тüвітак

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2018) 42: 1863 - 1876
© TÜBİTAK
doi:10.3906/mat-1702-20

r-Submodules and $s r$-Submodules

Suat KOÇ®, Ünsal TEKİR* ${ }^{\text {© }}$
Department of Mathematics, Faculty of Arts and Sciences, Marmara University, İstanbul, Turkey

Received: 06.02.2017 • Accepted/Published Online: 12.04.2018 • Final Version: 24.07 .2018

Abstract

In this article, we introduce new classes of submodules called r-submodule and special r-submodule, which are two different generalizations of r-ideals. Let M be an R-module, where R is a commutative ring. We call a proper submodule N of M an r-submodule (resp., special r-submodule) if the condition $a m \in N$ with $a n n_{M}(a)=0_{M}$ (resp., $a n n_{R}(m)=0$) implies that $m \in N$ (resp., $a \in\left(N:_{R} M\right)$) for each $a \in R$ and $m \in M$. We also give various results and examples concerning r-submodules and special r-submodules.

Key words: r-Ideal, prime ideal, r-submodule, special r-submodule, prime submodule

1. Introduction

Throughout, all rings will be commutative with $1 \neq 0$ and all modules will be unitary. In particular, R will always denote such a ring. The concept of r-ideals was introduced and studied by Mohamadian in [9]. Recall from [9] that a proper ideal I of R is an r-ideal if $a b \in I$ and $\operatorname{ann}(a)=\{r \in R: r a=0\}=0$, and then $b \in I$ for each $a, b \in R$. In this article, we give two different generalizations of this concept to modules by r-submodules and special r-submodules.

Let us give some definitions and notations we will need throughout this study. Let M be an R-module. Then a submodule N of M is proper whenever $N \neq M$. If N is a submodule of M and K is a nonempty subset of M, then the ideal $\{r \in R: r K \subseteq N\}$ is denoted by $\left(N:_{R} K\right)$. In particular, we use $A n n_{R}(M)$ instead of $\left(0_{M}:_{R} M\right)$. Furthermore, for each element m of M, we denote $\left(0_{M}:_{R}\{m\}\right)$ by $a n n_{R}(m)$. Suppose that N is a submodule of M and S is a nonempty subset of R. Denote by $\left(N:_{M} S\right)$ the set of all $m \in M$ with $S m \subseteq N$. In particular, we use $\operatorname{ann}_{M}(a)$ instead of $\left(0_{M}:_{M}\{a\}\right)$ for each $a \in R$. Also, the sets $\left\{a \in R: a n n_{M}(a) \neq 0_{M}\right\}$ and $\left\{m \in M: a n n_{R}(m) \neq 0\right\}$ will be designated by $Z(M)$ and $T(M)$, respectively.

The prime submodule, which is an important subject of module theory, has been widely studied by various authors. See, for example, $[2,4,8]$ and $[3,5,7]$. Recall that a prime submodule is a proper submodule N of M with the property that $a m \in N$ implies that $a \in\left(N:_{R} M\right)$ or $m \in N$ for each $a \in R, m \in M$. In that case, $\left(N:_{R} M\right)$ is a prime ideal of R. In Section 2, we extend the concept of r-ideals to modules by r-submodules, and we investigate some properties of r-submodules with similar prime submodules. We define a proper submodule N of M as an r-submodule if whenever $a m \in N$ with $a n n_{M}(a)=0_{M}$, then $m \in N$ for each $a \in R$ and $m \in M$. Since there is no proper submodule of zero module, from now on we assume that R-module M is nonzero. Among many results in this paper, it is shown in Proposition 4 that

[^0]a proper submodule N of M is an r-submodule if and only if $N=\left(N:_{M} a\right)$ for every $a \in R-Z(M)$. In Theorem 1 we show that a proper submodule N of M is an r-submodule of M if and only if whenever I is an ideal of R such that $I \cap(R-Z(M)) \neq \emptyset$ and L is a submodule of M with $I L \subseteq N$, then $L \subseteq N$. Also, it is proved in Proposition 7 that if N is a maximal r-submodule of M, then N is prime submodule. Finally, in Theorem 8, we characterize the r-submodules of Cartesian products of modules.

In Section 3, we introduce the special r-submodule, which is another generalization of r-ideals. We call a proper submodule N of M a special r-submodule (briefly $s r$-submodule) if for each $a \in R$ and $m \in M, a m \in N$ with $a n n_{R}(m)=0$, and then $a \in\left(N:_{R} M\right)$. In Example 11, it is shown that r-submodules and $s r$-submodules are different concepts, i.e. neither implies the other. In Theorem 13 , we show that an R-module M is torsion-free if and only if M is faithful and the zero submodule is the only $s r$-submodule of M. We characterize, in Theorem 14, all R-modules in which every proper submodule is an $s r$-submodule. Finally we characterize, in Theorem 15, the $s r$-submodules of Cartesian products of modules.

2. r-Submodules

Definition 1 Let M be an R-module. A proper submodule N of M is said to be an r-submodule if am $\in N$ with ann $_{M}(a)=0_{M}$ implies that $m \in N$ for each $a \in R, m \in M$.

Note that a proper submodule N of M being an r-submodule means simply that $Z(M / N) \subseteq Z(M)$ and also the r-submodules of R-module R are precisely the r-ideals of R. Now we give some examples of r submodules.

Example 1 Consider the \mathbb{Z}-module \mathbb{Z}_{n} for $n \geq 2$. Let $\langle\bar{x}\rangle$ be a proper submodule of \mathbb{Z}_{n}. Then $\operatorname{gcd}(x, n)=d>$ 1. This implies that $\langle\bar{x}\rangle=\langle\bar{d}\rangle$, and also note that $\mathbb{Z}_{n} /\langle\bar{x}\rangle$ is isomorphic to \mathbb{Z}-module \mathbb{Z}_{d}. Since $Z\left(\mathbb{Z}_{d}\right) \subseteq Z\left(\mathbb{Z}_{n}\right)$, it follows that $\langle\bar{x}\rangle$ is an r-submodule of \mathbb{Z}_{n}.

Example 2 Consider \mathbb{Z}-module \mathbb{Q} / \mathbb{Z}. We know that $E(p)=\left\{\alpha \in \mathbb{Q} / \mathbb{Z}: \alpha=\frac{r}{p^{t}}+\mathbb{Z}\right.$ for $t \in \mathbb{N} \cup\{0\}$ and $r \in \mathbb{Z}\}$ is a submodule of \mathbb{Q} / \mathbb{Z}, where p is a prime number. Then any proper submodule of $E(p)$ is of the form $G_{t_{0}}=\left\{\alpha \in \mathbb{Q} / \mathbb{Z}: \alpha=\frac{r}{p^{t_{0}}}+\mathbb{Z}\right.$ for some $\left.r \in \mathbb{Z}\right\}$ for some $t_{0} \in \mathbb{N} \cup\{0\}[12]$. $E(p)$ does not have any prime submodule. However, we show that every proper submodule of $E(p)$ is an r-submodule. First, note that $\operatorname{ann}_{E(p)}(m)=0_{E(p)}$ if and only if $\operatorname{gcd}(p, m)=1$ for $m \in \mathbb{Z}$. Let $m \in \mathbb{Z}, \frac{r}{p^{t}}+\mathbb{Z} \in E(p)$ such that $m\left(\frac{r}{p^{t}}+\mathbb{Z}\right)=\frac{m r}{p^{t}}+\mathbb{Z} \in G_{t_{0}}$ and $\operatorname{gcd}(p, m)=1$. If $t \leq t_{0}$, then we have $\frac{r}{p^{t}}+\mathbb{Z} \in G_{t_{0}}$. Now, assume that $t>t_{0}$. Since $\frac{m r}{p^{t}}+\mathbb{Z} \in G_{t_{0}}$, we have $\frac{m r}{p^{t}}+\mathbb{Z}=\frac{k}{p^{t_{0}}}+\mathbb{Z}$ for some $k \in \mathbb{Z}$, and so $\frac{m r}{p^{t}}-\frac{k}{p^{t_{0}}} \in \mathbb{Z}$. Then we have $m r \equiv k p^{t-t_{0}}\left(\bmod p^{t}\right)$. Since $\operatorname{gcd}\left(m, p^{t}\right)=1$, we get $r \equiv k^{\prime} k p^{t-t_{0}}\left(\bmod p^{t}\right)$ for some $k^{\prime} \in \mathbb{Z}$, and so $\frac{r}{p^{t}}+\mathbb{Z}=\frac{k^{\prime} k}{p^{t_{0}}}+\mathbb{Z} \in G_{t_{0}}$. Hence, $G_{t_{0}}$ is an r-submodule of $E(p)$.

Lemma 1 If N is an r-submodule of M, then $\left(N:_{R} M\right) \subseteq Z(M)$.
Proof It follows from the fact that $\left(N:_{R} M\right)=\operatorname{Ann}(M / N) \subseteq Z(M / N) \subseteq Z(M)$.

KOÇ and TEKİR/Turk J Math

The converse of Lemma 1 is not always valid, i.e. if N is a submodule of M with $\left(N:_{R} M\right) \subseteq Z(M)$, then N need not be an r-submodule of M. We give a counter example in the following.

Example 3 Consider the \mathbb{Z}-module $\mathbb{Z} \times \mathbb{Z}$ and the submodule $N=2 \mathbb{Z} \times 0$ of $M=\mathbb{Z} \times \mathbb{Z}$. Note that $(N: \mathbb{Z} M)=\langle 0\rangle \subseteq Z(M)$ and also M / N is isomorphic to \mathbb{Z}-module $\mathbb{Z}_{2} \times \mathbb{Z}$. Since $2 \in Z\left(\mathbb{Z}_{2} \times \mathbb{Z}\right)-Z(M)$, we have $Z\left(\mathbb{Z}_{2} \times \mathbb{Z}\right) \nsubseteq Z(M)$ and thus N is not an r-submodule of M.

The following examples show that the concepts of prime submodule and r-submodule are different.

Example 4 (i) Consider the \mathbb{Z}-module \mathbb{Z}. Of course, $3 \mathbb{Z}$ is a prime submodule of \mathbb{Z}, since $(3 \mathbb{Z}: \mathbb{Z} \mathbb{Z})=3 \mathbb{Z} \nsubseteq$ $Z(\mathbb{Z})$, it follows that $3 \mathbb{Z}$ is not an r-submodule of \mathbb{Z}.
(ii) Consider the \mathbb{Z}-module \mathbb{Z}_{18}. By Example 1 , we know that $\langle\overline{9}\rangle$ is an r-submodule of \mathbb{Z}_{18} but it is not a prime submodule. Since $3 . \overline{3}=\overline{9} \in\langle\overline{9}\rangle$ but $3 \notin\left(\langle\overline{9}\rangle: \mathbb{Z}_{18}\right)=9 \mathbb{Z}$ and $\overline{3} \notin\langle\overline{9}\rangle$.

Note that in a vector space, any proper subspace is a prime submodule. In the following proposition, we show it is true for r-submodules and so in a vector space the prime submodule coincides with the r-submodule.

Proposition 1 Let V be a vector space over a field F. Then every proper subspace W of V is an r-submodule.
Proof Follows from $Z(V / W)=0$.

Proposition 2 For a prime submodule N of M, N is an r-submodule if and only if $\left(N:_{R} M\right) \subseteq Z(M)$.
Proof If N is prime submodule, then $Z(M / N)=\left(N:_{R} M\right)$ so that N is an r-submodule iff $\left(N:_{R} M\right) \subseteq$ $Z(M)$.

Proposition 3 Let M be an R-module. Then the following hold:
(i) The zero submodule is an r-submodule.
(ii) The intersection of an arbitrary nonempty set of r-submodules is an r-submodule.

Proof (i) It is clear that $Z\left(M / 0_{M}\right)=Z(M)$ and so the zero submodule is an r-submodule.
(ii) Let N_{i} be an r-submodule of M for every $i \in \Delta$. Suppose that $a m \in \bigcap_{i \in \Delta} N_{i}$ with $a n n_{M}(a)=0_{M}$ for $a \in R, m \in M$. Then we have $a m \in N_{i}$ for every $i \in \Delta$. Since N_{i} is an r-submodule, we conclude that $m \in N_{i}$ for every $i \in \Delta$, and thus $m \in \bigcap_{i \in \Delta} N_{i}$. Hence, $\bigcap_{i \in \Delta} N_{i}$ is an r-submodule.

Note that the sum of two r-submodules need not be an r-submodule. See the following example.

Example 5 Consider the \mathbb{Z}-module \mathbb{Z}_{10}. Then $\langle\overline{2}\rangle$ and $\langle\overline{5}\rangle$ are r-submodules but $\langle\overline{2}\rangle+\langle\overline{5}\rangle=\mathbb{Z}_{10}$ is not an r-submodule of \mathbb{Z}_{10}.

It is well known if N is prime submodule of M, then $\left(N:_{R} M\right)$ is prime ideal of R. However, the following example shows that this is not always correct for r-submodules.

KOÇ and TEKİR/Turk J Math

Example 6 Consider the \mathbb{Z}-module \mathbb{Z}_{4}. $\langle\overline{2}\rangle$ is an r-submodule but $\left(\langle\overline{2}\rangle: \mathbb{Z}^{\mathbb{Z}} \mathbb{Z}_{4}\right)=2 \mathbb{Z}$ is not an r-ideal of \mathbb{Z}, since a domain has no nonzero r-ideals.

Recall that a nonempty subset S of R is multiplicatively closed precisely when $a b \in S$ for all $a, b \in S$. For instance, $S=R-Z(M)$ is a multiplicatively closed subset of R. Suppose that S is a multiplicatively closed subset of R and M is an R-module. Then we denote the module of fraction at S by $S^{-1} M$. Note that $S^{-1} M$ is both an $S^{-1} R$-module and an R-module. Also, for every submodule N of $M, S^{-1} N$ is an $S^{-1} R$-submodule of $S^{-1} M$. Let M be an R-module. Consider $S^{-1} M$ as an R-module. The natural R-homomorphism is defined as follows:

$$
\pi: M \rightarrow S^{-1} M, \text { for all } m \in M, \pi(m)=\frac{m}{1}
$$

Proposition 4 Let N be a proper submodule of M. Then the following are equivalent:
(i) N is an r-submodule of M.
(ii) $a M \cap N=a N$ for every $a \in R-Z(M)$.
(iii) $\left(N:_{M} a\right)=N$ for every $a \in R-Z(M)$.
(iv) $N=\pi^{-1}(L)$, where $S=R-Z(M)$ and L is an $S^{-1} R$-submodule of $S^{-1} M$.

Proof $(i) \Rightarrow(i i)$: Suppose that N is an r-submodule. For every $a \in R$, the inclusion $a N \subseteq a M \cap N$ always holds. Let $a \in R$ with $a n n_{M}(a)=0_{M}$ and $x \in a M \cap N$. Then we get $x=a m \in N$ for some $m \in M$. Since N is an r-submodule, $m \in N$ and thus $x=a m \in a N$. Hence, we get $a M \cap N=a N$.
$(i i) \Rightarrow(i i i)$: It is well known that $N \subseteq\left(N:_{M} a\right)$ for every $a \in R$. Let $a \in R$ such that $a n n_{M}(a)=$ 0_{M} and $m \in\left(N:_{M} a\right)$. Then we have $a m \in N$, and so $a m \in a M \cap N=a N$ by (ii). Thus, we have $a m=a n$ for some $n \in N$. Since $a n n_{M}(a)=0_{M}$, we conclude that $m=n \in N$. Hence, we have $\left(N:_{M} a\right) \subseteq N$.
$(i i i) \Rightarrow(i v)$: Since $N \subseteq \pi^{-1}\left(S^{-1} N\right)$, it is sufficient to show that $\pi^{-1}\left(S^{-1} N\right) \subseteq N$. Let $m \in$ $\pi^{-1}\left(S^{-1} N\right)$. Then we have $\pi(m)=\frac{m}{1} \in S^{-1} N$ and so $a m \in N$ for some $a \in S$. Thus, by (iii), we conclude that $m \in\left(N:_{M} a\right)=N$.
$(i v) \Rightarrow(i)$: Suppose that $N=\pi^{-1}(L)$, where $S=R-Z(M)$ and L is an $S^{-1} R$-submodule of $S^{-1} M$. Let $a m \in N$ and $a n n_{M}(a)=0_{M}$. Then we have $\pi(a m)=\frac{a m}{1} \in L$. Since $a \in S$ and L is an $S^{-1} R$-submodule, we conclude that $\frac{1}{a} \frac{a m}{1}=\frac{m}{1}=\pi(m) \in L$ and so $m \in \pi^{-1}(L)=N$, as needed.

In [11], Ribenboim defined the pure submodule as a proper submodule N of M if $a M \cap N=a N$ for every $a \in R$. By Proposition 4, every pure submodule is also an r-submodule. However, in the following, we show that the converse is not necessarily correct.

Example 7 Consider the \mathbb{Z}-module \mathbb{Z}_{16} and the submodule $N=\langle\overline{2}\rangle$. Then N is an r-submodule of \mathbb{Z}_{16}, but N is not a pure submodule of \mathbb{Z}_{16}, because $2 N=\langle\overline{4}\rangle \varsubsetneqq 2 \mathbb{Z}_{16} \cap N=\langle\overline{2}\rangle$.

Proposition 5 Suppose that N is an r-submodule of M and S is a nonempty subset of R with $S \nsubseteq$ $\left(N:_{R} M\right)$. Then $\left(N:_{M} S\right)$ is an r-submodule of M. In particular, $\left(0_{M}:_{M} S\right)$ is always an r-submodule if $S \nsubseteq A n n_{R}(M)$.

KOÇ and TEKİR/Turk J Math

Proof Let $a m \in\left(N:_{M} S\right)$ with $a n n_{M}(a)=0_{M}$ for $a \in R, m \in M$. Then we have $a s m \in N$ for every $s \in S$. Since N is an r-submodule, we get $s m \in N$ for every $s \in S$ and this yields $m \in\left(N:_{M} S\right)$, as is needed. The rest follows easily.

Corollary 1 If $a \notin A n n_{R}(M)$, then $\operatorname{ann}_{M}(a)$ is an r-submodule of M.

Proposition 6 For any R-module M, the following hold if the zero submodule is the only r-submodule:
(i) The zero submodule is a prime submodule of M.
(ii) $A n n_{R}(M)$ is a prime ideal of R.

Proof (i) Let $a m=0_{M}$ and $a \notin \operatorname{Ann}_{R}(M)$, where $a \in R, m \in M$. Then by previous corollary, $a n n_{M}(a)$ is an r-submodule and thus $a n n_{M}(a)=0_{M}$. Hence, we have $m=0_{M}$, as needed.
(ii) It follows from (i).

Remember that a proper submodule N of M is prime if and only if for every ideal I of R and submodule L of M with $I L \subseteq N$, then either $I \subseteq\left(N:_{R} M\right)$ or $L \subseteq N$. Now we present a similar result for r-submodules as follows.

Theorem 1 For a proper submodule N of M, the following hold:
(i) N is an r-submodule of M if and only if whenever I is an ideal of R such that $I \cap(R-Z(M)) \neq \emptyset$ and L is a submodule of M with $I L \subseteq N$, then $L \subseteq N$.
(ii) If $\left(N:_{R} M\right) \subseteq Z(M)$ and N is not an r-submodule of M, then there exist an ideal I of R and a submodule L of M such that $I \cap(R-Z(M)) \neq \emptyset, N \varsubsetneqq L,\left(N:_{R} M\right) \varsubsetneqq I$, and $I L \subseteq N$.

Proof (i) Suppose that N is an r-submodule and $I L \subseteq N$ for some ideal I of R with $I \cap(R-Z(M)) \neq \emptyset$ and submodule L of M. Then there exist $a \in I$ such that $a n n_{M}(a)=0_{M}$. Since $a l \in N$ for every $l \in L$ and N is an r-submodule, we conclude that $l \in N$, and thus $L \subseteq N$. For the converse, let $a m \in N$ and $a n n_{M}(a)=0_{M}$ for $a \in R, m \in M$. We take $I=a R$ and $L=R m$. Note that $I \cap(R-Z(M)) \neq \emptyset$ and $I L \subseteq N$. Then by assumption we have $R m \subseteq N$, and so $m \in N$. Hence, N is an r-submodule.
(ii) Since N is not an r-submodule, there exist $a \in R, m \in M$ such that $a m \in N$ with $a n n_{M}(a)=0_{M}$ and $m \notin N$. We take $I=\left(N:_{R} m\right)$. Note that $a \in I$ and $a \notin\left(N:_{R} M\right)$ since $a n n_{M}(a)=0_{M}$. Thus, $\left(N:_{R} M\right) \varsubsetneqq I$. Now we take $L=\left(N:_{M} I\right)$. Since $m \notin N$ and $m \in L, N \nsubseteq L$. Hence, we get $N \varsubsetneqq L,\left(N:_{R} M\right) \varsubsetneqq I$ and $I L=I\left(N:_{M} I\right) \subseteq N$.

Theorem 2 Suppose that K_{1}, K_{2}, L are submodules of M and I is an ideal of R with $I \cap(R-Z(M)) \neq \emptyset$. Then the following hold:
(i) If K_{1}, K_{2} are r-submodules of M with $I K_{1}=I K_{2}$, then $K_{1}=K_{2}$.
(ii) If $I L$ is an r-submodule, then $I L=L$. In particular, L is an r-submodule.

Proof (i) Since $I K_{1} \subseteq K_{2}$ and K_{2} is an r-submodule, we have $K_{1} \subseteq K_{2}$ by Theorem 1(i). Similarly, we have $K_{2} \subseteq K_{1}$, and so $K_{1}=K_{2}$.
(ii) Since $I L$ is an r-submodule and $I L \subseteq I L$, we have $L \subseteq I L \subseteq L$ by Theorem 1(i), and so $I L=L$.

Theorem 3 Suppose that $N_{1}, N_{2}, \ldots, N_{n}$ are prime submodules of M such that $\left(N_{i}:_{R} M\right)$ s are not comparable. If $\bigcap_{i=1}^{n} N_{i}$ is an r-submodule, then N_{i} is an r-submodule for each $i \in\{1,2, \ldots, n\}$.

Proof Let $a m \in N_{k}$ with $\operatorname{ann}_{M}(a)=0_{M}$ for $a \in R, m \in M$. Since ($N_{i}:_{R} M$)s are not comparable, we have $r \in\left(\bigcap_{\substack{i=1 \\ i \neq k}}^{n}\left(N_{i}:_{R} M\right)\right)-\left(N_{k}:_{R} M\right)$ for some $r \in R$. Then we have $\operatorname{ram} \in \bigcap_{i=1}^{n} N_{i}$. Since $\bigcap_{i=1}^{n} N_{i}$ is an r-submodule, we conclude that $r m \in \bigcap_{i=1}^{n} N_{i} \subseteq N_{k}$. Thus, we have $m \in N_{k}$, because N_{k} is a prime submodule and $r \notin\left(N_{k}:_{R} M\right)$. Hence, N_{k} is an r-submodule.

Proposition 7 If N is a maximal r-submodule of M, then N is prime submodule.
Proof Let $a m \in N$ and $m \notin N$; we show that $a \in\left(N:_{R} M\right)$. Assume that $a \notin\left(N:_{R} M\right)$. Then $\left(N:_{M} a\right)$ is an r-submodule by Proposition 5 . Since N is a maximal r-submodule, we conclude that $m \in\left(N:_{M} a\right)=N$, a contradiction. Thus, we have $a \in\left(N:_{R} M\right)$, as needed.

Let recall the following well-known theorem of the prime avoidance lemma: suppose that $N \subseteq \bigcup_{j=1}^{n} N_{j}$ and at most two of N_{j} are not prime submodules. Then $N \subseteq N_{i}$ for some $1 \leq i \leq n$ if the condition $\left(N_{i}:_{R} M\right) \nsubseteq\left(N_{j}:_{R} M\right)$ holds for every $i \neq j[4,7]$. Now we present a result with a similar prime avoidance lemma for r-submodules.

Proposition 8 Let $N \subseteq \bigcup_{j=1}^{n} N_{j}$ for submodules $N, N_{1}, N_{2}, \ldots, N_{n}$ of M. Suppose that N_{k} is an r-submodule and $\left(N_{j}:_{R} M\right) \cap(R-Z(M)) \neq \emptyset$ for every $j \neq k$. If $N \nsubseteq \bigcup_{j \neq k} N_{j}$, then $N \subseteq N_{k}$.

Proof We may asume that $k=1$. Since $N \nsubseteq \bigcup_{j=2}^{n} N_{j}$, there exists $m \in N$ such that $m \notin \bigcup_{j=2}^{n} N_{j}$, namely $m \in N_{1}$. Let $n \in N \cap N_{2} \cap N_{3} \cap \ldots \cap N_{n}$. Then it is clear that $m+n \in N-\bigcup_{j=2}^{n} N_{j}$, and thus $m+n \in N_{1}$. This gives $n \in N_{1}$, and so $N \cap N_{2} \cap N_{3} \cap \ldots \cap N_{n} \subseteq N_{1}$. Since $\left(N_{j}:_{R} M\right) \cap(R-Z(M)) \neq \emptyset$, there exists $a_{j} \in\left(N_{j}:_{R} M\right)$ such that $a n n_{M}\left(a_{j}\right)=0_{M}$ for $j=2,3, \ldots, n$. Then note that $a n n_{M}\left(a_{2} a_{3} \ldots a_{n}\right)=0_{M}$. Now we take $I=\bigcap_{j=2}^{n}\left(N_{j}:_{R} M\right)$. Then we have $a_{2} a_{3} \ldots a_{n} \in I \cap(R-Z(M))$. Since $I N \subseteq N \cap N_{2} \cap N_{3} \cap \ldots \cap N_{n} \subseteq N_{1}$ and $I \cap(R-Z(M)) \neq \emptyset$, by Theorem 1, we get $N \subseteq N_{1}$.

Definition 2 A nonempty subset S of R is said to be an r-multiplicatively closed subset precisely when $R-Z(M) \subseteq S$ and $a b \in S$, for all $a \in R-Z(M)$ and $b \in S$.

KOÇ and TEKİR/Turk J Math

Example 8 For every r-submodule N of $M, R-\left(N:_{R} M\right)$ is an r-multiplicatively closed subset of R. We know that if N is an r-submodule, then $\left(N:_{R} M\right) \subseteq Z(M)$ and so $R-Z(M) \subseteq R-\left(N:_{R} M\right)$. Let $a \in R-Z(M)$ and $b \in R-\left(N:_{R} M\right)$. Suppose that $a b \in\left(N:_{R} M\right)$. Then we have abm $\in N$ for every $m \in M$ and ann $M(a)=0_{M}$. Since N is an r-submodule, it follows that $b m \in N$ and thus $b \in\left(N:_{R} M\right)$, a contradiction. Hence, $R-\left(N:_{R} M\right)$ is an r-multiplicatively closed subset.

Definition 3 Let S be an r-multiplicatively closed subset of R and S^{*} be a nonempty subset of M. Then S^{*} is called an S-closed subset of M if am $\in S^{*}$ for each $a \in S$ and $m \in S^{*}$.

Theorem 4 Let S^{*} be an S-closed subset of M, where S is an r-multiplicatively closed subset of R. Suppose that N is a submodule of M with $N \cap S^{*}=\emptyset$. Then there exists an r-submodule L of M with $N \subseteq L$ and $L \cap S^{*}=\emptyset$.

Proof Let $\Omega=\left\{L^{\prime}: L^{\prime}\right.$ be a submodule of M with $N \subseteq L^{\prime}$ and $\left.L^{\prime} \cap S^{*}=\emptyset\right\}$. Since $N \in \Omega$, we have $\Omega \neq \emptyset$. By Zorn's lemma, Ω has a maximal element L with $N \subseteq L$ and $L \cap S^{*}=\emptyset$. Assume that L is not an r-submodule of M. Then there exist $a \in R, m \in M$ such that $a m \in L$, $a n n_{M}(a)=0_{M}$ and $m \notin L$. Since $m \notin L$ and $m \in\left(L:_{M} a\right), L \varsubsetneqq\left(L:_{M} a\right)$. By the maximality of L, we get $m^{\prime} \in\left(L:_{M} a\right) \cap S^{*}$. Since $a \in S$, we get the result that $a m^{\prime} \in L \cap S^{*}$, a contradiction. Hence, L is an r-submodule.

Theorem 5 Let M be an R-module. Then every proper submodule of M is an r-submodule if and only if for every submodule N of $M, a N=N$ for every $a \in R-Z(M)$.

Proof Suppose that every proper submodule of M is an r-submodule. Let N be a submodule and $a \in R-Z(M)$. Assume that $N=M$. If $a M \neq M$, then $a M$ is an r-submodule of M. Since $a m \in a M$ for every $m \in M$ and $a n n_{M}(a)=0_{M}$, we conclude that $m \in a M$, and thus $a M=M$, a contradiction. Thus, we have $a M=M$. Now assume that N is a proper submodule of M. Then $a N \subseteq N \neq M$ and so $a N$ is an r-submodule of M. Since $a n \in a N$ for every $n \in N$, similarly we get the result that $a N=N$. Conversely, suppose that $a N=N$ for every submodule N of M and every $a \in R-Z(M)$. Let N be a proper submodule of M and $a \in R-Z(M)$. Then we have $a M \cap N=a N$, and so by Proposition 4, N is an r-submodule of M.

Let M be an R-module. Recall that the idealization of M in R, which is denoted by $R(+) M=\{(a, m)$: $a \in R, m \in M\}$, is a commutative ring with component-wise addition and multiplication $\left(a_{1}, m_{1}\right)\left(a_{2}, m_{2}\right)=$ $\left(a_{1} a_{2}, a_{1} m_{2}+a_{2} m_{1}\right)$ [10]. In $[1,6]$, the zero divisor set of $R(+) M$ was characterized as follows:

$$
Z(R(+) M)=\{(a, m): a \in Z(R) \cup Z(M), m \in M\}
$$

where $Z(R)=\{a \in R: \operatorname{ann}(a) \neq 0\}$.
Corollary 2 For every $a \in R$ and $m \in M$, ann $n_{R(+) M}(a, m)=0$ if and only if ann $(a)=0$ and ann $n_{M}(a)=$ 0_{M}.

Suppose that N is a submodule of M and J is an ideal of R. Then it is clear that $J(+) N$ is an ideal of $R(+) M$ if and only if $J M \subseteq N$. In that case $J(+) N$ is called a homogeneous ideal.

Proposition 9 Suppose that J is an r-ideal of R. Then $J(+) M$ is an r-ideal of $R(+) M$.

Proof Let J be an r-ideal of R. Suppose that $\left(a_{1}, m_{1}\right)\left(a_{2}, m_{2}\right)=\left(a_{1} a_{2}, a_{1} m_{2}+a_{2} m_{1}\right) \in J(+) M$ and $\operatorname{ann}_{R(+) M}\left(a_{1}, m_{1}\right)=0$. Since $\operatorname{ann}_{R(+) M}\left(a_{1}, m_{1}\right)=0$, we have $\operatorname{ann}\left(a_{1}\right)=0$. Then we get the result that $a_{2} \in J$, because J is an r-ideal and $a_{1} a_{2} \in J$. Thus, we have $\left(a_{2}, m_{2}\right) \in J(+) M$. Consequently, $J(+) M$ is an r-ideal.

The converse of the previous proposition is not always true. We have a counterexample as follows.

Example 9 Consider the $\mathbb{Z}(+) \mathbb{Z}_{2}$ and the ideal $2 \mathbb{Z}(+) \mathbb{Z}_{2}$ of $\mathbb{Z}(+) \mathbb{Z}_{2}$. We know that $2 \mathbb{Z}$ is not an r-ideal of \mathbb{Z} but $2 \mathbb{Z}(+) \mathbb{Z}_{2}$ is an r-ideal of $\mathbb{Z}(+) \mathbb{Z}_{2}$.

Theorem 6 Suppose that J is an r-ideal of R and N is an r-submodule of M with $J M \subseteq N$. Then $J(+) N$ is an r-ideal of $R(+) M$.

Proof Let $\left(a_{1}, m_{1}\right)\left(a_{2}, m_{2}\right) \in J(+) N$ with $\operatorname{ann}_{R(+) M}\left(a_{1}, m_{1}\right)=0$. Then we have ann $\left(a_{1}\right)=0$ and $\operatorname{ann}_{M}\left(a_{1}\right)=0_{M}$. Since J is an r-ideal and $a_{1} a_{2} \in J$, we have $a_{2} \in J$. Thus, we have $a_{2} m_{1} \in N$ and so $a_{1} m_{2} \in N$. As N is an r-submodule, it follows that $m_{2} \in N$ and so $\left(a_{2}, m_{2}\right) \in J(+) N$. Hence, $J(+) N$ is an r-ideal.

Example 9 also serves as a counterexample of the previous theorem, but we prove that the converse of Theorem 6 is valid when $Z(R)=Z(M)$ as follows.

Theorem 7 Let M be an R-module and $Z(R)=Z(M)$. If $J(+) N$ is an r-ideal of $R(+) M$ with $N \neq M$, then J is an r-ideal of R and N is an r-submodule of M.

Proof Suppose that $J(+) N$ is an r-ideal. Since $Z(R)=Z(M), a n n_{R(+) M}\left(a_{1}, m_{1}\right)=0$ if and only if $\operatorname{ann}\left(a_{1}\right)=0$. Let $a, b \in R$ with $a b \in J$ and $\operatorname{ann}(a)=0$. Then we have $a n n_{R(+) M}\left(a, 0_{M}\right)=0$ and so $\left(a, 0_{M}\right)\left(b, 0_{M}\right)=\left(a b, 0_{M}\right) \in J(+) N$. Since $J(+) N$ is an r-ideal, we get the result that $\left(b, 0_{M}\right) \in J(+) N$ and thus $b \in J$. Hence, J is an r-ideal of R. Suppose that $a m \in N$ with $a n n_{M}(a)=0_{M}$ for $a \in R, m \in M$. Then $a n n_{R(+) M}\left(a, 0_{M}\right)=0$, so we get $\left(a, 0_{M}\right)(0, m)=(0, a m) \in J(+) N$. As $J(+) N$ is an r-ideal, we conclude that $(0, m) \in J(+) N$ and so $m \in N$. Hence, N is an r-submodule.

Let M_{1} be an R_{1}-module and M_{2} an R_{2}-module, where R_{1} and R_{2} are commutative rings with identity. Suppose that $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$. Then M becomes an R-module with coordinate-wise addition and the scalar multiplication $\left(a_{1}, a_{2}\right)\left(m_{1}, m_{2}\right)=\left(a_{1} m_{1}, a_{2} m_{2}\right)$ for every $a_{1} \in R_{1}, a_{2} \in R_{2} ; m_{1} \in M_{1}$ and $m_{2} \in M_{2}$. Also, every submodule N of M has the form $N=N_{1} \times N_{2}$, where N_{1} is a submodule of M_{1} and N_{2} is a submodule of M_{2}. The following theorem characterizes the r-submodule of Cartesian product of modules.

Lemma 2 Let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$, where M_{1} is an R_{1}-module and M_{2} is an R_{2}-module. Suppose that $N=N_{1} \times N_{2}$ is a submodule of M. Then the following are equivalent:
(i) N is an r-submodule of M.
(ii) $\quad N_{1}=M_{1}$ and N_{2} is an r-submodule of M_{2} or N_{1} is an r-submodule of M_{1} and $N_{2}=M_{2}$ or N_{1}, N_{2} are r-submodules of M_{1} and M_{2}, respectively.

Proof $(i) \Rightarrow(i)$: First note that M / N is isomorphic to $\left(M_{1} / N_{1}\right) \times\left(M_{2} / N_{2}\right)$ and $Z(M / N)=\left(Z\left(M_{1} / N_{1}\right) \times\right.$ $\left.R_{2}\right) \cup\left(R_{1} \times Z\left(M_{2} / N_{2}\right)\right)$. Suppose that N is an r-submodule of M and assume that $N_{1}=M_{1}$. Since N is
a proper submodule of $M, N_{2} \neq M_{2}$. Then $Z(M / N)=R_{1} \times Z\left(M_{2} / N_{2}\right) \subseteq Z(M)=\left(Z\left(M_{1}\right) \times R_{2}\right) \cup\left(R_{1} \times\right.$ $\left.Z\left(M_{2}\right)\right)$ and so $Z\left(M_{2} / N_{2}\right) \subseteq Z\left(M_{2}\right)$. This implies that N_{2} is an r-submodule of M_{2}. In other cases, a similar argument shows that (i) implies (ii).
(ii) $\Rightarrow(i)$: Conversely, suppose that (ii) holds. Assume that N_{1}, N_{2} are r-submodules of M_{1} and M_{2}, respectively. Then $Z\left(M_{1} / N_{1}\right) \subseteq Z\left(M_{1}\right)$ and $Z\left(M_{2} / N_{2}\right) \subseteq Z\left(M_{2}\right)$. This implies that $Z(M / N)=$ $\left(Z\left(M_{1} / N_{1}\right) \times R_{2}\right) \cup\left(R_{1} \times Z\left(M_{2} / N_{2}\right)\right) \subseteq\left(Z\left(M_{1}\right) \times R_{2}\right) \cup\left(R_{1} \times Z\left(M_{2}\right)\right)=Z(M)$, i.e. N is an r-submodule of M. In other cases, one can similarly prove that N is an r-submodule.

Theorem 8 Suppose that $R=R_{1} \times R_{2} \times \ldots \times R_{n}$ and $M=M_{1} \times M_{2} \times \ldots \times M_{n}$, where M_{i} is an R_{i}-module for $n \geq 1$ and $1 \leq i \leq n$. Let $N=N_{1} \times N_{2} \times \ldots \times N_{n}$ be a submodule of M. Then the following are equivalent:
(i) N is an r-submodule of M.
(ii) $N_{i}=M_{i}$ for $i \in\left\{t_{1}, t_{2}, \ldots, t_{k}: k<n\right\}$ and N_{i} is an r-submodule of M_{i} for $i \in\{1,2, \ldots, n\} \backslash\left\{t_{1}, t_{2, \ldots}, t_{k}\right\}$.

Proof To prove the claim, we use induction on n. If $n=1$, then it is clear that $(i) \Leftrightarrow(i i)$. If $n=2$, by Lemma 2, (i) and (ii) are equal. Assume that $n \geq 3$ and the claim is valid when $K=M_{1} \times M_{2} \times \ldots \times M_{n-1}$. We prove that the claim is true when $M=K \times M_{n}$. Then by Lemma 2 we get the result that N is an r-submodule if and only if $N=K \times N_{n}$ for some r-submodule N_{n} of M_{n} or $N=L \times M_{n}$ for some r-submodule L of K or $N=L \times N_{n}$ for some r-submodule L of K and some r-submodule N_{n} of M_{n}. By induction hypothesis, the result is valid in three cases.

3. Special r-submodules

In this section, we give another type of generalization of r-ideals to modules.

Definition 4 Let M be an R-module. Then a submodule N of M is said to be a special r-submodule (briefly sr-submodule) if $N \neq M$, for each $a \in R, m \in M$ with $a m \in N$ and $\operatorname{ann}_{R}(m)=0$, then $a \in\left(N:_{R} M\right)$.

If we consider R-module R, the $s r$-submodules and r-submodules coincide. Now we give some examples of $s r$-submodules in the following.

Example 10 By Example 1, we know that all proper submodules of \mathbb{Z}-module \mathbb{Z}_{n} are r-submodules. One can easily see that all proper submodules of \mathbb{Z}_{n} are also sr-submodules. Now consider the \mathbb{Z}-module $E(p)$. By Example 2, all proper submodules of $E(p)$ are r-submodules. Since ann $\mathbb{Z}_{\mathbb{Z}}\left(\frac{r}{p^{t}}+\mathbb{Z}\right) \neq 0$ for each $\frac{r}{p^{t}}+\mathbb{Z} \in$ $E(p)$, we conclude that all proper submodules of $E(p)$ are also sr-submodules.

In the previous example, r-submodules and $s r$-submodules are equal, but these concepts are different. See the following examples.

Example 11 (i) By Proposition 1, the subspace $N=\{(x, 0): x \in \mathbb{R}\}$ of $M=\mathbb{R}^{2}$ is an r-submodule, but $2(1,0)=(2,0) \in N$, ann $n_{\mathbb{R}}(1,0)=0$, and $2 \notin\left(N:_{\mathbb{R}} M\right) ;$ thus, we get the result that N is not an srsubmodule.
(ii) Consider the $R=\mathbb{Z} \times \mathbb{Z}$-module $M=\mathbb{Z} \times \mathbb{Z}_{2}$ and the submodule $N=2 \mathbb{Z} \times \overline{0}$. Since ann $n_{R}(m) \neq 0$ for every $m \in M$, it follows that N is an sr-submodule of M. However, it is not an r-submodule since $(2,1)(1, \overline{0})=(2, \overline{0}) \in N, \operatorname{ann}_{M}(2,1)=0_{M}$, and $(1, \overline{0}) \notin N$.

KOÇ and TEKİR/Turk J Math

Lemma 3 If N is an sr-submodule of M, then $N \subseteq T(M)$.
Proof Assume that $N \nsubseteq T(M)$. There exists $m \in N$ with $a n n_{R}(m)=0$. Since $1 . m=m \in N$ and N is an $s r$-submodule, we get the result that $1 \in\left(N:_{R} M\right)$, i.e. $N=M$, a contradiction. Hence, we have $N \subseteq T(M)$.

The converse of the previous lemma is not always true. See the following example.
Example 12 Consider the $R=\mathbb{R} \times \mathbb{Z}$-module $M=\mathbb{C} \times \mathbb{Z}$ and the submodule $N=\mathbb{R} \times 0$ of M. Note that $T(M)=\left(0_{\mathbb{C}} \times \mathbb{Z}\right) \cup(\mathbb{C} \times 0)$ and $\left(N:_{R} M\right)=0_{R}$. Thus, we have $N \subseteq T(M)$. Since $(2,0)(2+0 i, 1)=(4,0) \in$ N, ann $n_{R}(2+0 i, 1)=0_{R}$, and $(2,0) \notin\left(N:_{R} M\right)$, we get the result that N is not an sr-submodule.

Example 13 (i) Every nonzero prime submodule of \mathbb{Z}-module \mathbb{Z} is not an sr-submodule.
(ii) $\langle\overline{4}\rangle$ is an sr-submodule of \mathbb{Z}-module \mathbb{Z}_{12} but it is not prime.

Now we give a condition for a prime submodule to be an $s r$-submodule in the following proposition.

Proposition 10 For a prime submodule N of M, N is an sr-submodule if and only if $N \subseteq T(M)$.
Proof Assume that N is a prime submodule. If N is an $s r$-submodule, then $N \subseteq T(M)$ by Lemma 3. Now, suppose $N \subseteq T(M)$. Let $a m \in N$ and $a n n_{R}(m)=0$ for $a \in R$ and $m \in M$. Since $a n n_{R}(m)=0, m \notin$ $T(M)$ and so $m \notin N$. Since N is prime submodule, we have $a \in\left(N:_{R} M\right)$ and hence N is an $s r$-submodule.

Proposition 11 Let M be an R-module. Then the following hold:
(i) The zero submodule is an sr-submodule of M.
(ii) The intersection of an arbitrary nonempty set of sr-submodules is an sr-submodule.

Proof (i) Let $a \in R, m \in M$ with $a m=0_{M}$ and $a n n_{R}(m)=0$. Then we have $a=0 \in\left(0_{M}:_{R} M\right)$. Hence, we get the result that the zero submodule is an $s r$-submodule.
(ii) Suppose that $\left\{N_{i}\right\}_{i \in \Delta}$ is an arbitrary nonempty set of $s r$-submodules of M. Let am $\in \bigcap_{i \in \Delta} N_{i}$ and $a n n_{R}(m)=0$. Since N_{i} is an $s r$-submodule and $a m \in N_{i}$, we get $a \in\left(N_{i}:_{R} M\right)$ for every $i \in \Delta$. Hence, we get $a \in \bigcap_{i \in \Delta}\left(N_{i}:_{R} M\right)=\left(\left(\bigcap_{i \in \Delta} N_{i}\right):_{R} M\right)$ and so $\bigcap_{i \in \Delta} N_{i}$ is an $s r$-submodule.

The following example shows that $\left(N:_{R} M\right)$ need not be an r-ideal even if N is an $s r$-submodule of M.

Example 14 Consider the \mathbb{Z}-module $\mathbb{Z}_{6}[x]$ and the submodule $N=\left\{p(x) \in \mathbb{Z}_{6}[x]: p(\overline{0}) \in\langle\overline{2}\rangle\right\}$. Then N is an sr-submodule but $\left(N: \mathbb{Z} \mathbb{Z}_{6}[x]\right)=2 \mathbb{Z}$ is not an r-ideal of \mathbb{Z}.

Proposition 12 Let N be a proper submodule of M. Then the following are equivalent:
(i) N is an sr-submodule of M.
(ii) $R m \cap N=\left(N:_{R} M\right) m$ for every $m \in M-T(M)$.
(iii) $\left(N:_{R} M\right)=\left(N:_{R} m\right)$ for every $m \in M-T(M)$.

KOÇ and TEKİR/Turk J Math

Proof $(i) \Rightarrow(i i)$: Suppose that N is an $s r$-submodule. The inclusion $\left(N:_{R} M\right) m \subseteq R m \cap N$ always holds for each $m \in M$. Let $m \in M-T(M)$ and $x \in R m \cap N$. Then we have $x=a m \in N$ for some $a \in R$. As N is an $s r$-submodule of M and $a n n_{R}(m)=0, a \in\left(N:_{R} M\right)$ and so $x=a m \in\left(N:_{R} M\right) m$, as desired.
(ii) \Rightarrow (iii): It is easy to see that $\left(N:_{R} M\right) \subseteq\left(N:_{R} m\right.$) for every $m \in M$. Suppose that $m \in$ $M-T(M)$ and $a \in\left(N:_{R} m\right)$. Then we have $a m \in N$. Thus, we have $a m \in R m \cap N=\left(N:_{R} M\right) m$ by assumption. Then $a m=r m$ for some $r \in\left(N:_{R} M\right)$. Since $a n n_{R}(m)=0$ and $(a-r) m=0_{M}$, we conclude that $a \in\left(N:_{R} M\right)$. Hence, we have $\left(N:_{R} M\right)=\left(N:_{R} m\right)$.
(iii) $\Rightarrow(i):$ Let $a m \in N$ and $a n n_{R}(m)=0$. Then we get $m \in M-T(M)$ and so $a \in\left(N:_{R} m\right)=$ $\left(N:_{R} M\right)$ by the assumption. Consequently, N is an $s r$-submodule of M.

Theorem 9 Let $f: M_{1} \rightarrow M_{2}$ be an R-module homomorphism. Then the following hold:
(i) If f is a monomorphism and L is an sr-submodule of M_{2} with $f^{-1}(L) \neq M_{1}$, then $f^{-1}(L)$ is an sr-submodule of M_{1}.
(ii) If f is an epimorphism and K is an sr-submodule of M_{1} containing $\operatorname{Ker}(f)$, then $f(K)$ is an sr-submodule of M_{2}.

Proof (i) Let $a m \in f^{-1}(L)$ with $a n n_{R}(m)=0$ for $a \in R, m \in M_{1}$. Then $f(a m)=a f(m) \in L$ and $\operatorname{ann}_{R}(f(m))=0$. Since L is an $s r$-submodule of M_{2}, we conclude that $a \in\left(L:_{R} M_{2}\right) \subseteq\left(f^{-1}(L):_{R} M_{1}\right)$. Hence, $f^{-1}(L)$ is an $s r$-submodule of M_{1}.
(ii) Let $a m^{\prime} \in f(K)$ and $a n n_{R}\left(m^{\prime}\right)=0$ for $a \in R, m^{\prime} \in M_{2}$. Since f is epimorphism, there exists $m \in M_{1}$ such that $f(m)=m^{\prime}$. Then we have $a m^{\prime}=a f(m)=f(a m) \in f(K)$. As $\operatorname{Ker}(f) \subseteq K$, we have $a m \in K$. Since $a n n_{R}(m)=0$, we conclude that $a \in\left(K:_{R} M_{1}\right) \subseteq\left(f(K):_{R} M_{2}\right)$. Consequently, $f(K)$ is an $s r$-submodule.

Corollary 3 Let K be a submodule of M. Then the following hold:
(i) For every sr-submodule N of M with $K \nsubseteq N, N \cap K$ is an sr-submodule of K.
(ii) For every sr-submodule N of M with $K \subseteq N, N / K$ is an sr-submodule of M / K.

Proof (i) Consider the injection $i: K \rightarrow M$ and note that $i^{-1}(N)=K \cap N$. Thus, $N \cap K$ is an $s r$-submodule of K by Theorem 9(i).
(ii) Assume $\pi: M \longrightarrow M / K$ to be the natural homomorphism and note that $\operatorname{Ker}(\pi)=K \subseteq N$. Thus, N / K is an $s r$-submodule of M / K by Theorem 9 (ii).

Remark 1 For any nonempty subset S of R and submodule N of $M,\left(\left(N:_{M} S\right):_{R} M\right)=\left(\left(N:_{R} M\right):_{R} S\right)$ always holds.

Proposition 13 Let M be an R-module. Then the following hold:
(i) For every sr-submodule N of M and every subset S of R with $S \nsubseteq\left(N:_{R} M\right),\left(N:_{M} S\right)$ is an sr-submodule of M. In particular, $\left(0_{M}:_{M} S\right)$ is always an sr-submodule if $S \nsubseteq A n n_{R}(M)$.
(ii) $a n n_{M}(a)$ is an sr-submodule of M for every $a \notin A n n_{R}(M)$.

KOÇ and TEKİR/Turk J Math

Proof (i) Let $a m \in\left(N:_{M} S\right)$ with $a n n_{R}(m)=0$ for $a \in R, m \in M$. Then $a s m \in N$ for every $s \in S$. Since N is an $s r$-submodule, we get the result that $a s \in\left(N:_{R} M\right)$ for every $s \in S$ and so $a \in\left(\left(N:_{R} M\right):_{R} S\right)$. By Remark 1, $a \in\left(\left(N:_{M} S\right):_{R} M\right)$, and thus $\left(N:_{M} S\right)$ is an $s r$-submodule.
(ii) Follows from (i) and Proposition 11.

Theorem 10 For a proper submodule N of M, the following hold:
(i) N is an sr-submodule of M if and only if whenever L is a submodule of M with $L \cap(M-T(M)) \neq$ \emptyset and J is an ideal of R with $J L \subseteq N$, then $J \subseteq\left(N:_{R} M\right)$.
(ii) If N is not an sr-submodule with $N \subseteq T(M)$, then there is an ideal J of R and submodule L of M with $L \cap(M-T(M)) \neq \emptyset, N \varsubsetneqq L,\left(N:_{R} M\right) \varsubsetneqq J$, and $J L \subseteq N$.

Proof (i) Suppose N is an $s r$-submodule. For submodule L of M with $L \cap(M-T(M)) \neq \emptyset$ and ideal J of R, assume that $J L \subseteq N$. Since $L \cap(M-T(M)) \neq \emptyset, a n n_{R}(m)=0$ for some $m \in L$. By assumption, $a m \in N$ for every $a \in J$, and thus $a \in\left(N:_{R} M\right)$. We get the result that $J \subseteq\left(N:_{R} M\right)$. Conversely, let $a m \in N$ and $a n n_{R}(m)=0$ for $a \in R, m \in M$. Now we take $J=a R$ and $L=R m$. Then we have $J L \subseteq N$ for submodule L of M with $L \cap(M-T(M)) \neq \emptyset$ and ideal J of R. By assumption, $J=a R \subseteq\left(N:_{R} M\right)$ so that $a \in\left(N:_{R} M\right)$. Consequently, N is an $s r$-submodule.
(ii) If N is not an $s r$-submodule, then $a m \in N$ with $a n n_{R}(m)=0$ but $a \notin\left(N:_{R} M\right)$ for some $a \in R, m \in M$. Now we take $L=\left(N:_{M} a\right)$. Since $m \in L-N, N \nsubseteq L$. Also, we take $J=\left(N:_{R} L\right)$. Since $a \in J-\left(N:_{R} M\right)$, we get $\left(N:_{R} M\right) \varsubsetneqq J$. Then we get $J L=\left(N:_{R} L\right) L \subseteq N$, as desired.

As a consequence of Theorem 10, we have the following result.
Theorem 11 Let L be a submodule of M with $L \cap(M-T(M)) \neq \emptyset$. Then the following hold:
(i) If N_{1}, N_{2} are sr-submodules of M with $\left(N_{1}:_{R} M\right) L=\left(N_{2}:_{R} M\right) L$, then $\left(N_{1}:_{R} M\right)=\left(N_{2}:_{R} M\right)$.
(ii) If $J L$ is an sr-submodule for an ideal J of R, then $J L=J M$. Particularly, $J M$ is an sr-submodule of M.

Theorem 12 Suppose that $N_{1}, N_{2}, \ldots, N_{n}$ are prime submodules of M with $\left(N_{i}:_{R} M\right) s$ not comparable. If $\bigcap_{i=1}^{n} N_{i}$ is an sr-submodule, then N_{i} is an sr-submodule for each $i \in\{1,2, \ldots, n\}$.

Proof The proof is similar to Theorem 3.
The following theorem characterizes the torsion-free modules by $s r$-submodule.
Theorem 13 For any R-module M, the following are equivalent:
(i) M is torsion-free.
(ii) M is faithful and the zero submodule is the only sr-submodule.

Proof $(i) \Rightarrow(i i)$: It is obvious that M is faithful. For every $s r$-submodule N of $M, N \subseteq T(M)=0_{M}$ and so $N=0_{M}$ by Lemma 3. However, the zero submodule is always an $s r$-submodule.
$(i i) \Rightarrow(i)$: Let $m \in T(M)$. Then we have $0 \neq r \in R$ such that $r m=0_{M}$. We know that $a n n_{M}(r)$ is an $s r$-submodule by Proposition 13(ii), and we have $m \in \operatorname{ann_{M}}(r)=0_{M}$ by assumption. Hence, we have $T(M)=0_{M}$.

Proposition 14 If N is a maximal sr-submodule of M, then N is prime submodule.
Proof Let $a m \in N$ and $a \notin\left(N:_{R} M\right)$; we show that $m \in N$. Then $\left(N:_{M} a\right)$ is an $s r$-submodule by Proposition 13(i). Since N is maximal $s r$-submodule, $m \in\left(N:_{M} a\right)=N$. Consequently, N is prime submodule.

Theorem 14 Let M be an R-module. Then every proper submodule is an sr-submodule of M if and only if $T(M)=M$ or $R m=M$ for every $m \in M-T(M)$.

Proof Suppose every proper submodule of M is an $s r$-submodule and $T(M) \neq M$. Let $m \in M-T(M)$. If $R m \neq M$, then we get the result that $R m$ is an $s r$-submodule. Since $r m \in R m$ for every $r \in R$ and $\operatorname{ann}_{R}(m)=0,\left(R m:_{R} M\right)=R$. Thus, we have $R m=R M=M$, which contradicts the assumption. Hence, we have $R m=M$ for all $m \in M-T(M)$. Conversely, if $T(M)=M$, then every proper submodule is an $s r$-submodule. Now assume that $R m=M$ for all $m \in M-T(M)$. Suppose N is a proper submodule of M. Let $a m \in N$ and $a n n_{R}(m)=0$ for $a \in R, m \in M$. Then we get the result that $R m=M$, because $m \in M-T(M)$. Thus, $a \in\left(N:_{R} m\right)=\left(N:_{R} M\right)$. Consequently, N is an $s r$-submodule.

Lemma 4 For every R_{1}-module M_{1} and R_{2}-module $M_{2}, T\left(M_{1} \times M_{2}\right)=\left(T\left(M_{1}\right) \times M_{2}\right) \cup\left(M_{1} \times T\left(M_{2}\right)\right)$ always holds.

Proof Let $\left(m_{1}, m_{2}\right) \in T\left(M_{1} \times M_{2}\right)$. Then there exists $\left(0_{R_{1}}, 0_{R_{2}}\right) \neq\left(a_{1}, a_{2}\right) \in R_{1} \times R_{2}$ such that $\left(a_{1}, a_{2}\right)\left(m_{1}, m_{2}\right)=\left(0_{M_{1}}, 0_{M_{2}}\right)$ and so $a_{1} m_{1}=0_{M_{1}}, a_{2} m_{2}=0_{M_{2}}$. Since $a_{1} \neq 0_{R_{1}}$ or $a_{2} \neq 0_{R_{2}}$, we conclude that $m_{1} \in T\left(M_{1}\right)$ or $m_{2} \in T\left(M_{2}\right)$. Hence, we have $\left(m_{1}, m_{2}\right) \in\left(T\left(M_{1}\right) \times M_{2}\right) \cup\left(M_{1} \times T\left(M_{2}\right)\right)$. Conversely, let $\left(m_{1}, m_{2}\right) \in\left(T\left(M_{1}\right) \times M_{2}\right) \cup\left(M_{1} \times T\left(M_{2}\right)\right)$. Without loss of generality, we may assume that $\left(m_{1}, m_{2}\right) \in T\left(M_{1}\right) \times M_{2}$. There exists $0_{R_{1}} \neq a_{1} \in R_{1}$ such that $a_{1} m_{1}=0_{M_{1}}$ since $m_{1} \in T\left(M_{1}\right)$. Thus, we have $\left(0_{R_{1}}, 0_{R_{2}}\right) \neq\left(a_{1}, 0_{R_{2}}\right) \in R_{1} \times R_{2}$ such that $\left(a_{1}, 0_{R_{2}}\right)\left(m_{1}, m_{2}\right)=\left(0_{M_{1}}, 0_{M_{2}}\right)$ and so $\left(m_{1}, m_{2}\right) \in T\left(M_{1} \times M_{2}\right)$. Hence, we have $T\left(M_{1} \times M_{2}\right)=\left(T\left(M_{1}\right) \times M_{2}\right) \cup\left(M_{1} \times T\left(M_{2}\right)\right)$.

Corollary 4 If $T\left(M_{1}\right)=M_{1}$ or $T\left(M_{2}\right)=M_{2}$, then we have $T\left(M_{1} \times M_{2}\right)=M_{1} \times M_{2}$ and so every proper submodule of $M_{1} \times M_{2}$ is an sr-submodule of $M_{1} \times M_{2}$.

Now we characterize the $s r$-submodules of Cartesian products of modules in case $T\left(M_{1}\right) \neq M_{1}$ and $T\left(M_{2}\right) \neq M_{2}$.

Lemma 5 Let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$, where M_{i} is an R_{i}-module with $T\left(M_{i}\right) \neq M_{i}$ for $i=1,2$. Suppose that $N=N_{1} \times N_{2}$ is a submodule of M. Then the following are equivalent:
(i) N is an sr-submodule.
(ii) $\quad N_{1}=M_{1}$ and N_{2} is an sr-submodule of M_{2} or N_{1} is an sr-submodule of M_{1} and $N_{2}=M_{2}$ or N_{1}, N_{2} are sr-submodules of M_{1} and M_{2}, respectively.

Proof $(i) \Rightarrow(i i)$: Assume that $N=N_{1} \times N_{2}$ is an $s r$-submodule and $N_{1}=M_{1}$. Since N is proper, we conclude that $N_{2} \neq M_{2}$. Now we show that N_{2} is an $s r$-submodule of M_{2}. Suppose not. Then there exist $a_{2} \in R_{2}, m_{2} \in M_{2}$ such that $a_{2} m_{2} \in N_{2}$ with $a n n_{R_{2}}\left(m_{2}\right)=0_{R_{2}}$ but $a_{2} \notin\left(N_{2}:_{R_{2}} M_{2}\right)$. Since $T\left(M_{1}\right) \neq M_{1}$, we get $\operatorname{ann}_{R_{1}}\left(m_{1}\right)=0_{R_{1}}$ for some $m_{1} \in M_{1}$. Thus, we have $\operatorname{ann} n_{R}\left(m_{1}, m_{2}\right)=0_{R}$ and
$\left(0_{R_{1}}, a_{2}\right)\left(m_{1}, m_{2}\right)=\left(0_{M_{1}}, a_{2} m_{2}\right) \in N$ but $\left(0_{R_{1}}, a_{2}\right) \notin\left(N:_{R} M\right)$, which contradicts N being an $s r$-submodule of M. Hence, we have that N_{2} is an $s r$-submodule of M_{2}. If $N_{2}=M_{2}$, in a similar way we can see that N_{1} is an $s r$-submodule of M_{2}. If $N_{1} \neq M_{1}$ and $N_{2} \neq M_{2}$, it can be proved that N_{1}, N_{2} are $s r$-submodules of M_{1} and M_{2}, respectively.
$($ ii $) \Rightarrow(i)$: Assume N_{1}, N_{2} are $s r$-submodules of M_{1} and M_{2}, respectively. Let $\left(a_{1}, a_{2}\right) \in R_{1} \times R_{2}$ and $\left(m_{1}, m_{2}\right) \in M_{1} \times M_{2}$ such that $\left(a_{1}, a_{2}\right)\left(m_{1}, m_{2}\right)=\left(a_{1} m_{1}, a_{2} m_{2}\right) \in N$ with ann $n_{R}\left(m_{1}, m_{2}\right)=\left(0_{R_{1}}, 0_{R_{2}}\right)$. Then we have $a n n_{R_{i}}\left(m_{i}\right)=0_{R_{i}}$ and $a_{i} m_{i} \in N_{i}$ for $i=1,2$. Since N_{i} is an $s r$-submodule of M_{i}, we conclude that $a_{i} \in\left(N_{i}:_{R_{i}} M_{i}\right)$ and so $\left(a_{1}, a_{2}\right) \in\left(N_{1}:_{R_{1}} M_{1}\right) \times\left(N_{2}:_{R_{2}} M_{2}\right)=\left(N:_{R} M\right)$. Hence, we get the result that N is an $s r$-submodule. In other cases, one can easily prove the result.

Theorem 15 Suppose that $R=R_{1} \times R_{2} \times \ldots \times R_{n}$ and $M=M_{1} \times M_{2} \times \ldots \times M_{n}$, where M_{i} is an R_{i}-module with $T\left(M_{i}\right) \neq M_{i}$ for $n \geq 1$ and $1 \leq i \leq n$. For a submodule $N=N_{1} \times N_{2} \times \ldots \times N_{n}$ of M, the following are equivalent:
(i) N is an sr-submodule.
(ii) $N_{i}=M_{i}$ for $i \in\left\{t_{1}, t_{2}, \ldots, t_{k}: k<n\right\}$ and N_{i} is an sr-submodule of M_{i} for $i \in\{1,2, \ldots, n\} \backslash\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$.

Proof We use induction on n. If $n=1$, of course $(i) \Leftrightarrow(i i)$. If $n=2$, by Lemma 5 , (i) and (ii) are equal. Assume $n \geq 3$ and $(i) \Leftrightarrow(i i)$ holds when $K=M_{1} \times M_{2} \times \ldots \times M_{n-1}$. Now we prove that (i) and (ii) are equal when $M=K \times M_{n}$. Then, by Lemma $5, N$ is an $s r$-submodule of M if and only if $N=K \times N_{n}$ for some $s r$-submodule N_{n} of M_{n} or $N=L \times M_{n}$ for some $s r$-submodule L of K or $N=L \times N_{n}$ for some $s r$-submodule L of K and some $s r$-submodule N_{n} of M_{n}. By induction hypothesis, the result is true in three cases.

References

[1] Anderson DD, Winders M. Idealization of a module. J Commut Algebra 2009; 1: 3-56.
[2] Azizi A. Radical formula and prime submodules. J Algebra 2007; 307: 454-460.
[3] Azizi A. On prime and weakly prime submodules. Vietnam J Math 2008; 36: 315-325.
[4] Çallaalp F, Tekir U. On unions of prime submodules. SEA Bull Math 2004; 28: 213-218.
[5] Dauns J. Prime modules. J Reine Angew Math 1978; 298: 156-181.
[6] Huckaba JA. Commutative Rings with Zero Divisors. Monographs and Textbooks in Pure and Applied Mathematics, Vol. 117. New York, NY, USA: Marcel Dekker, 1988.
[7] Lu CP. Prime submodules of modules. Comm Math Univ Sancti Pauli 1984; 33: 61-69.
[8] McCasland RL, Moore ME. Prime submodules. Comm Algebra 1992; 20: 1803-1817.
[9] Mohamadian R. r-Ideals in commutative rings. Turk J Math 2015; 39: 733-749.
[10] Nagata M. Local Rings. New York, NY, USA: Interscience, 1962.
[11] Ribenboim P. Algebraic Numbers. New York, NY, USA: Wiley, 1974.
[12] Sharp RY. Steps in Commutative Algebra. 2nd ed. Cambridge, UK: Cambridge University Press, 2000.

[^0]: *Correspondence: utekir@marmara.edu.tr
 2010 AMS Mathematics Subject Classification: Primary 13C99; Secondary 13A15

