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Abstract: In this paper, we define the digital Lusternik–Schnirelmann category catκ , introduce some of its properties,
and discuss how the adjacency relation affects the digital Lusternik–Schnirelmann category.

Key words: Lusternik–Schnirelmann category, digital topology

1. Introduction
The Lusternik–Schnirelmann category of a topological space X (denoted by cat(X)) is the least integer ℓ such
that there exists an open covering of X with cardinality ℓ+1 , where each subset in this covering is contractible
to a point in X [8]. For abbreviation, it is usually called LS cat. If no such a covering exists, then we write
cat(X) = ∞ . In this paper, we construct the Lusternik–Schnirelmann category from the digital viewpoint.

A digital image X is a finite subset of Zn . In order to work on X we impose a relation, called adjacency
relation, on Zn as follows: For n = 1 , we say that two points p and q in Z are 2-adjacent if q = p ± 1 . For
n = 2 , we have two possible adjacency relations. Two points p = (p1, p2) and q = (q1, q2) in Z2 are 4-adjacent
if at most only one corresponding coordinate differs by 1 and are 8-adjacent if their corresponding coordinates
either differ by one or are equal. The generalization of the possible adjacency relations on Zn is as follows: Two
points p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) in Zn are said to be cℓ -adjacent [4] for 1 ≤ ℓ ≤ n whenever

• there are at most ℓ indices i such that |pi − qi| = 1 and

• pj = qj for all other indices j satisfying |pi − qi| ̸= 1 .

Here cℓ is a positive number that is the number of possible legal moves for the motion of point p under the
certain adjacency relation. Then it is easy to observe that c1 = 2 in Z , c1 = 4 and c2 = 8 in Z2 , and c1 = 6 ,
c2 = 18 , c3 = 26 in Z3 are the only possible adjacency relations. Usually an adjacency relation on a digital
image is denoted by Greek letters such as κ and λ . The adjacency relation plays a crucial role for digital
topology. Any digital concept that is adapted from topology is considered by the given adjacency relation. For
more details, see [2, 6, 16–19].

One of our main results is that any two digital images of the same digital homotopy type have the same
Lusternik–Schnirelmann category. On the other hand, the digital homotopy type of a digital image depends not
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only on the digital image itself but also on the adjacency relation on that image. Hence the digital LS-category
of a digital image depends on the adjacency relation as well.

We give examples of the same digital images with different adjacency relations, and show that they may
have different LS-categories.

A digital image usually admits more than one adjacency relation. Another result of this paper gives the
relation between LS-categories if the adjaceny relations on the same digital image are different.

2. Digital Lusternik–Schnirelmann Category
We will start this section by recalling some definitions from digital topology.

A digital interval [1] is a subset of Z of the form

[a, b]Z = {n ∈ Z | a ≤ n ≤ b},

where 2 -adjacency relation is assumed.

Definition 2.1 ([2, 20] ) Let X ⊂ Zk and Y ⊂ Zm be digital images on which the adjacency relations κ and λ

are given respectively. A function f : X → Y is said to be (κ, λ) -continuous if the image of every κ-connected
subset of X under f is λ-connected.

An equivalent but more practicable idea for f to be a (κ, λ) -continuous map is to check the λ -adjacency
of f(x) and f(x′) in Y whenever x and x′ are κ -adjacent in X for x, x′ ∈ X .

Definition 2.2 ([2, 15] ) Let X and Y be digital images and f, g : X → Y be (κ, λ) -continuous functions. If
there exist m ∈ Z+ and a function

F : X × [0,m]Z → Y

with the following conditions, then we say that F is a digital (κ, λ) -homotopy between f and g , and f and g

are digitally (κ, λ) -homotopic in Y , which is denoted by f ≃κ,λ g or f ≃ g for short.

(i) For all x ∈ X , F (x, 0) = f(x) and F (x,m) = g(x)) .

(ii) For all x ∈ X , Fx : [0,m]Z → Y defined by Fx(t) = F (x, t) is (2, λ)-continuous.

(iii) For all t ∈ [0,m]Z , Ft : X → Y defined by Ft(x) = F (x, t) is (κ, λ)-continuous.

We call a (κ, λ) -continuous map f : X → Y null-homotopic if it is (κ, λ) -homotopic to a constant map
cy0

for some y0 ∈ Y .

Definition 2.3 Digital LS-category of a digital κ-image X ⊂ Zn is the least integer ℓ such that there is
a covering U1, U2, · · · , Uℓ+1 of X , where each inclusion map ii : Ui ↪→ X for i = 1, · · · , ℓ + 1 is digitally
κ-nullhomotopic in X . This will be denoted by catκ(X) = ℓ .

Note that catκ(X) can be at most the number of lattice points in X .
Recall that (κ, λ) -continuous map f : X → Y is (κ, λ) -homotopy equivalence [3, 9] if there exists a

(κ, λ) -continuous map g : Y → X such that g ◦f ≃κ,κ 1X and f ◦g ≃λ,λ 1Y where 1X and 1Y are the identity
maps on X and Y , respectively.
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The following theorem states that any two digital images with the same homotopy type in the digital
sense have the same digital LS-category.

Theorem 2.4 Digital LS-category is a homotopy invariant in the digital sense.

Proof If X and Y are homotopy equivalent, then X dominates Y (i.e. f : X → Y has a right homotopy
inverse) and Y dominates X . Thus it suffices to show that if X dominates Y , then catκ(X) ≥ catλ(Y ) .

Assume that X dominates Y . Then there exist (κ, λ) -continuous function f : X → Y and (λ, κ) -
continuous function g : Y → X such that f ◦ g is (λ, λ) -homotopic to idY . In other words, there exist
m1 ∈ Z+ and

F : Y × [0,m1]Z → Y

such that

(A1) For all y , F (y, 0) = (f ◦ g)(y) and F (y,m1) = idY (y) .

(A2) For all y ∈ Y , Fy : [0,m1]Z → Y defined by Fy(t) = F (y, t) is (2, λ) -continuous.

(A3) For all t ∈ [0,m1]Z , Ft : Y → Y defined by Ft(y) = F (y, t) is (λ, λ) -continuous.

Now assume that catκ(X) = ℓ . That is, there exist U1, U2, · · · , Uℓ+1 such that each inclusion map
ij : Uj ↪→ X is digitally κ -nullhomotopic in X . In other words, for each Uj there exist mj

2 and a map

Hj : Uj × [0,mj
2]Z → X

such that

(B1) For all x ∈ Uj , Hj(x, 0) = ij(x) = x and Hj(x,mj
2) is a constant.

(B2) For all x ∈ Uj , Hj
x : [0,mj

2]Z → X defined by Hj
x(t) = Hj(x, t) is (2, κ) -continuous.

(B3) For all t ∈ [0,mj
2]Z , Hj

t : Uj → X defined by Hj
t (x) = Hj(x, t) is (κ, κ) -continuous.

Consider the preimages g−1(Uj) ⊂ Y for j = 1, · · · , ℓ + 1 . If we show that each inclusion map
ιj : g

−1(Uj) ↪→ Y is digitally λ -nullhomotopic, we will complete the proof.

For each j , let mj
3 = m1 +mj

2 and define

Gj : g−1(Uj)× [0,mj
3]Z → Y

by

Gj(y, t) =
{
F (y,m1 − t) , t ∈ [0,m1]Z

f(Hj(g(y), t−m1)) , t ∈ [m1,m
j
3]Z

.

Thus Gj satisfies the following statements.

(C1) For all y ∈ g−1(Uj) , Gj(y, 0) = ιj(y) = y and Gj(y,mj
3) is a constant.
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(C2) For all y ∈ g−1(Uj) , Gj
y : [0,mj

3]Z → g−1(Uj) defined by Gj
y(t) = Gj(y, t) is (2, λ) -continuous. For

t ∈ [0,m1]Z it follows from (A2) and for t ∈ [m1,m
j
3]Z it follows from that f is (κ, λ) -continuous, Hj

g(y)

is (2, κ) -continuous and from the Proposition 2.5 in [2].

(C3) For all t ∈ [0,mj
3]Z , Gj

t : g−1(Uj) → g−1(Uj) defined by Gj
t (y) = Gj(y, t) is (λ, λ) -continuous. For t ∈

[0,m1]Z it follows from (A3). Note that Hj(g(−), t−m1) : g
−1(Uj) → X defined by y → Hj(g(y), t−m1)

is (λ, κ) -continuous. From this observation with the (κ, λ) -continuity of f and the Proposition 2.5 in [2],
the (λ, λ) -continuity of Gj

t follows for t ∈ [m1,m
j
3]Z .

2

Lemma 2.5 If the inclusion map i : U ↪→ X is nullhomotopic to x0 ∈ X , there exists a κ-path from each
point in U to x0 .

Proof The (κ, κ) continuous map Hx : [0,m]Z → X derived from the homotopy H : U × [0,m]Z → X gives
the desired path between each point x in U and x0 . 2

A κ-path in a digital image X ⊂ Z from x1 and x2 is a (2, κ) continuous function γ : [0,m]Z → X for
some integer m such that γ(0) = x0 and γ(m) = x1 [5]. Note that if γ(0) = γ(m) = x , then γ is said to be
κ-loop at x . Then a digital image X is said to be κ-connected [14], if there exists a κ -path between any pair
of points in it.

A digital image (X,κ) is said to be κ-contractible [1, 15] if its identity map is κ -homotopic in X to a
constant map. Note that the statement given in Lemma 2.5 is also true for a κ -contractible digital image X :
If a digital image (X,κ) is κ -contractible to a point x0 in X , then there exists a path between each point x

in X and x0 .
Moreover, it follows immediately by the definition that if a digital image (X,κ) is κ-contractible then

catκ(X) = 0 .

Lemma 2.6 If X is a κ-contractible digital image, then it is κ-connected.

Proof Let H : [0,m]Z ×X → X be the homotopy map between the identity map 1X and the constant map
cx0

where x0 ∈ X . Note that each Hx is a path between x and x0 . Then the map

γ : [0, 2m]Z → X

t → γ(t) =

{
Hx(t) 0 ≤ t ≤ m

Hy(m− t) m ≤ t ≤ 2m

is a path between any two (distinct) points x and y in X . 2

We now compute the digital LS-category of the following three digital images (see Figure 1) defined in [11]
and will conclude that different adjacency relations on a digital image may give different digital LS-categories.

Example 2.7 Let MSC4 be a digital image in Z2 4-isomorphic to

{a = (−1, 0), b = (−1, 1), c = (0, 1), d = (1, 1), e = (1, 0), f = (1,−1), g = (0,−1), h = (−1,−1)}.
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Since MSC4 is 8-contractible [10, 11], cat8(MSC4) = 0 . We will show that cat4(MSC4) = 1 . Define the sets
U1 = {a, b, c, d} and U2 = {e, f, g, h} , which cover MSC4 . Define the homotopy

H : U1 × [0, 3]Z → X

(x, t) 7→ H(x, t) =



ι1(x) t = 0

a (t = 1 and x = a, b) or (t = 2 and x = a, b, c)

b (t = 1 and x = c) or (t = 2 and x = d)

c t = 1 and x = d

a t = 3

where ι1 : U1 ↪→ X is an inclusion map. Then H is a homotopy between ι1 and the constant map ca . Hence
ι1 is nullhomotopic. Next define the homotopy

F : U2 × [0, 3]Z → X

(x, t) 7→ F (x, t) =



ι2(x) t = 0

e (t = 1 and x = e, f) or (t = 2 and x = e, f, g)

f (t = 1 and x = g) or (t = 2 and x = h)

g t = 1 and x = h

e t = 3

where ι2 : U2 ↪→ X is an inclusion map. Then F is a homotopy between ι2 and the constant map ce . Hence
ι2 is nullhomotopic.

Example 2.8 Let MSC
′

8 be a digital image in Z2 8-isomorphic to

{(−1, 0), (1, 0), (0,−1), (0, 1)}.

Since MSC
′

8 is 8-contractible [2], cat8(MSC
′

8) = 0 . However, it is not 4-contractible: There exists no 4-path

between any of two points in MSC
′

8 . By Lemma 2.5, the nullhomotopic map ιj : Uj → MSC
′

8 exists only when

Uj is a singleton set. Hence cat4(MSC
′

8) = 3 .

Figure 1. MSC4 , MSC
′
8 , and MSC8 .

Example 2.9 Let MSC8 be a digital image in Z2 8-isomorphic to

{a = (0, 0), b = (1, 1), c = (2, 1), d = (3, 0), e = (2,−1), f = (1,−1)}.
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It is easy to check that it is 8-connected. However it is not 8-contractible [2, 10, 11, 13]. We will show that
cat8(MSC8) = 1 . Let U1 = {a, b, c} and U2 = {d, e, f} . Note that U1 and U2 cover X . Define the homotopy

H : U1 × [0, 2]Z → X

(x, t) 7→ H(x, t) =


ι1(x) t = 0

ι1(x) t = 1 and x = a, b

b t = 1 and x = c

a t = 2

where ι1 : U1 ↪→ X is an inclusion map. Then H is a homotopy between ι1 and the constant map ca . Hence
ι1 is nullhomotopic. Next define the homotopy

F : U2 × [0, 2]Z → X

(x, t) 7→ F (x, t) =


ι2(x) t = 0

ι2(x) t = 1 and x = e, f

e t = 1 and x = d

f t = 2

where ι2 : U2 ↪→ X is an inclusion map. Then F is a homotopy between ι2 and the constant map cf . Hence
ι2 is nullhomotopic.

Note that the digital Lusternik–Schnirelmann category depends on the adjacency relation. For MSC8 ,
cat4(MSC8) = 3 . The idea here is due to Lemma 2.5. The covering {U1 = {a}, U2 = {b, c}, U3 = {d}, U4 =

{e, f}} is the minimal that satisfies the conditions for the digital Lusternik–Schnirelmann category.

Theorem 2.10 Let X be a digital image in Zn and let κ and λ be the two adjacency relations in Zn . Then
catκ(X) ≤ catλ(X) whenever κ > λ .

Proof Let catλ(X) = ℓ . Then there exists U1, · · · , Uℓ+1 subsets of X covering X such that each inclusion
map ii : Ui ↪→ X for i = 1, · · · , ℓ+1 is digitally λ -nullhomotopic in X . On the other hand, two points that are
λ -adjacent are also κ -adjacent, since κ > λ . Hence it can easily be verified that all the λ -homotopies between
any two maps on Ui are also κ -homotopies. Therefore there are ℓ+ 1 subsets U1, · · · , Uℓ+1 covering X such
that each inclusion map ii : Ui ↪→ X for i = 1, · · · , ℓ + 1 is digitally κ -nullhomotopic in X . This completes
the proof. 2

Note that in some situations the equality catκ(X) = catλ(X) may occur. The following is an example
of such a case.

Example 2.11 Consider the digital image MSS18 = {ci}9i=0 [12] in Z3 where

c0 = (0, 0, 0), c1 = (1, 1, 0), c2 = (0, 1,−1), c3 = (0, 2,−1), c4 = (1, 2, 0),

c5 = (0, 3, 0), c6 = (−1, 2, 0), c7 = (0, 2, 1), c8 = (0, 1, 1), c9 = (−1, 1, 0).

By Lemma 2.5, any inclusion map ι : U → MSS18 is nullhomotopic whenever U is a singleton set since no two
distinct points in MSS18 are 6-connected Z3 . Consider the loop

γ : [0, 9]Z → MSS18
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defined by
γ(t) := ct+1(mod10)

(see Figure 2). Note that any loop in MSS18 is 18-contractible (hence 26-contractible) [7] so that by the
Theorem 2.10 cat26(MSS18) = cat18(MSS18) = 1 .

Figure 2. MSS18 and the image of the loop γ .
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