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Abstract: In this article, we introduce new classes of submodules called r-submodule and special r-submodule, which
are two different generalizations of r-ideals. Let M be an R-module, where R is a commutative ring. We call a proper
submodule N of M an r-submodule (resp., special r-submodule) if the condition am € N with annar(a) = Oam (resp.,
anngr(m) = 0) implies that m € N (resp., a € (N :g M)) for each a € R and m € M. We also give various results

and examples concerning r-submodules and special r-submodules.
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1. Introduction
Throughout, all rings will be commutative with 1 # 0 and all modules will be unitary. In particular, R will
always denote such a ring. The concept of r-ideals was introduced and studied by Mohamadian in [9]. Recall
from [9] that a proper ideal I of R is an r-ideal if ab € I and ann(a) = {r € R : ra = 0} = 0, and then
b € I for each a,b € R. In this article, we give two different generalizations of this concept to modules by
r-submodules and special r-submodules.

Let us give some definitions and notations we will need throughout this study. Let M be an R-module.
Then a submodule NV of M is proper whenever N # M . If N is a submodule of M and K is a nonempty subset
of M, then the ideal {r € R : rK C N} is denoted by (N :p K). In particular, we use Anng(M) instead
of (0pr :r M). Furthermore, for each element m of M, we denote (0ps :g {m}) by anngr(m). Suppose
that N is a submodule of M and S is a nonempty subset of R. Denote by (N :p S) the set of all
m € M with Sm C N. In particular, we use annps(a) instead of (0ps :as {a}) for each a € R. Also, the sets
{a € R:anny (a) #0p} and {m € M : anng (m) # 0} will be designated by Z(M) and T(M), respectively.

The prime submodule, which is an important subject of module theory, has been widely studied by
various authors. See, for example, [2,4,8] and [3,5,7]. Recall that a prime submodule is a proper submodule
N of M with the property that am € N implies that a € (N :g M) or m € N for each a € R,m € M.
In that case, (N :g M) is a prime ideal of R. In Section 2, we extend the concept of r-ideals to modules
by r-submodules, and we investigate some properties of r-submodules with similar prime submodules. We
define a proper submodule N of M as an r-submodule if whenever am € N with annys (a) = Opz, then
m € N for each a € R and m € M. Since there is no proper submodule of zero module, from now on we

assume that R-module M is nonzero. Among many results in this paper, it is shown in Proposition 4 that
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a proper submodule N of M is an r-submodule if and only if N = (N :j; a) for every a € R— Z(M). In
Theorem 1 we show that a proper submodule N of M is an r-submodule of M if and only if whenever I is
an ideal of R such that IN(R— Z(M)) # 0 and L is a submodule of M with IL C N, then L C N. Also, it
is proved in Proposition 7 that if N is a maximal r-submodule of M, then N is prime submodule. Finally, in
Theorem 8, we characterize the r-submodules of Cartesian products of modules.

In Section 3, we introduce the special r-submodule, which is another generalization of r-ideals. We
call a proper submodule N of M a special r-submodule (briefly sr-submodule) if for each ¢« € R and
m € M, am € N with anng (m) =0, and then a € (N :g M). In Example 11, it is shown that r-submodules
and sr-submodules are different concepts, i.e. neither implies the other. In Theorem 13, we show that an
R-module M is torsion-free if and only if M is faithful and the zero submodule is the only sr-submodule
of M. We characterize, in Theorem 14, all R-modules in which every proper submodule is an sr-submodule.

Finally we characterize, in Theorem 15, the sr-submodules of Cartesian products of modules.

2. r-Submodules
Definition 1 Let M be an R-module. A proper submodule N of M is said to be an r-submodule if
am € N with annyy (a) = 0y implies that m € N for each a € R,m € M.

Note that a proper submodule N of M being an r-submodule means simply that Z(M/N) C Z(M) and
also the r-submodules of R-module R are precisely the r-ideals of R. Now we give some examples of r-
submodules.

Example 1 Consider the Z-module Z,, for n > 2. Let (T) be a proper submodule of Z,,. Then ged(x,n) =d >
1. This implies that (T) = (d) , and also note that Z, /(T) is isomorphic to Z-module Z4. Since Z(Zq) C Z(Zy),

it follows that (T) is an r-submodule of Z,,.

Example 2 Consider Z-module Q/Z. We know that E (p) = {a € Q/Z : a = Lt +Z fort € NU{0} and
p

r € Z} is a submodule of Q/Z, where p is a prime number. Then any proper submodule of E (p) is of the
form Gy = {a € Q/Z : o = % + Z for some r € Z} for some to € NU {0} [12]. E(p) does not have
p

any prime submodule. However, we show that every proper submodule of E (p) is an r-submodule. First, note

that annpgp) (m) = Ogpy if and only if ged (p,m) = 1 for m € Z. Let m € Z, ]% +7Z € E(p) such that

m (7; +Z> = mitr +Z € Gy, and ged (p,m) = 1. If t < tg, then we have Lt +Z € Gy,. Now, assume that
p p p

k k
t > ty. Since m—tr—t—Z € Gy,, we have m—:—FZ = —— +Z for some k € Z, and so m—:—T € 7Z. Then
p p pe p pe
we have mr = kpt~t (mod p'). Since ged (m,pt) = 1, we get r = k'kpt~t (mod p') for some k' € Z, and so
/

k'K
+7Z = oo +Z € Gy,. Hence, Gy, is an r-submodule of E (p).

r

ot
Lemma 1 If N is an r-submodule of M, then (N :g M) C Z(M).

Proof It follows from the fact that (N :g M) = Ann(M/N) C Z(M/N) C Z(M). O
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The converse of Lemma 1 is not always valid, i.e. if N is a submodule of M with (N :g M) C Z(M), then

N need not be an r-submodule of M. We give a counter example in the following.

Example 3 Consider the Z-module Z X Z and the submodule N = 2Z x 0 of M = Z x Z. Note that
(N :z M)=1(0) C Z(M) and also M /N is isomorphic to Z-module Zo X Z. Since 2 € Z(Zs x Z) — Z(M), we
have Z(Zy x Z) € Z(M) and thus N is not an r-submodule of M.

The following examples show that the concepts of prime submodule and r-submodule are different.

Example 4 (i) Consider the Z-module Z. Of course, 3Z is a prime submodule of Z, since (3Z 7 Z) = 3Z &
Z (Z), it follows that 3Z is not an r-submodule of Z.

(ii) Consider the Z-module Zis. By Example 1, we know that (9) is an r-submodule of Zyg but it is
not a prime submodule. Since 3.3 =9 ¢€ (9) but 3 ¢ ((9) : Z1s) = 9Z and 3 ¢ (9).

Note that in a vector space, any proper subspace is a prime submodule. In the following proposition, we

show it is true for r-submodules and so in a vector space the prime submodule coincides with the r-submodule.

Proposition 1 Let V' be a vector space over a field F. Then every proper subspace W of V' is an r -submodule.

Proof Follows from Z(V /W) = 0. O

Proposition 2 For a prime submodule N of M, N is an r-submodule if and only if (N :g M) C Z(M).

Proof If N is prime submodule, then Z(M/N) = (N :g M) so that N is an r-submodule iff (N :g M) C
Z(M). 0

Proposition 3 Let M be an R-module. Then the following hold:
(i) The zero submodule is an r-submodule.

(it) The intersection of an arbitrary nonempty set of r-submodules is an r-submodule.

Proof (i) It is clear that Z(M /0x;) = Z(M) and so the zero submodule is an r-submodule.

(ii) Let N; be an r-submodule of M for every i € A. Suppose that am € ﬂNi with annps (a) = 0
i€EA
for a € R,m € M. Then we have am € N; for every ¢ € A. Since N; is an r-submodule, we conclude that
m € N; for every i € A, and thus m € ﬂ N, . Hence, ﬂNi is an r-submodule. O
1€EA €A

Note that the sum of two r-submodules need not be an r-submodule. See the following example.

Example 5 Consider the Z-module Ziy. Then (2) and (5) are r-submodules but (2) + (5) = Z1o is not an

r-submodule of Zqg.

It is well known if N is prime submodule of M, then (N :g M) is prime ideal of R. However, the

following example shows that this is not always correct for r-submodules.
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Example 6 Consider the Z-module Zs. (2) is an r-submodule but ((2) iz, Z4) = 27Z is not an r-ideal of Z,
since a domain has no nonzero r-ideals.

Recall that a nonempty subset S of R is multiplicatively closed precisely when ab € S for all a,b € S. For
instance, S = R — Z(M) is a multiplicatively closed subset of R. Suppose that S is a multiplicatively closed
subset of R and M is an R-module. Then we denote the module of fraction at S by S~'M. Note that S~ M is
both an S~!'R-module and an R-module. Also, for every submodule N of M, S™!N is an S~'R-submodule of
S=IM. Let M be an R-module. Consider S~'M as an R-module. The natural R-homomorphism is defined

as follows:

7:M — S™'M, for all m € M, 7(m) = T

Proposition 4 Let N be a proper submodule of M. Then the following are equivalent:
(i) N is an r-submodule of M.
(i) aM NN =aN for every a € R—Z(M).
(#ii) (N :pr a) = N for every a € R— Z(M).
(iv) N =n~Y(L), where S =R — Z(M) and L is an S™'R-submodule of S~1M.

Proof (i) = (ii): Suppose that N is an r-submodule. For every a € R, the inclusion aN C aM NN always
holds. Let a € R with annps (a) = 0y and x € aM N N. Then we get © = am € N for some m € M. Since
N is an r-submodule, m € N and thus x = am € aN. Hence, we get aM NN = aN.

(#3) = (it9): It is well known that N C (N :ps a) for every a € R. Let a € R such that annys (a) =
Oar and m € (N :pr a). Then we have am € N, and so am € aMNN = aN by (ii). Thus, we have am = an for
some n € N. Since annys (a) = 0p7, we conclude that m =n € N. Hence, we have (N :p; a) C N.

(iii) = (iv): Since N C 7 1(S7IN), it is sufficient to show that 7=!(S7!N) C N. Let m €
7~ 1(S7IN). Then we have m(m) = % € S7'N and so am € N for some a € S. Thus, by (iii), we con-
clude that m € (N :py a) = N.

(iv) = (i): Suppose that N = 7 (L), where S = R — Z(M) and L is an S~!R-submodule of
S™'M. Let am € N and annp(a) = Op. Then we have w(am) = % € L. Since a € S and L is an
S~!R-submodule, we conclude that 19" = ™ = 7(m) € L and so m € 7~ '(L) = N, as needed. O

a 1 1

In [11], Ribenboim defined the pure submodule as a proper submodule N of M if aM NN = aN for
every a € R. By Proposition 4, every pure submodule is also an r-submodule. However, in the following, we

show that the converse is not necessarily correct.

Example 7 Consider the Z-module Zyg and the submodule N = <§> Then N is an r-submodule of Z1¢, but
N s not a pure submodule of Zyg, because 2N = (4) G 2716 N N = (2).

Proposition 5 Suppose that N is an r-submodule of M and S is a nonempty subset of R with S ¢
(N :g M). Then (N :ar S) is an r-submodule of M. In particular, (Opr:ar S) s always an r-submodule
if S¢ Anng (M).
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Proof Let am € (N :pr S) with annys (@) = 0pr for a € R,m € M. Then we have asm € N for every s € S.
Since N is an r-submodule, we get sm € N for every s € S and this yields m € (N :ps S), as is needed. The

rest follows easily. O

Corollary 1 If a ¢ Anng (M), then anny (a) is an r-submodule of M .

Proposition 6 For any R-module M, the following hold if the zero submodule is the only r-submodule:
(i) The zero submodule is a prime submodule of M.
(i) Anng (M) is a prime ideal of R.

Proof (i) Let am =0 and a ¢ Anng (M), where a € R, m € M. Then by previous corollary, ann,s (a) is
an r-submodule and thus annys (a) = 0pr. Hence, we have m = 0jy, as needed.
(ii) It follows from (i). O
Remember that a proper submodule N of M is prime if and only if for every ideal I of R and submodule
L of M with IL C N, then either I C (N :g M) or L C N. Now we present a similar result for r-submodules

as follows.

Theorem 1 For a proper submodule N of M, the following hold:

(i) N is an r-submodule of M if and only if whenever I is an ideal of R such that IN(R — Z(M)) # 0 and
L is a submodule of M with IL C N, then L C N.

(i) If (N :g M) C Z(M) and N is not an r-submodule of M, then there exist an ideal I of R and a
submodule L of M such that IN(R—Z(M))#0, NG L, (N:g M)S 1T ,and ILC N.

Proof (i) Suppose that N isan r-submodule and IL C N for some ideal I of R with IN(R — Z(M)) # 0 and
submodule L of M. Then there exist a € I such that annys (a) = 0ps. Since al € N for every | € L and N is
an r-submodule, we conclude that [ € N, and thus L C N. For the converse, let am € N and annys (a) = Oy
for a € R,m € M. We take I = aR and L = Rm. Note that TN (R— Z(M)) # 0 and IL C N. Then by
assumption we have Rm C N, and so m € N. Hence, N is an r-submodule.

(ii) Since N is not an r-submodule, there exist a € R,m € M such that am € N with annys (a) = Op
and m ¢ N. We take I = (N :pm). Note that a« € I and a ¢ (N :gp M) since anny (a) = 0.
Thus, (N :g M) G I. Now we take L = (N :p I). Since m ¢ N and m € L, N & L. Hence, we get
NGL, (N:gM)G T and IL=1(N:p I)CN. O

Theorem 2 Suppose that K1, Ko, L are submodules of M and I is an ideal of R with IN(R— Z(M)) # (.
Then the following hold:

(i) If K1, K5 are r-submodules of M with 1Ky = IKs, then K1 = Ko.

(it) If IL is an r-submodule, then IL = L. In particular, L is an r-submodule.

Proof (i) Since IK; C K3 and K> is an r-submodule, we have K; C K3 by Theorem 1(i). Similarly, we
have Ky C K1, and so K| = K».
(ii) Since IL is an r-submodule and IL C IL, we have L C IL C L by Theorem 1(i), and so IL = L.
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Theorem 3 Suppose that N1, Na, ..., N, are prime submodules of M such that (N; :r M) s are not comparable.

If nNi is an r-submodule, then N; is an r-submodule for each i € {1,2,...,n}.
i=1

Proof Let am € Ny with annys (a) = 0p for a € R,m € M. Since (N; :g M)s are not comparable, we

n

have r € (](Nz :r M) | — (N :gr M) for some r € R. Then we have ram € ﬂNi. Since ﬂNi is an

i=1 =1 =1
i#k

n
r-submodule, we conclude that rm € ﬂNi C Nji. Thus, we have m € N, because Nj is a prime submodule
i=1

and r ¢ (Ny :g M). Hence, N}, is an r-submodule. O

Proposition 7 If N is a mazimal r-submodule of M , then N is prime submodule.

Proof Let am € N and m ¢ N; we show that a € (N :g M). Assume that a ¢ (N :g M). Then (N :ps a) is
an r-submodule by Proposition 5. Since N is a maximal r-submodule, we conclude that m € (N :py a) = N, a
contradiction. Thus, we have a € (N :g M), as needed. O

N

Let recall the following well-known theorem of the prime avoidance lemma: suppose that N C fi

-

1

j
and at most two of N; are not prime submodules. Then N C N; for some 1 < ¢ < n if the condition
(Ni :r M) ¢ (N, :g M) holds for every i # j [4,7]. Now we present a result with a similar prime avoidance

lemma for r-submodules.

Proposition 8 Let N C UNj for submodules N, N1, Na, ..., N, of M. Suppose that Ny is an r-submodule
j=1
and (Nj :g M)N(R—Z(M)) #0 for every j #k. If N ¢ UNj, then N C Ng.
i#k

Proof We may asume that k = 1. Since N ¢ UNJ’ there exists m € N such that m ¢ UNJ’ namely
j=2 j=2

mé€ Ny. Let n€ NN NaNN3N...NN,. Then it is clear that m+n € N — UNj, and thus m+n € Ny. This
=2
gives n € Ny, and so NN NN NgN..NN, C Ny. Since (Nj:g M) N (R—Z(M)) # 0, there exists

a; € (N; :r M) such that annys (a;) = 0p for j = 2,3,...,n. Then note that annas (azas...a,) = 0pr. Now we

take I = ﬂ (Nj :r M). Then we have azas...an, € IN(R — Z(M)). Since IN C NNN2NN3N...NN, C N; and
j=2

IN(R—Z(M))# 0, by Theorem 1, we get N C Nj. O

Definition 2 A nonempty subset S of R is said to be an r-multiplicatively closed subset precisely when
R—Z(M)C S andabe S, foralla€ R—Z(M) and b e S.
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Example 8 For every r-submodule N of M, R — (N :g M) is an r-multiplicatively closed subset of R.
We know that if N is an r-submodule, then (N :g M) C Z(M) and so R—Z(M) C R— (N :g M). Let
a € R—Z(M) and b € R— (N :g M). Suppose that ab € (N :r M). Then we have abm € N for every
m € M and annps (a) = Opr. Since N is an r-submodule, it follows that bm € N and thus b € (N :g M), a

contradiction. Hence, R — (N :g M) is an r-multiplicatively closed subset.

Definition 3 Let S be an r-multiplicatively closed subset of R and S* be a nonempty subset of M. Then
S* is called an S-closed subset of M if am € S* for each a € S and m € S*.

Theorem 4 Let S* be an S-closed subset of M, where S is an r-multiplicatively closed subset of R. Suppose
that N is a submodule of M with N NS* = 0. Then there exists an r-submodule L of M with N C L and
LNS*=0.

Proof Let Q = {L': L' be a submodule of M with N C L' and L' N S* = (}. Since N € Q, we have
Q # 0. By Zorn’s lemma, 2 has a maximal element L with N C L and LN S* = 0. Assume that L is not an
r-submodule of M. Then there exist a € R,m € M such that am € L, annys (a) = 0y and m ¢ L. Since
m ¢ L and m € (L:p a), LG (L :p a). By the maximality of L, we get m/ € (L :py a)N.S*. Since a € S, we

get the result that am’ € L N S*, a contradiction. Hence, L is an r-submodule. O

Theorem 5 Let M be an R-module. Then every proper submodule of M is an r-submodule if and only if for
every submodule N of M, aN = N for every a € R— Z(M).

Proof  Suppose that every proper submodule of M is an r-submodule. Let N be a submodule and
a € R—Z(M). Assume that N = M. If aM # M, then aM is an r-submodule of M. Since am € aM for
every m € M and annys (a) = 0y, we conclude that m € aM, and thus aM = M, a contradiction. Thus,
we have aM = M. Now assume that N is a proper submodule of M. Then aN C N # M and so aN is an
r-submodule of M. Since an € alN for every n € N, similarly we get the result that aN = N. Conversely,
suppose that aN = N for every submodule N of M and every a € R— Z(M). Let N be a proper submodule
of M and a € R— Z(M). Then we have aM NN = aN, and so by Proposition 4, N is an r-submodule of
M. O

Let M be an R-module. Recall that the idealization of M in R, which is denoted by R (+) M = {(a,m) :
a € R, m € M}, is a commutative ring with component-wise addition and multiplication (ai,m1)(az,m2) =

(arag,a1msa + agmy) [10]. In [1,6], the zero divisor set of R (+) M was characterized as follows:
Z(R(+)M)={(a,m):a€ Z(R)UZ (M), me M},

where Z(R) = {a € R : ann(a) # 0}.

Corollary 2 For every a € R and m € M, anngya (a,m) = 0 if and only if ann (a) = 0 and anny (a) =

Onr .

Suppose that N is a submodule of M and J is an ideal of R. Then it is clear that J(+)N is an ideal
of R(+)M if and only if JM C N. In that case J(+)N is called a homogeneous ideal.

Proposition 9 Suppose that J is an r-ideal of R. Then J(+)M is an r-ideal of R(+)M .
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Proof Let J be an r-ideal of R. Suppose that (aj,m1)(az,m2) = (a1a2,a1ms + asmy) € J(+) M and
anngya (a1,my) = 0. Since annpyar (a1,m1) = 0, we have ann (a;) = 0. Then we get the result that
ag € J, because J is an r-ideal and ajas € J. Thus, we have (az,mg) € J(4) M. Consequently, J(+)M is
an r-ideal. O

The converse of the previous proposition is not always true. We have a counterexample as follows.

Example 9 Consider the Z (+)Z2 and the ideal 27 (+) Za of Z(+)Zz. We know that 27 is not an r-ideal
of Z but 2Z (+) Z2 is an r-ideal of Z (+) Zs.

Theorem 6 Suppose that J is an r-ideal of R and N is an 7-submodule of M with JM C N. Then
J(+)N s an r-ideal of R(+)M.

Proof Let (ai,mi)(az,m2) € J(+)N with anngya(ar,m1) = 0. Then we have ann(a;) = 0 and
annpr(a1) = Opr. Since J is an r-ideal and ajas € J, we have as € J. Thus, we have asm; € N and
so aymg € N. As N is an r-submodule, it follows that mge € N and so (a2, ms2) € J(+)N. Hence, J(+)N is
an r-ideal. O

Example 9 also serves as a counterexample of the previous theorem, but we prove that the converse of
Theorem 6 is valid when Z (R) = Z (M) as follows.

Theorem 7 Let M be an R-module and Z(R) = Z(M). If J(+)N is an r-ideal of R(+)M with N # M, then
J is an r-ideal of R and N is an r-submodule of M.

Proof Suppose that J(+)N is an r-ideal. Since Z(R) = Z(M), anngyu(ar,mi) = 0 if and only if
ann(a;) = 0. Let a,b € R with ab € J and ann(a) = 0. Then we have anng)r(a,0x) = 0 and so
(a,0pr)(b,057) = (ab,0pr) € J(+)N. Since J(+)N is an r-ideal, we get the result that (b,05) € J(+)N and
thus b € J. Hence, J is an r-ideal of R. Suppose that am € N with annys(a) = 0y for a € R, m € M. Then
anng4yam(a,0r) =0, so we get (a,0x7)(0,m) = (0,am) € J(+)N. As J(+)N is an r-ideal, we conclude that
(0,m) € J(+)N and so m € N. Hence, N is an r-submodule. O

Let My be an R;-module and Ms an Rs-module, where Ry and Ro are commutative rings with identity.
Suppose that R = Ry X Ry and M = My x Ms. Then M becomes an R-module with coordinate-wise addition
and the scalar multiplication (ai,as2) (m1,ma) = (aymy,asms) for every a; € Ri,as € Ry; my € M; and
mo € Ms. Also, every submodule N of M has the form N = N; x Ny, where N;j is a submodule of M; and

Ny is a submodule of My. The following theorem characterizes the r-submodule of Cartesian product of

modules.

Lemma 2 Let R = Ry X Ry and M = My x My, where My is an Ri-module and My is an Rg-module.
Suppose that N = Ny X Ny is a submodule of M . Then the following are equivalent:

(i) N is an r-submodule of M.
(i) N1 = M; and Na is an r-submodule of Ms or Ny is an r-submodule of Myand No = My or
Ny, Ny are r-submodules of My and My, respectively.

Proof (i) = (i) : First note that M /N is isomorphic to (M7/Ny) x (M2/N3) and Z(M/N) = (Z(M;/Ny) x
Ro) U (Ry X Z(Ms/N3)). Suppose that N is an r-submodule of M and assume that Ny = M;. Since N is
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a proper submodule of M, Ny # M,. Then Z(M/N) = Ry x Z(Ms/N2) C Z(M) = (Z(M;) x R2) U (Ry X
Z(My3)) and so Z(My/Ns2) C Z(Ms). This implies that Ny is an r-submodule of Ms. In other cases, a similar
argument shows that (¢) implies (7).

(i4) = () : Conversely, suppose that (ii) holds. Assume that Nj, No are r-submodules of M; and
My, respectively. Then Z(M;/N1) C Z(My) and Z(Ms/Ns) C Z(Ms). This implies that Z(M/N) =
(Z(M1/N1) x Ro) U (Ry X Z(Ms/Ns)) C (Z(M;) X Ro)U(Ry X Z(M3)) = Z(M), i.e. N is an r-submodule of

M. In other cases, one can similarly prove that N is an r-submodule. O

Theorem 8 Suppose that R = Ry X Ry X ... x R, and M = My x My x ... X M,,, where M; is an R;-module
form>1and1<i<n. Let N = Ni XNy x..x N, be asubmodule of M. Then the following are equivalent:
(i) N is an r-submodule of M.
(i1) N; = M; fori € {t1,t2,....,tk : k <n} and N; is an r-submodule of M; fori € {1,2,...,n}\ {t1,t2,....tx}-

Proof To prove the claim, we use induction on n. If n = 1, then it is clear that (i) < (i7). If n = 2, by
Lemma 2, (i) and (i7) are equal. Assume that n > 3 and the claim is valid when K = My x My X ...x M,,_1. We
prove that the claim is true when M = K x M,,. Then by Lemma 2 we get the result that IV is an r-submodule
if and only if N = K x N,, for some r-submodule N,, of M,, or N = L x M,, for some r-submodule L of K or
N =L x N, for some r-submodule L of K and some r-submodule N,, of M, . By induction hypothesis, the

result is valid in three cases. O

3. Special r-submodules

In this section, we give another type of generalization of r-ideals to modules.

Definition 4 Let M be an R-module. Then a submodule N of M is said to be a special r-submodule (briefly
sr-submodule) if N # M, for each a € R,m € M with am € N and anng(m) =0, then a € (N :g M).

If we consider R-module R, the sr-submodules and r-submodules coincide. Now we give some examples

of sr-submodules in the following.

Example 10 By Ezample 1, we know that all proper submodules of Z-module Z,, are r-submodules. One

can easily see that all proper submodules of Z,, are also sr-submodules. Now consider the Z-module E(p). By

Ezample 2, all proper submodules of E(p) are r-submodules. Since anng (7; + Z) # 0 for each Lf +7Z €
2 2

E (p), we conclude that all proper submodules of E(p) are also sr-submodules.

In the previous example, r-submodules and sr-submodules are equal, but these concepts are different.

See the following examples.

Example 11 (i) By Proposition 1, the subspace N = {(z,0):z € R} of M = R? is an r-submodule, but
2(1,0) = (2,0) € N, anng(1,0) = 0, and 2 ¢ (N g M); thus, we get the result that N is not an sr-
submodule.

(ii) Consider the R = Z x Z-module M = Z X Zs and the submodule N = 2Zx0. Since anng (m) # 0 for
every m € M, it follows that N is an sr-submodule of M. However, it is not an r-submodule since
(2,1) (1,0) = (2,0) € N, anny (2,1) = 0p, and (1,0) ¢ N.
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Lemma 3 If N is an sr-submodule of M, then N C T(M).

Proof Assume that N ¢ T(M). There exists m € N with anng (m) = 0. Since 1.m =m € N and N is an

sr-submodule, we get the result that 1 € (N :g M), i.e. N = M, a contradiction. Hence, we have N C T'(M).
O

The converse of the previous lemma is not always true. See the following example.

Example 12 Consider the R = R x Z-module M = C x Z and the submodule N =R x 0 of M. Note that
T(M)=(0c xZ)U(Cx0) and (N :g M) =0g. Thus, we have N C T (M). Since (2,0) (2+0z,1) = (4,0) €
N, anng (2+0i,1) =0g , and (2,0) ¢ (N :g M), we get the result that N is not an sr-submodule.

Example 13 (i) Every nonzero prime submodule of Z-module Z is not an sr-submodule.

(ii) (4) is an sr-submodule of Z-module Zis but it is not prime.

Now we give a condition for a prime submodule to be an sr-submodule in the following proposition.

Proposition 10 For a prime submodule N of M, N is an sr-submodule if and only if N C T'(M).

Proof Assume that N is a prime submodule. If N is an sr-submodule, then N C T (M) by Lemma 3. Now,
suppose N C T (M). Let am € N and anng(m) =0 for a € R and m € M. Since anng(m) = 0, m ¢

T(M) and so m ¢ N. Since N is prime submodule, we have a € (N :g M) and hence N is an sr-submodule.
O

Proposition 11 Let M be an R-module. Then the following hold:
(i) The zero submodule is an sr-submodule of M.

(it) The intersection of an arbitrary nonempty set of sr-submodules is an sr-submodule.

Proof (i) Let a € R,m € M with am = 03 and anng (m) =0. Then we have a =0 € (05 :g M). Hence,

we get the result that the zero submodule is an sr-submodule.

(ii) Suppose that {N;}, . is an arbitrary nonempty set of sr-submodules of M. Let am € m N; and
1€EA

anng (m) =0. Since N; is an sr-submodule and am € N;, we get a € (N; :g M) for every i € A. Hence, we

get a € ﬂ (N;:g M) = ((ﬂZ\G) ‘R M) and so ﬂNi is an sr-submodule. O

i€A i€A i€A
The following example shows that (N :g M) need not be an r-ideal even if N is an sr-submodule of
M.

Example 14 Consider the Z-module Zg|z] and the submodule N = {p(z) € Z¢|z| : p(0) € (2)}. Then N is
an sr-submodule but (N :z Zg[x]) = 2Z is not an r-ideal of Z.

Proposition 12 Let N be a proper submodule of M. Then the following are equivalent:
(i) N is an sr-submodule of M.
(ii)) Rm NN = (N :g M)m for every me M —T (M).
(ii) (N :g M) = (N :g m) for every me M —T (M).
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Proof (i) = (ii): Suppose that N is an sr-submodule. The inclusion (N :g M)m C RmN N always holds
for each m € M. Let m € M —T(M) and € Rm N N. Then we have x = am € N for some a € R. As
N is an sr-submodule of M and anng (m) =0, a € (N :g M) and so z =am € (N :g M)m, as desired.

(#i) = (igi): It is easy to see that (N :g M) C (N :gm) for every m € M. Suppose that m €
M —T (M) and a € (N :g m). Then we have am € N. Thus, we have am € Rm NN = (N :g M)m by
assumption. Then am = rm for some r € (N :g M). Since anng (m) =0 and (a —r)m = 057, we conclude
that @ € (N :g M). Hence, we have (N :g M) = (N :gm).

(t3i) = (i): Let am € N and anng(m) = 0. Then we get m € M —T(M) and so a € (N :g m) =
(N :g M) by the assumption. Consequently, N is an sr-submodule of M. O

Theorem 9 Let f: My — Ms be an R-module homomorphism. Then the following hold:

(i) If f is a monomorphism and L is an sr-submodule of My with f=*(L) # My, then f~Y(L) is an
sr-submodule of M.

(i) If f is an epimorphism and K is an sr-submodule of M; containing Ker(f), then f(K) is an

sr-submodule of Ms.

Proof (i) Let am € f~'(L) with anng(m) = 0 for a € R, m € M;. Then f(am) = af(m) € L and
anng(f(m)) = 0. Since L is an sr-submodule of Ms, we conclude that a € (L :p Ma) C (f~*(L) :r My).
Hence, f~*(L) is an sr-submodule of M;.

(ii) Let am’ € f(K) and anng(m’) = 0 for a € R,m’ € M,. Since f is epimorphism, there exists
m € M such that f(m) = m/. Then we have am’ = af(m) = f(am) € f(K). As Ker(f) C K, we have
am € K. Since anngr(m) = 0, we conclude that a € (K :g M) C (f(K) :r Mz). Consequently, f(K) is an

sr-submodule. O

Corollary 3 Let K be a submodule of M. Then the following hold:
(i) For every sr-submodule N of M with K ¢ N, NNK is an sr-submodule of K.
(i) For every sr-submodule N of M with K C N, N/K ‘s an sr-submodule of M /K.

Proof (i) Consider the injection i : K — M and note that i~* (N) = KNN. Thus, NNK is an sr-submodule
of K by Theorem 9(i).

(ii) Assume 7 : M — M /K to be the natural homomorphism and note that Ker (7) = K C N. Thus,
N/K is an sr-submodule of M /K by Theorem 9(ii). O

Remark 1 For any nonempty subset S of R and submodule N of M, (N :ap S) :g M) = ((N :g M) :g 5)

always holds.

Proposition 13 Let M be an R-module. Then the following hold:
(i) For every sr-submodule N of M and every subset S of R with S € (N :g M), (N :p S) is an
sr-submodule of M. In particular, (Or :a S) is always an sr-submodule if S ¢ Anng (M).

(it) annys (a) is an sr-submodule of M for every a ¢ Anng(M).
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Proof (i) Let am € (N :py S) with anng (m) =0 for a € R,m € M. Then asm € N for every s € S. Since
N is an sr-submodule, we get the result that as € (N :gp M) for every s € S andso a € (N :g M) :g S). By
Remark 1, a € (N :ar S) :r M), and thus (N :ps S) is an sr-submodule.

(ii) Follows from (i) and Proposition 11. O

Theorem 10 For a proper submodule N of M, the following hold:

(i) N is an sr-submodule of M if and only if whenever L is a submodule of M with LN(M —T (M)) #
0 and J is an ideal of R with JL C N, then J C (N :g M).

(i) If N is not an sr-submodule with N C T(M), then there is an ideal J of R and submodule L of
M with L0N(M =T (M))#0, NCL, (N:gM)SJ , and JLC N.

Proof (i) Suppose N is an sr-submodule. For submodule L of M with LN (M —T(M)) # ( and ideal
J of R, assume that JL C N. Since LN (M — T (M)) # 0, anng (m) = 0 for some m € L. By assumption,
am € N for every a € J, and thus a € (N :g M). We get the result that J C (N :g M). Conversely, let
am € N and anng (m) =0 for a € R,m € M. Now we take J = aR and L = Rm. Then we have JL C N for
submodule L of M with LN (M —T (M)) #  and ideal J of R. By assumption, J = aR C (N :g M) so
that a € (N :g M). Consequently, N is an sr-submodule.

(ii) If N is not an sr-submodule, then am € N with anng(m) = 0 but a ¢ (N :g M) for some
a€ R,mée& M. Now we take L = (N :pr a). Since m € L—N, N G L. Also, we take J = (N :g L). Since
ac€J—(N:g M), weget (N:g M)S J. Then we get JL = (N :gp L)L C N, as desired. O

As a consequence of Theorem 10, we have the following result.

Theorem 11 Let L be a submodule of M with LN (M —T (M)) # 0. Then the following hold:
(i) If N1, Ny are sr-submodules of M with (N1 :g M)L = (N3 :g M)L, then (N1 :g M) = (Na:g M).
(it) If JL is an sr-submodule for an ideal J of R, then JL = JM . Particularly, JM is an sr-submodule
of M.

Theorem 12 Suppose that Ni, Na, ..., N, are prime submodules of M with (N; :r M)s not comparable. If

ﬂNi is an sr-submodule, then N; is an sr-submodule for each i € {1,2,....,n}.
i=1
Proof The proof is similar to Theorem 3. O

The following theorem characterizes the torsion-free modules by sr-submodule.

Theorem 13 For any R-module M, the following are equivalent:
(i) M is torsion-free.

(i) M is faithful and the zero submodule is the only sr-submodule.

Proof (i) = (i1): It is obvious that M is faithful. For every sr-submodule N of M, N C T (M) =0y and
so N =0p; by Lemma 3. However, the zero submodule is always an sr-submodule.

(#3) = (¢): Let m € T(M). Then we have 0 # r € R such that rm = 0p;. We know that annas (r) is
an sr-submodule by Proposition 13(ii), and we have m € annys (r) = Op; by assumption. Hence, we have
T(M)=0p. O
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Proposition 14 If N is a mazimal sr-submodule of M, then N is prime submodule.

Proof Let am € N and a ¢ (N :gp M); we show that m € N. Then (N :p; a) is an sr-submodule by
Proposition 13(i). Since N is maximal sr-submodule, m € (N :p; a) = N. Consequently, N is prime

submodule. O

Theorem 14 Let M be an R-module. Then every proper submodule is an sr-submodule of M if and only if
T(M)=M or Rm=M for every me M —T (M).

Proof Suppose every proper submodule of M is an sr-submodule and T(M) # M. Let m € M — T(M).
If Rm # M, then we get the result that Rm is an sr-submodule. Since rm € Rm for every r € R and
anng (m) =0, (Rm:g M) = R. Thus, we have Rm = RM = M, which contradicts the assumption. Hence,
we have Rm = M for all m € M — T (M). Conversely, if T (M) = M, then every proper submodule is an
sr-submodule. Now assume that Rm = M for all m € M — T (M). Suppose N is a proper submodule of
M. Let am € N and anng(m) = 0 for a € R,m € M. Then we get the result that Rm = M, because
m € M —T(M). Thus, a € (N :g m) = (N :g M). Consequently, N is an sr-submodule. O

Lemma 4 For every Ri-module My and Rs-module Ms, T(M; x Ms) = (T(My) x My) U (M; x T(Ms))

always holds.

Proof Let (my,mz2) € T (M; x My). Then there exists (Ogr,,0r,) # (a1,a2) € Ry X Ry such that
(a1,a2) (m1,ma) = (Opy,0n,) and so aymy = Opg, asmge = Opr. Since a3 # Og, or as # Og,, we
conclude that my € T (M) or mg € T (Ms). Hence, we have (my,mg) € (T (My) x My) U (My x T (Ms)).
Conversely, let (my,mz) € (T (M;y) x Ma) U (My x T (Mz)). Without loss of generality, we may assume that
(mq,mgq) € T (M) x My. There exists Or, # a1 € Ry such that a;mq = 0y, since my € T (M7). Thus, we have
(Ogr,,0r,) # (a1,0r,) € R1 X Ry such that (a1,0g,) (m1,m2) = (Orr,,0nr,) and so (my,mo) € T (M; X Ms).
Hence, we have T' (M7 x My) = (T (M1) x M2) U (M7 x T (Ma)) . O

Corollary 4 If T (M) = My or T (Ms) = Ms, then we have T (My x Ms) = My x My and so every proper
submodule of My X My is an sr-submodule of My X Ms.

Now we characterize the sr-submodules of Cartesian products of modules in case T'(M;) # M; and
T(Ms) # Ms.

Lemma 5 Let R = Ry X Ry and M = My x My, where M; is an R;-module with T(M;) # M; for i =1,2.
Suppose that N = Ny X Ny is a submodule of M . Then the following are equivalent:

(i) N is an sr-submodule.

(ii)) Ny = My and Ns is an sr-submodule of My or Ny is an sr-submodule of My and Ny = My or
Ny, Ny are sr-submodules of My and Ms, respectively.

Proof (i) = (i7): Assume that N = Ny x Ny is an sr-submodule and Ny = M;. Since N is proper, we
conclude that Ny # M,. Now we show that N is an sr-submodule of M;. Suppose not. Then there
exist ag € Rg,ms € My such that asms € Ny with anng, (m2) = Og, but as ¢ (N2 :g, Ms). Since

T (My) # My, we get anng, (m1) = Op, for some my € M;. Thus, we have anng(mi,mz) = O and
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(OR,,az) (m1,ma) = (Opr,, a2mz) € N but (Og,,a2) ¢ (N :g M) , which contradicts N being an sr-submodule
of M. Hence, we have that N5 is an sr-submodule of My. If Ny = My, in a similar way we can see that Nj is
an sr-submodule of Ms. If Ny #% M; and Ns # My, it can be proved that Ni, Ny are sr-submodules of M,
and Ms, respectively.

(#4) = (i): Assume Np, Ny are sr-submodules of M; and M, respectively. Let (a1, a2) € Ry x Ry and
(mq,mga) € My X My such that (a1, az2) (m1,m2) = (a1mi,aams) € N with anng (m1,m2) = (Og,,0r,). Then
we have anng, (m;) = Og, and a;m; € N; for i = 1,2. Since N; is an sr-submodule of M;, we conclude that
a; € (N; :g, M;) and so (a1,a2) € (N1 :g, M1) X (N3 :g, M2) = (N :g M). Hence, we get the result that N is

an sr-submodule. In other cases, one can easily prove the result. O

Theorem 15 Suppose that R = Ry X Ry X ... X R,, and M = My x My X ... X M,,, where M; is an R;-module
with T (M;) # M; for n > 1 and 1 <i <n. For a submodule N = N7 x Ny X ... x N, of M, the following
are equivalent:

(i) N is an sr-submodule.

(it) Ny = M; fori € {t1,ta,....,tx : k <n} and N; is an sr-submodule of M; for i € {1,2,...,n}\ {t1,ta ..., tx}.

Proof We use induction on n. If n =1, of course (i) < (i4). If n =2, by Lemma 5, (i) and (ii) are equal.
Assume n > 3 and (i) < (i4) holds when K = M; X Ms X ... x M,,_1. Now we prove that (i) and (ii) are
equal when M = K x M,,. Then, by Lemma 5, N is an sr-submodule of M if and only if N = K x N,, for
some sr-submodule N,, of M, or N = L x M, for some sr-submodule L of K or N = L x N,, for some

sr-submodule L of K and some sr-submodule N,, of M, . By induction hypothesis, the result is true in three
cases. O

References

—

Anderson DD, Winders M. Idealization of a module. J Commut Algebra 2009; 1: 3-56.

~

Azizi A. Radical formula and prime submodules. J Algebra 2007; 307: 454-460.

W@

Azizi A. On prime and weakly prime submodules. Vietnam J Math 2008; 36: 315-325.
Calhalp F, Tekir U. On unions of prime submodules. SEA Bull Math 2004; 28: 213-218.

=

Dauns J. Prime modules. J Reine Angew Math 1978; 298: 156-181.

SRl N

=

Huckaba JA. Commutative Rings with Zero Divisors. Monographs and Textbooks in Pure and Applied Mathematics,
Vol. 117. New York, NY, USA: Marcel Dekker, 1988.

Lu CP. Prime submodules of modules. Comm Math Univ Sancti Pauli 1984; 33: 61-69.
McCasland RL, Moore ME. Prime submodules. Comm Algebra 1992; 20: 1803-1817.
Mohamadian R. r-Ideals in commutative rings. Turk J Math 2015; 39: 733-749.

S = A RO

=
=

Nagata M. Local Rings. New York, NY, USA: Interscience, 1962.
Ribenboim P. Algebraic Numbers. New York, NY, USA: Wiley, 1974.
Sharp RY. Steps in Commutative Algebra. 2nd ed. Cambridge, UK: Cambridge University Press, 2000.

1876



	Introduction
	r-Submodules
	Special r-submodules

