we apply the binomial theorem to the right side of the equality (ϕ (x + u,y + v))n = (ϕ (x,y)
+ϕ (x + u,y + v)− ϕ (x,y))n , we can write

(ϕ (x + u,y + v))n =

n∑
t=0

n!

(n− t)!t!
(ϕ (x,y))t (ϕ (x + u,y + v)− ϕ (x,y))n−t

.
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Substituting this in Theorem 2.5, it follows that

g(α,β)n

(
∂

∂x ,
∂

∂y

)
(ϕ (x,y))n = lim

(u,v)→(0,0)
g(α,β)n

(
∂

∂u ,
∂

∂v

) n∑
t=0

n!

(n− t)!t!
(ϕ (x,y))t (ϕ (x + u,y + v)− ϕ (x,y))n−t

= lim
(u,v)→(0,0)

g(α,β)n

(
∂

∂u ,
∂

∂v

)
(ϕ (x + u,y + v)− ϕ (x,y))n

+ lim
(u,v)→(0,0)

g(α,β)n

(
∂

∂u ,
∂

∂v

)
n!

(n− 1)!
(ϕ (x,y)) (ϕ (x + u,y + v)− ϕ (x,y))n−1

+...+ lim
(u,v)→(0,0)

g(α,β)n

(
∂

∂u ,
∂

∂v

)
(ϕ (x,y))n .

When we compare this equality and Theorem 2.4, we obtain

χn−j (x,y) =
1

j!
lim

(u,v)→(0,0)
g(α,β)n

(
∂

∂u ,
∂

∂v

)
(ϕ (x + u,y + v)− ϕ (x,y))j , j = 1, 2, ..., n,

from which, by replacing j by n− j, the proof is completed. 2

Corollary 2.7 Choosing ϕ (x,y) = |x|2 − |y|2 = r2 in Theorem 2.6 where r is the Lorentz distance, we can
obtain the coefficients χj (x,y) in terms of the ultrahyperbolic operator L as

χj (x,y) =
(−1)

l
2n−2j

j!
Ljg(α,β)n (x,y) for j = 0, 1, ..., [|n/2|] , (2.5)

and χj (x,y) = 0 for j = [|n/2|] + 1, ..., (n − 1) where n = 0, 1, 2, ... . Here l (l = l1 + ...+ lq) denotes the

degree of Chan–Chyan–Srivastava polynomials g
(α,β)
n (x,y) with respect to the variable y = (y1, y2, ..., yq) and

L is ultrahyperbolic operator given by (1.3).

Proof In the case of ϕ (x,y) = |x|2 − |y|2 =
(
x21 + ...+ x2p

)
−
(
y21 + ...+ y2q

)
, Theorem 2.6 reduces to

χj (x,y) =
1

(n− j)!
lim

(u,v)→(0,0)
g(α,β)n

(
∂

∂u ,
∂

∂v

)

×

[
p∑

i=1

(
2xiui + u2i

)
−

q∑
k=1

(
2ykvk + v2k

)]n−j

.

From the binomial theorem, we may write

χj (x,y) =
1

(n− j)!
lim

(u,v)→(0,0)
g(α,β)n

(
∂

∂u ,
∂

∂v

)

×
n−j∑
η=0

(
n− j

η

)(
|u|2 − |v|2

)η
2n−j−η (⟨x,u⟩ − ⟨y,v⟩)n−j−η

,
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where ⟨x,u⟩ denotes the inner product defined by ⟨x,u⟩ =
p∑

i=1

xiui, and |u|2 = u21 + ... + u2p and |v|2 =

v21 + ...+ v2q . Since the other terms are zero except for η = j in the right side of the equation above, we have

χj (x,y) =
2n−2j

j! (n− 2j)!
lim

(u,v)→(0,0)
g(α,β)n

(
∂

∂u ,
∂

∂v

)(
|u|2 − |v|2

)j
(2.6)

(⟨x,u⟩ − ⟨y,v⟩)n−2j
,

for j = 0, 1, ..., [|n/2|] . On the other side, since the function h (u,v) =
(
|u|2 − |v|2

)j
(⟨x,u⟩ − ⟨y,v⟩)n−2j is a

homogeneous function of degree n, from Lemma 2.1,

g(α,β)n

(
∂

∂u ,
∂

∂v

)(
|u|2 − |v|2

)j
(⟨x,u⟩ − ⟨y,v⟩)n−2j

=

(⟨
x, ∂
∂u

⟩
−
⟨

y, ∂
∂v

⟩)n−2j

Ljg(α,β)n (u,v)

holds where L =
p∑

i=1

∂2

∂u2
i
−

q∑
k=1

∂2

∂v2
k
, ∂

∂u =
(

∂
∂u1

, ..., ∂
∂up

)
, and ∂

∂v =
(

∂
∂v1

, ..., ∂
∂vq

)
. Also, because of the fact

that the Chan–Chyan–Srivastava polynomials g(α,β)n (u,v) are homogeneous, it follows that

Ljg(α,β)n (u,v) = Sn−2j (u,v) ,

where Sn−2j (u,v) is homogeneous polynomial of degree n− 2j. From this equality, in view of Lemma 2.2, we
conclude that (⟨

x, ∂
∂u

⟩
−
⟨

y, ∂
∂v

⟩)n−2j

Sn−2j (u,v) = (−1)
l
(n− 2j)!Sn−2j (x,y)

= (−1)
l
(n− 2j)!Ljg(α,β)n (x,y) .

By taking into account this equality in (2.6), we get

χj (x,y) =
(−1)

l
2n−2j

j!
Ljg(α,β)n (x,y) ,

for j = 0, 1, ..., [|n/2|] where L =
p∑

i=1

∂2

∂x2
i
−

q∑
k=1

∂2

∂y2
k
. Also, χj (x,y) = 0 for j = [|n/2|] + 1, ..., (n− 1) . 2

Theorem 2.8 If we get w = ϕ (x,y) = |x|2 − |y|2 = r2 in Theorem 2.3 and then use the coefficients given by
(2.5), we find

g(α,β)n

(
∂

∂x ,
∂

∂y

)
F (w) = (−1)

l

{
2ng(α,β)n (x,y) d

nF

dwn
+

2n−2

1!
Lg(α,β)n (x,y) d

n−1F

dwn−1

+...+
2n−2j

j!
Ljg(α,β)n (x,y) d

n−jF

dwn−j

}
,

where j = [|n/2|] , (n = 0, 1, ...) and l (l = l1 + ... + lq) denotes the degree of g(α,β)n (x,y) with respect to the
variable y = (y1, y2, ..., yq) .
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Theorem 2.9 For the Chan–Chyan–Srivastava polynomials, we have

g(α,β)n

(
∂

∂x ,
∂

∂y

)
r2−p−q = (−1)

k (p+ q − 2) (p+ q) (p+ q + 2) ... (p+ q + 2n− 4)

rp+q+2n−2{
1− r2L

2 (p+ q + 2n− 4)
+

r4L2

2.4. (p+ q + 2n− 4) (p+ q + 2n− 6)
− ...

+(−1)
j r2jLj

j!2j (p+ q + 2n− 4) ... (p+ q + 2(n− j)) (p+ q + 2(n− j − 1))

}
g(α,β)n (x,y) ,

where j = [|n/2|] , (n = 0, 1, ...) and k (k = k1 + ...+ kp) denotes the degree of Chan–Chyan–Srivastava

polynomials g(α,β)n (x,y) with respect to the variable x = (x1, x2, ..., xp) .

Proof If we write F (w) = F
(
r2
)
= ψ (r) in Theorem 2.8, it follows that

g(α,β)n

(
∂

∂x ,
∂

∂y

)
ψ (r) = (−1)

l

{
2ng(α,β)n (x,y) d

nψ (r)

d (r2)
n +

2n−2

1!
Lg(α,β)n (x,y) d

n−1ψ (r)

d (r2)
n−1

+...+
2n−2j

j!
Ljg(α,β)n (x,y) d

n−jψ (r)

d (r2)
n−j

}
.

By choosing ψ (r) = r2−p−q in this equation and then calculating the derivatives, we complete the proof. 2

Corollary 2.10 Let p = q and F (w) = w = |x|2 − |y|2 =
(
x21 + ...+ x2p

)
−
(
y21 + ...+ y2p

)
in Theorem 2.8.

Then, it holds that

g(α,β)n

(
∂

∂x ,
∂

∂y

)
w =


2 (−1)

l
g
(α,β)
1 (x,y) for n = 1,

(−1)
l
Lg

(α,β)
2 (x,y) for n = 2,

0, for n = 3, 4, ....
(2.7)

Theorem 2.11 The function on the right side of equation (2.7),

u (x,y) =


2 (−1)

l
g
(α,β)
1 (x,y) for n = 1,

(−1)
l
Lg

(α,β)
2 (x,y) for n = 2,

0, for n = 3, 4, ...,

satisfies the Laplace equation

∆u = ux1x1 + ...+ uxpxp + uy1y1 + ...+ uypyp ;

that is, it is an ultraspherical harmonic function.

Proof Applying the Laplace operator to both sides of equality (2.7), the proof is completed with the fact that
the function F (w) = w =

(
x21 + ...+ x2p

)
−
(
y21 + ...+ y2p

)
is an ultraspherical harmonic function. 2
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3. Ultraspherical harmonic functions associated with Chan–Chyan–Srivastava polynomials

Now we consider the Chan–Chyan–Srivastava polynomials of p variables generated by [3]

p∏
i=1

(1− xit)
−αi =

∞∑
n=0

g(α1,...,αp)
n (x) tn (3.1)

αi ∈ C (i = 1, 2, ..., p ) ; |t| < min
{
|x1|−1

, ..., |xp|−1
}
; x =(x1, x2, ..., xp) ,

from which its explicit form is as follows:

g(α1,...,αp)
n (x) =

∑
k1+...+kp=n
ki∈N0:={0}∪N

(α1)k1
... (αp)kp

k1!...kp!
xk1
1 ...x

kp
p .

If we get the Chan–Chyan–Srivastava polynomials g(α1,...,αp)
n (x) of p variables and the Laplace operator instead

of the polynomials g(α,β)n (x,y) of p + q variables and ultrahyperbolic operator L , respectively, in the results
obtained in the previous section, we can give the following results.

Corollary 3.1 From Theorem 2.8, we have the next result for the Chan–Chyan–Srivastava polynomials of p
variables:

g(α1,...,αp)
n

(
∂

∂x

)
F (w) = 2ng(α1,...,αp)

n (x) d
nF

dwn
+

2n−2

1!

dn−1F

dwn−1
∆g(α1,...,αp)

n (x)

+...+
2n−2j

j!

dn−jF

dwn−j
∆jg(α1,...,αp)

n (x) ,

where j = [|n/2|] , (n = 0, 1, ...) and w = ϕ (x) = |x|2 = x21 + ... + x2p = r2, r is Euclidean distance, and
∂
∂x =

(
∂

∂x1
, ..., ∂

∂xp

)
. If we denote F (w) = F

(
r2
)

by ψ (r) , we can write

g(α1,...,αp)
n

(
∂

∂x

)
ψ (r) =

{
2n
dnψ (r)

d (r2)
n +

2n−2

1!

dn−1ψ (r)

d (r2)
n−1 ∆

+...+
2n−2j

j!

dn−jψ (r)

d (r2)
n−j

∆j

}
g(α1,...,αp)
n (x) .

Theorem 3.2 For the Chan–Chyan–Srivastava polynomials g(α1,...,αp)
n (x) of p variables , it holds that

g(α1,...,αp)
n

(
∂

∂x

)
r2−p = (−1)

n (p− 2) (p) (p+ 2) ... (p+ 2n− 4)

rp+2n−2

×
{
1− r2∆

2 (p+ 2n− 4)
+

r4∆2

2.4. (p+ 2n− 6) (p+ 2n− 4)

−...+ (−1)
j r2j∆j

j!2j (p+ 2n− 4) ... (p+ 2(n− j)) (p+ 2(n− j − 1))

}
g(α1,...,αp)
n (x) ,

where j = [|n/2|] , (n = 0, 1, ...) , and r2 = x21 + ...+ x2p.
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Proof In Corollary 3.1, setting ψ (r) = r2−p, we have

dψ (r)

d (r2)
=

dr2−p

d (r2)
=
d
(
w

2−p
2

)
dw

= (−1)
p− 2

2
r−p,

d2ψ (r)

d (r2)
2 =

d2r2−p

d (r2)
2 =

d2
(
w

2−p
2

)
dw2

= (−1)
2 (p− 2) (p)

22
r−p−2,

...

dnψ (r)

d (r2)
n =

dnr2−p

d (r2)
n =

dn
(
w

2−p
2

)
dwn

= (−1)
n (p− 2) (p) ... (p+ 2n− 4)

2n
r−p−2n+2.

Taking into account these derivatives in Corollary 3.1, we obtain the result. 2

Theorem 3.3 The function

u (x) =
1

rp+2n−2

{
1− r2∆

2 (p+ 2n− 4)
+

r4∆2

2.4. (p+ 2n− 6) (p+ 2n− 4)

− ...+ (−1)
j r2j∆j

j!2j (p+ 2n− 4) ... (p+ 2(n− j)) (p+ 2(n− j − 1))

}
g(α1,...,αp)
n (x)

where j = [|n/2|] , (n = 0, 1, ...), satisfies the Laplace equation

∆u = ux1x1 + ...+ uxpxp ;

that is, it is an ultraspherical harmonic function.

Proof Since the function r2−p , p ≥ 3 , is a harmonic function, ∆
(
r2−p

)
= 0 holds. If we apply the

Laplace operator to the both sides of the equality in Theorem 3.2 by considering the fact that the operator

g
(α1,...,αp)
n

(
∂
∂x
)

is an operator with constant coefficient and the function r2−p , p ≥ 3 , is a harmonic function,
we have the desired result. 2

Remark 3.4 We note that Theorem 3.2 and Theorem 3.3 were given for any homogeneous function in [7].

4. Harmonic functions associated with Lagrange polynomials

In the case of p = 2 , the Chan–Chyan–Srivastava polynomials given by (3.1) reduce to the classical Lagrange
polynomials, which are seen in certain problems in statistics [4, p. 267] (see also [12, p. 441]) defined by

(1− xt)
−α

(1− yt)
−β

=

∞∑
n=0

g(α,β)n (x, y) tn,

from which we get

g(α,β)n (x, y) =

n∑
k=0

(α)k (β)n−k

k! (n− k)!
xkyn−k.
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In Corollary 3.1, setting ψ (r) = log 1

r
where r2 = x2 + y2, we can give the next theorem without the

proof.

Theorem 4.1 For the Lagrange polynomials g(α,β)n (x, y) , it follows that

g(α,β)n

(
∂

∂x
,
∂

∂y

)
log 1

r
= (−1)

n (n− 1)!2n−1 log e
r2n

{
1− r2∆

1! (n− 1) 22
+

r4∆2

2! (n− 1) (n− 2) 24

− r6∆3

3! (n− 1) (n− 2) (n− 3) 26
+ ...+ (−1)

j (n− j − 1)!r2j∆j

j! (n− 1)!22j

}
g(α,β)n (x, y) ,

where j = [|n/2|] , (n = 1, 2, ...), r2 = x2 + y2 , and ∆ =
∂2

∂x2
+

∂2

∂y2
is two-dimensional Laplacian.

Now we can give a harmonic function associated with Lagrange polynomials.

Theorem 4.2 The function

u (x, y) =
1

r2n

{
1− r2∆

1! (n− 1) 22
+

r4∆2

2! (n− 1) (n− 2) 24
− r6∆3

3! (n− 1) (n− 2) (n− 3) 26

+...+ (−1)
j (n− j − 1)!r2j∆j

j! (n− 1)!22j

}
g(α,β)n (x, y)

is a harmonic function where j = [|n/2|] , (n = 1, 2, ...).

Proof If we apply the Laplace operator to both sides of the equality in Theorem 4.1 and then use the fact
that log 1

r is a harmonic function, we complete the proof. 2
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