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Abstract: We obtain several inequalities of approximation by integral functions of finite degree in generalized Lebesgue
spaces with variable exponent defined on the real axis. Among them are direct, inverse, and simultaneous estimates
of approximation by integral functions of finite degree in Lp(·). An equivalence of modulus of continuity with Peetre’s
K -functional is established. A constructive characterization of Lipschitz class is also obtained.
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1. Introduction
In recent years, variable exponent function spaces and approximation problems in variable exponent Lebesgue
spaces Lp(x) have attracted more attention (see Cruz-Uribe and Fiorenza [7], Diening et al. [9], and Sharapudi-
nov [42]). Many authors have obtained analogues of classical results in function space with variable exponents
because of their applications in elasticity theory [51], fluid mechanics [35, 36], differential operators [10, 36],
nonlinear Dirichlet boundary value problems [25], nonstandard growth [27, 51], and variational calculus. Start-
ing from the work of Orlicz [32], the theory of variable exponents and Lp(x) was developed in the late 1900s.
In fact, Lp(x) is a modular space [14, 28] and under the condition p+ := ess sup

x∈R
p (x) < ∞ , Lp(x) becomes a

particular case of Musielak–Orlicz spaces [28]. In subsequent years several problems in Lp(x) were investigated
in [8, 11, 24, 25, 37, 38, 40].

Variable exponent Lebesgue spaces on [0, 2π] (or [0, 1]) and many fundamental results corresponding to
the approximation of the function were developed by Sharapudinov [39, 41, 43–45]. Nowadays many problems
for the approximation of the function are solved in these types of spaces defined on [0, 2π] ⊂ R (see, e.g.,
[2–5, 12, 13, 19–22]). In this direction, we aim to obtain direct and inverse theorems for approximation by
entire functions of finite degree in variable exponent Lebesgue spaces on the whole real axis R .

Recall that studies dealing with approximation by entire function of finite degree in the real domain date
back to Bernstein’s works, for example [6]. After his works, Wiener and Paley [33], Ackhiezer [1], Nikolskii
[30], and Ibragimov [15–17] developed this subject. Various problems related to approximation of functions on
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R by entire functions of exponential type in the Lp space were studied in the papers of Ackhiezer [1], Timan
[48], Timan [49], Nikol’skii [30, 31], Ibragimov [15–18], Taberski [46, 47], Nasibov [29], Popov [34], Ligun [26],
Vakarchuk [50], and others. Note that an entire function of finite exponential type is merely an entire function of
order 1 and finite type, and in approximation theory these often play an important role similar to trigonometric
polynomials in the case of approximation of periodic functions. Thus, for example, there are Bernstein-type
inequalities for such functions.

In this work, we generalize the works of Ibragimov and Taberski about approximation of functions in
Lebesgue spaces on the whole real axis in variable exponent settings. In what follows, A ≲ B will mean that
there exists a positive constant Cu,v,... dependent only on the parameters u, v, . . . and it can be different in
different places, such that the inequality A ≤ CB holds.

In Theorem 4.1, we obtain that if p (·) ∈P (see Definition 2.1), then there exists a positive constant
depending only on p (·) , such that the following Jackson–Stechkin type inequality holds:

Aσ (f)p(·) ≲ Ω

(
f,

1

σ

)
p(·)

, (1.1)

where f ∈ Lp(·) , h > 0 , Thf (x) := 1
h

∫ h

0
f (x+ t) dt , (x ∈ R), Ω(f, δ)p(·) := sup

0<h≤δ
∥(I − Th)f∥p(·) , Gσ is the

subspace of integral function f(z) of exponential type ≤ σ belonging to Lp(·) and Aσ(f)p(·) := inf
g
{∥f − g∥p(·) :

g ∈ Gσ} . Let W
p(·)
r , r ∈ N , be the class of functions f ∈ Lp(·) such that f (r−1) is absolutely continuous and

f (r) ∈ Lp(·) . In Theorem 6.1, for any f ∈ W
p(·)
r , we show the following simultaneous approximation inequality:

Aσ (f)p(·) ≲
1

σr
Aσ

(
f (r)

)
p(·)

, r ∈ N.

The weak inverse estimate of Theorem 4.1,

Ω

(
f,

1

σ

)
p(·)

≲ 1

σ

⌊σ⌋∑
ν=0

Eν (f)p(·) ,

is obtained in Theorem 5.1, where ⌊σ⌋ := max {n ∈ Z : n ≤ σ} . For 0 < β < 1 we define Lipβp (·) :={f ∈

Lp(·) : Ω (f, δ)p(·) ≲ δβ , δ > 0} and W r,β
p(·) :=

{
f ∈ W r

p(·) : f
(r) ∈ Lipβp (·)

}
, and using this notation the following

constructive description of the Lipschitz class Lipβp (·) is proved.
Let 0 < β < 1 and r ∈ {0} ∪ N , and then

f (r) ∈ Lipβp (·) iff Aσ (f)p(·) ≲ σ−β−r.

The rest of the paper is organized as follows. In Section 2 we introduce preliminaries and necessary facts. In
Section 3, we give the definition of the modulus of continuity Ω(f, ·)p(·) and obtain an equivalence between

Ω(f, δ)p(·) and K -functional K(f, δ, Lp(·), 1)p(·) . Sections 4 and 5 contain the direct and inverse theorems in
variable exponent Lebesgue spaces on the real line. In Section 6 we obtain some inequalities on simultaneous

approximation of functions in the corresponding Sobolev spaces W
p(·)
r and in Section 7 we obtain some

constructive characterizations of the Lipschitz class Lipβp (·) .
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2. Preliminaries
Let p(x) : R → [1,∞) be a measurable function. We suppose that

1 < p− := ess infx∈R p(x) and p+ < ∞. (2.1)

We define Lp(·) := Lp(·)(R) as the set of all functions f : R → C such that

Ip(·)

(
f

λ

)
:=

∫
R

∣∣∣∣f(y)λ

∣∣∣∣p(y) dy < ∞ (2.2)

for some λ > 0 . The set of of functions Lp(·) , with norm

∥f∥p(·) := inf
{
η > 0 : Ip(·)

(
f

η

)
< 1

}
,

is the Banach space.
Consider now an arbitrary, integral function f(z) ; put

M(r) = max
|z|=r

|f(z)|, z = x+ iy.

We say that f is of exponential type σ if the relation

lim sup
r→∞

lnM(r)

r
≤ σ, σ < ∞

is valid. Let Gσ be the subspace of integral function f(z) of exponential type σ belonging to Lp(·) . The
quantity

Aσ(f)p(·) := inf
g
{∥f − g∥p(·) : g ∈ Gσ}

where f ∈ Lp(·) is the deviation of the function f ∈ Lp(·)(R) from Gσ .

For f ∈ Lp(·) , we consider Steklov’s mean operator:

Th(f) =
1

h

∫ h

0

f(x+ t)dt.

Definition 2.1 Let P be the class of measurable functions p(·) satisfying the conditions (2.1), ∃c, C > 0 ,
C ′ ∈ R such that

|p(x)− p(y)| ≤ c

log (e+ 1/|x− y|)
, ∀x, y ∈ R, (2.3)

|p(x)− C ′| ≤ C

log (e+ |x|)
, ∀x ∈ R. (2.4)

It was proved in [9, Theorem 4.3.8] that if p(·) ∈P, then for h > 0 , the family of operators {Th} is
uniformly bounded in Lp(·) .
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3. Modulus of continuity and K -functional

Let f ∈ Lp(·) and h > 0 , and then we define the Steklov mean type operator:

Thf (x) :=
1

h

∫ h

0

f (x+ t) dt, x ∈ R.

The modulus of continuity of f ∈ Lp(·) is defined by

Ω(f, δ)p(·) := sup
0<h≤δ

∥(I − Th)f∥p(·). (3.1)

If f ∈ Lp(·) and δ ≥ 0 , then
Ω(f, δ)p(·) ≲ ∥f∥p(·) (3.2)

holds for some constant depending only on p (·) .

Theorem 3.1 For f, g ∈ Lp(·) and δ ≥ 0, the modulus of continuity Ω(f, δ)p(·) has the following properties:

1. Ω(f, δ)p(·) is a nonnegative, nondecreasing function.

2. For f, g ∈ Lp(·) and δ > 0,

Ωp(·)(f + g, δ) ≤ Ωp(·)(f, δ) + Ωp(·)(g, δ). (3.3)

3. For f ∈ Lp(·),

lim
δ↓0

Ωp(·)(f, δ) = 0. (3.4)

Proof Properties (1) and (2), by definition of Ω(f, δ)p(·) and the triangle inequality of Lp(·) , are clearly valid.

For proof of (3.4), using f ∈ Lp(·) and Ω(f, δ)p(·) ≲ ∥f∥p(·) , we can find N > 1 such that, for any fixed ε > 0 ,

∥f − Th(f)∥Lp(·)[(−∞,−N)∪(N,∞)] ≤
ε

2
. (3.5)

We may assume that δ < 1 and we have

Ωp(·)(f, δ) = sup
0<h≤δ

∥(I − Th)f∥Lp(·)(R) ≤ sup
0<h≤δ

∥(I − Th)f∥Lp(·)([−N,N ]) +
ε

2
. (3.6)

On the other hand, by [7, Corollary 2.73], there exists ϕ ∈ Cc[−N,N ] such that

∥f − ϕ∥Lp(·)[−N,N ] ≤ ε. (3.7)

Let N > 1 be the same as the number found above. First we prove that in the case of ϕ ∈ Cc[−N,N ] ,
we have ∥ϕ− Thϕ∥Lp(·)([−N,N ]) < C0ε . Set

I = Ip(·)

(
ϕ− Thϕ

N2
1

p−
+1

ε

)
.
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Then we have

I =
∫
[−N,N ]

∣∣∣∣ 1

N 2
1

p−
+1

ε
(ϕ(y)− Thϕ(y))

∣∣∣∣p(y) dy
=

∫
[−N,N ]

∣∣∣∣ 1

N 2
1

p−
+1

ε

1

τ

∫ τ

0

(ϕ(y + h)− ϕ(y))dh

∣∣∣∣p(y) dy.
There exists δ0 = δ0(ε) > 0 such that

|ϕ(x)− ϕ(x+ h)| < ε (3.8)

for 0 ≤ h ≤ δ0 and x ∈ [−N,N ]. Hence, for 0 ≤ h ≤ δ0, using (3.8), we have

I ≤ 1.

Then we obtain
∥ϕ− Thϕ∥Lp(·)([−N,N ]) < N2

1
p−

+1
ε (3.9)

for 0 ≤ h < δ0.

Also, by uniform boundedness of Th and (3.7), we have

∥Th(ϕ)− Th(f)∥Lp(·)([−N,N ]) ≤ c(p)ε. (3.10)

By the triangle inequality, we have

∥f − Th(f)∥Lp(·)([−N,N ])

≤ ∥f − ϕ∥Lp(·)([−N,N ]) + ∥ϕ− Th(ϕ)∥Lp(·)([−N,N ]) + ∥Th(ϕ)− Th(f)∥Lp(·)([−N,N ]) (3.11)

for any f ∈ Lp(·)([−N,N ]). Then, by replacing (3.7), (3.9), and (3.10) in (3.11) we have

∥f − Th(f)∥Lp(·)([−N,N ]) ≤ c(p)ε, 0 ≤ h ≤ δ0(ε). (3.12)

Consequently, in view of (3.6), we have lim
δ→0+

Ω(f, δ)p(·) = 0 for every f ∈ Lp(·) . 2

For proof of Theorem 3.4 we need the following lemma.

Lemma 3.2 Let f ∈ W
p(·)
1 be given. Then

Ω(f, δ)p(·) ≲ δ ∥f ′∥p(·) , δ ≥ 0 (3.13)

holds with some constant depending only on p (·) .

Proof [Proof of Lemma 3.2] It is sufficient to prove the following inequality:

∥(I − Th) f∥p(·) ≲ h ∥f ′∥p(·) , h > 0 (3.14)

for and f ∈ Lp(·) . We have

(I − Th) f (x) =
1

h

∫ h

0

(f (x)− f (x+ t)) dt =
−1

h

∫ h

0

∫ x+t

x

f ′ (s) dsdt.
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Therefore, from Minkowski’s inequality for integrals, we get

∥(I − Th) f∥p(·) =

∥∥∥∥∥ 1h
∫ h

0

∫ x+t

x

f ′ (s) dsdt

∥∥∥∥∥
p(·)

=

∥∥∥∥∥ 1h
∫ h

0

t
1

t

∫ t

0

f ′ (x+ s) dsdt

∥∥∥∥∥
p(·)

=

∥∥∥∥∥ 1h
∫ h

0

tTt (f
′) dt

∥∥∥∥∥
p(·)

≤ 1

h

∫ h

0

t ∥Tt (f
′)∥p(·) dt ≲ ∥f ′∥p(·)

1

h

∫ h

0

tdt ≲ h ∥f ′∥p(·)

and (3.14) follows. Then
Ω(f, δ)p(·) ≲ δ ∥f ′∥p(·) , δ > 0

for f ∈ W
p(·)
1 . 2

It is known that for proof of the inverse theorem we need Bernstein’s inequality. We present the
following theorem corresponding to the well-known Bernstein inequality on the derivative of exponential type
entire functions of finite order (integral functions) in variable exponent Lebesgue spaces that was proved by
Nanobashvili and Kokilashvili in [23].

Theorem 3.3 [23, Theorem 2] Let p ∈ P and gσ be an exponential type entire function of degree ≤ σ . Assume
that gσ ∈ Lp(·) . Then the inequality

∥g′σ∥p(·) ≲ σ∥gσ∥p(·)

holds with a constant, independent of gσ .

Let f ∈ Lp(·) . The K -functional is defined as follows:

K(f, t, Lp(·), 1)p(·) = inf
g∈W

p(·)
1

{
∥f − g∥p(·) + t∥g′∥(·)

}
for t > 0 .

In the following theorem we show that K -functional K(f, δ, Lp(·), 1)p(·) and Ω(f, δ)p(·) are equivalent.

Theorem 3.4 Let p(·) ∈ P . If Lp(·) , then the K-functional K
(
f, t;Lp(·), 1

)
and the modulus Ω(f, t)p(·) are

equivalent; namely,

Ω(f, t)p(·) ≲ K
(
f, t;Lp(·), 1

)
p(·)

≲ Ω(f, t)p(·)

for all f ∈ Lp(·) with some constants, independent of f .

Proof [Proof of Theorem 3.4] Let t > 0 . Then there exists σ ∈ N such that 1/σ ≤ t < 2/σ . We define the
operator

(Uvf) (x) :=
2

v

∫ v

v/2

(
1

h

∫ h

0

f (x+ t) dt

)
dh, x ∈ R, f ∈ Lp(·), v > 0.
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On the other hand, for 0 < v ≤ 1 , we obtain by Minkowski’s inequality for integrals

∥Uvf∥p(·) =

∥∥∥∥∥2v
∫ v

v/2

(
1

h

∫ h

0

f (x+ t) dt

)
dh

∥∥∥∥∥
p(·)

≤ 1

v/2

∫ v

v/2

∥∥∥∥∥ 1h
∫ h

0

f (x+ t) dt

∥∥∥∥∥
p(·)

dh

=
1

v/2

∫ v

v/2

∥Thf∥p(·) dh ≲ ∥f∥p(·)
1

v/2

∫ v

v/2

dh

= ∥f∥p(·)

and hence f − Uvf ∈ Lp(·) . Also, the function Uvf(x) is absolutely continuous [43] and

∣∣∣∣ ddxUvf(x)

∣∣∣∣ = 2

v

∣∣∣∣∣
∫ v

v/2

1

h
(f (x+ h)− f (x)) dh

∣∣∣∣∣ .
For 0 < v ≤ 1 we have by Minkowski’s inequality for integrals

∥∥∥∥ d

dx
Uvf(x)

∥∥∥∥
p(·)

≤ 2

v

∥∥∥∥∥1v
∫ v

0

(f (x+ t)− f (x)) dt− 1

v

∫ v/2

0

(f (x+ t)− f (x)) dt

∥∥∥∥∥
p(·)

+

+
2

v

∥∥∥∥∥
∫ v

v/2

dh

h2

[∫ h

0

(f (x+ t)− f (x)) dt−
∫ v/2

0

(f (x+ t)− f (x)) dt

]∥∥∥∥∥
p(·)

≤ 2

v

∥∥∥∥Tvf (x)− f (x)− 1

2

(
Tv/2f (x)− f (x)

)∥∥∥∥
p(·)

+
2

v

∥∥∥∥∥
∫ v

v/2

1

h

(
Thf (x)− f (x)− v

2h
(Thf (x)− f (x))

)
dh

∥∥∥∥∥
p(·)

≲ 1

v
Ω(f, v)p(·) +

1

v
Ω(f, v/2)p(·)

+
1

v

∥∥∥∥∥
∫ v

v/2

1

h
(|Thf (x)− f (x)| − |Thf (x)− f (x)|) dh

∥∥∥∥∥
p(·)

≲ 1

v
Ω(f, v)p(·) +

1

v

∥∥∥∥∥
∫ v

v/2

1

h
|Thf (x)− f (x)| dh

∥∥∥∥∥
p(·)

+
1

v
∥Thf (x)− f (x)∥p(·)

≲ 1

v
Ω(f, v)p(·) +

1

v

∫ v

v/2

1

h
∥Thf (x)− f (x)∥p(·) dh

≲ 1

v
Ω(f, v)p(·) +Ω(f, v)p(·)

1

v

∫ v

v/2

dh

h
≲ 1

v
Ω(f, v)p(·) . (3.15)
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Hence, for a given v ∈ (0, 1] , d
dxUvf(x) ∈ Lp(·) . Then

K
(
f, t, Lp(·),W 1

p

)
≤ 2K

(
f, 1/σ,Lp(·),W 1

p

)
≲

∥∥f − U1/σf
∥∥
p(·) +

1

σ

∥∥∥∥ d

dx
U1/σf

∥∥∥∥
p(·)

=: I1 + I2.

We estimate I1 . Using Minkowski’s inequality for integrals we obtain

∥∥f − U1/σf
∥∥
p(·) =

∥∥∥∥∥2σ
∫ 1/σ

1/2σ

(
1

h

∫ h

0

(f (x+ t)− f (x)) dt

)
dh

∥∥∥∥∥
p(·)

≤

∥∥∥∥∥2σ
∫ 1/v

1/2σ

|Thf (x)− f (x)| dh

∥∥∥∥∥
p(·)

≤ 2σ

∫ 1/σ

1/2σ

∥Thf − f∥p(·) dh

≲ sup
0≤u≤1/σ

∥(I − Tu) f∥p(·) 2σ
∫ 1/σ

1/2σ

dh = Ω(f, 1/σ)p(·). (3.16)

For the estimate I2 , we find from (3.15) that

1

σ

∥∥∥∥ d

dx
U1/σf

∥∥∥∥
p(·)

≲ Ω(f, 1/σ)p(·) . (3.17)

Now (3.16)–(3.17) give

K
(
f, t, Lp(·), 1

)
≲ Ω(f, 1/σ)p(·) ≤ Ω(f, t)p(·) .

By Lemma 3.2, for g ∈ W
p(·)
1 ,

Ω(f, t)p(·) ≲ ∥f − g∥p(·) + t ∥g′∥p(·) ,

and taking infimum on g ∈ W
p(·)
1 we get

Ω(f, t)p(·) ≲ K
(
f, t;Lp(·), 1

)
.

Now we obtain
Ω(f, t)p(·) ≈ K

(
f, t;Lp(·), 1

)
(3.18)

and this is the desired result. 2

As a corollary of Theorem 3.4:

Corollary 3.5 Let p(·) ∈P. If δ, λ ∈ R+ , f ∈ Lp(·) and then

Ω(f, λδ)p(·) ≲ (1 + ⌊λ⌋)Ω (f, δ)p(·) (3.19)

holds with some constant depending only on p (·) .
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Proof [Proof of Corollary 3.5] Using equivalence (3.18) we have

Ω(f, lt)p(·) ≲ inf
g∈W

p(·)
1

{
∥f − g∥p(·) + lt ∥g′∥p(·)

}
≲ (1 + ⌊l⌋) inf

g∈W
p(·)
1

{
∥f − g∥p(·) + t ∥g′∥p(·)

}
≲ (1 + ⌊l⌋)Ω (f, t)p(·) ,

which gives (3.19). 2

4. Direct theorems

Theorem 4.1 Let p(·) ∈P. If f ∈ Lp(·) , then

Aσ (f)p(·) ≲ Ω

(
f,

1

σ

)
p(·)

(4.1)

holds with some constant depending only on p (·) .

Proof [Proof of Theorem 4.1] Let σ and f ∈ Lp(·) be fixed. We consider the operator U1/σf . Using (3.16)
and (3.17),

Aσ(f)p(·) = Aσ(f − U1/σf + U1/σf)p(·) ≤ Aσ(f − U1/σf)p(·) +Aσ(U1/σf)p(·)

≲ ∥f − U1/σf∥p(·) +
1

σ

∥∥∥∥ d

dx
U1/σf (x)

∥∥∥∥
p(·)

≲ Ω

(
f,

1

σ

)
p(·)

, (4.2)

and the result follows. 2

We define

g (x) =

(
1

x
sin σx

2r

)2r

for r ≥ 3/2. Then g (x) ∈ Gσ for r ≥ 3/2. Set

γr :=

∫
R

(
1

t
sin σt

2r

)2r

dt.

In this case,
γr = σ2r−1C,

where C > 0 is dependent only on r .
Let

Dσf(x) :=
1

γr

∫
R
f(x+ t)g(t)dt, σ > 0. (4.3)

Then Dσf ∈ Gσ ([17]) .
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Corollary 4.2 The subspace of integral function f(z) of exponential type σ belonging to Lp(·) is dense in
Lp(·) .

Lemma 4.3 Let p(·) ∈P. If f ∈ W
p(·)
1 , then

∥f −Dσf∥p(·) ≲
1

σ
∥f ′∥p(·) (4.4)

holds with some constant depending only on p (·) .

Proof [Proof of Lemma 4.3] From (4.3), one can write

∥f −Dσf∥p(·) =

∥∥∥∥ 1

γr

∫
R
(f(x+ t)− f(x)) g(t)dt

∥∥∥∥
p(·)

=
1

γr

∥∥∥∥∫
R
(f(x+ t)− f(x)) g(t)dt

∥∥∥∥
p(·)

=
1

γr

∥∥∥∥∫
R

1

t

∫ x+t

x

f ′(τ)dτtg(t)dt

∥∥∥∥
p(·)

=
1

γr

∥∥∥∥∫
R
Ttf

′(x)tg(t)dt

∥∥∥∥
p(·)

≲ 1

γr

∫
R
∥Ttf

′∥p(·) |t| |g(t)| dt ≲ ∥f ′∥p(·)
2

γr

∫ ∞

0

|t| |g(t)| dt

≲ ∥f ′∥p(·)

{
1

γr

∫
|t|≤1/σ

|t| |g(t)| dt+ 1

γr

∫
|t|≥1/σ

|t| |g(t)| dt

}
≲ 1

σ
∥f ′∥p(·) ,

which implies inequality (4.4). 2

5. Inverse estimate
Now we present the inverse theorem.

Theorem 5.1 Let p(·) ∈P and f ∈ Lp(·) . Then there exists a positive constant, depending only on p (·) , such
that

Ω

(
f,

1

σ

)
p(·)

≲ 1

σ

⌊σ⌋∑
ν=1

Aν(f)p(·)

holds, where ⌊σ⌋ is the largest integer less than or equal to σ .

Proof [Proof of Theorem 5.1] Let gσ be an exponential type entire function of degree ≤ σ , belonging to Lp(·) ,
as the best approximation of f ∈ Lp(·) . Let 2j ≤ σ < 2j+1 . Thanks to the definition of K(f, t, Lp(·), 1)p(·) we
have

K

(
f,

1

σ
, Lp(·), 1

)
p(·)

= inf
g∈Wp(·)

{
∥f − g∥p(·) +

1

σ
∥g′∥p(·)

}

≤ ∥f − g2j+1∥p(·) +
1

σ
∥g′2j+1∥p(·).
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Using Theorem 3.3, one can write

∥g′2j+1∥p(·) = ∥g′0 − g′1∥p(·) +
j∑

i=0

∥g
′

2i+1 − g
′

2i∥p(·)

≲
{
∥g1 − g0∥p(·) +

j∑
i=0

2i+1∥g2i+1 − g2i∥p(·)

}

and then we have

∥g′2j+1∥p(·) ≲
{
A0(f)p(·) +A1(f)p(·) +

j∑
i=0

2i+1
(
A2i+1(f)p(·) +A2i(f)p(·)

)}

≲
{
A0(f)p(·) +

j∑
i=0

2i+1A2i(f)p(·)

}

≲
{
A0(f)p(·) + 2A1(f)p(·) +

j∑
i=1

2i+1A2i(f)p(·)

}
.

Since

2i+1A2i(f)p(·) ≤ 4

2i∑
ν=2i−1+1

Aν(f)p(·), (5.1)

we have

∥g′2j+1∥p(·) ≲

A0(f)p(·) + 2A1(f)p(·) + 4

2j∑
ν=2

Aν(f)p(·)

 .

Now, using (5.1), we obtain

A2j+1(f)p(·) =
2j+1A2j+1(f)p(·)

2j+1
≤

2j+1A2j+1(f)p(·)

σ
≤ 4

σ

2j∑
ν=2j−1+1

Aν(f)p(·).

By Theorem 3.4, one can write

Ω

(
f,

1

σ

)
p(·)

≲ K

(
f,

1

σ
, Lp(·), 1

)
p(·)

≲
{
∥f − g2j+1∥p(·) +

1

σ
∥g′2j+1∥p(·)

}

≲ 1

σ

2j∑
ν=2j−1+1

Aν(f)p(·) ≲
1

σ

⌊σ⌋∑
ν=1

Aν(f)p(·)

and this completes the proof. 2

Theorem 5.2 Let p(·) ∈P and f ∈ Lp(·) . If

∞∑
ν=0

νr−1Aν (f)p(·) < ∞
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holds for some r ∈ N , then f (r) ∈ Lp(·) and

Ω

(
f (r),

1

σ

)
p(·)

≲ 1

σ

⌊σ⌋∑
ν=0

(ν + 1)
r
Aν (f)p(·) +

∞∑
ν=⌊σ⌋+1

νr−1Aν (f)p(·) (5.2)

with some constant depending only on p (·) .

Proof [Proof of Theorem 5.2] Let gσ be an exponential type entire function of degree ≤ σ , belonging to Lp(·) ,
as the best approximation of f ∈ Lp(·) . For natural numbers p ≤ r , we consider the series

g
(p)
1 +

∞∑
ν=0

{g(p)2ν+1 − g
(p)
2ν }. (5.3)

Using Bernstein’s inequality (see Theorem 3.3) we have

∥g(p)
2(ν+1) − g

(p)
2ν ∥(·) ≲ σp∥g2(ν+1) − g2ν∥p(·) ≲ 2(ν+1)p ∥g2ν+1 − g2ν∥p(·)

≲ 2(ν+1)p A2ν (f)p(·).

Now, by the following estimation,

2(ν+1)pA2ν (f)p(·) ≤ 22p
2ν∑

µ=2ν−1+1

µp−1Aµ(f)p(·),

we have

∥g(p)1 +

∞∑
ν=0

{g(p)2ν+1 − g
(p)
2ν }∥p(·) ≤ ∥g(p)1 ∥p(·) +

∞∑
ν=0

∥g(p)2ν+1 − g
(p)
2ν ∥p(·)

≲ ∥g(p)1 ∥p(·) +
∞∑
ν=0

2(ν+1)p A2ν (f)p(·)

≲ ∥g(p)1 ∥p(·) + 2pA1(f)p(·) +

2ν∑
µ=2ν−1+1

µp−1Aµ(f)p(·)

≲ ∥g(p)1 ∥p(·) +A1(f)p(·) +

∞∑
µ=2

µp−1Aµ(f)p(·) < ∞.

If we denote the partial sum of the above series by S
(p)
n , for p = 0, 1, 2, ..., r, then the sequence of S

(p)
n

has convergence in the norm of Lp(·) . For p = r , one can write

Ω

(
f (r),

1

σ

)
p(·)

≤ Ω

(
f (r) − S(r)

n ,
1

σ

)
p(·)

+Ω

(
S(r)
n ,

1

σ

)
p(·)

= I1 + I2.
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Now for obtaining inequality (5.2), we must estimate I1 and I2 . First, let us deal with the first item,
I1 . We choose 2n ≤ σ < 2n+1 . By boundedness of the operator Th and Bernstein’s inequality, we obtain

Ω

(
f (r) − S(r)

n ,
1

σ

)
p(·)

≲ ∥f (r) − S(r)
n ∥p(·)

=

∥∥∥∥∥
∞∑

ν=n+1

{g(r)2ν+1 − g
(r)
2ν }

∥∥∥∥∥
p(·)

≲
∞∑

ν=n+1

2(ν+1)r A2ν (f)p(·)

≲
∞∑

ν=n+1

22r
2ν∑

µ=2ν−1+1

µr−1Aµ(f)p(·)


≲

∞∑
µ=2n+1

µr−1Aµ(f)p(·) ≲
∞∑

µ=⌊σ⌋+1

µr−1Aµ(f)p(·).

Next, let us estimate I2 :

Ω

(
S(r)
n ,

1

σ

)
p(·)

≤ Ω

(
g
(r)
1 ,

1

σ

)
p(·)

+

n∑
ν=0

Ω

(
g
(r)
2ν+1 − g

(r)
2ν ,

1

σ

)
p(·)

.

Now by inequality (3.13) and Bernstein’s inequality (see Theorem 3.3), we have

Ω

(
S(r)
n ,

1

σ

)
p(·)

≲ 1

σ
∥g(r+1)

1 − g
(r+1)
0 ∥p(·) +

1

σ

n∑
ν=0

∥g(r+1)
2ν+1 − g

(r+1)
2ν ∥p(·)

≲ 1

σ
∥g1 − g0∥p(·) +

1

σ

n∑
ν=0

2(ν+1)(r+1)A2ν (f)(·)

≲ 1

σ

A0(f)p(·) +A1(f)p(·) +

n∑
ν=1

22(r+1)
2ν∑

µ=2ν−1+1

µrAµ(f)p(·)


≲ 1

σ

{
2n∑
µ=0

(µ+ 1)rAµ(f)p(·)

}
≲ 1

σ


⌊σ⌋∑
µ=0

(µ+ 1)rAµ(f)p(·)

 .

The last inequality completes the proof. 2

6. Simultaneous approximation

Theorem 6.1 Let p(·) ∈P, r ∈ N , and f ∈ W
p(·)
r . Then

Aσ (f)p(·) ≲
1

σr
Aσ

(
f (r)

)
p(·)

(6.1)

holds with some constant depending only on p (·) .

Proof [Proof of Theorem 6.1] Let r = 1 . Suppose that Aσ (f
′)p(·) = ∥f ′ −Θn(f

′)∥p(·) , Θn(f
′) ∈ Gσ and

𝟋 (x) :=

∫ x

0

Θn(f
′) (t) dt
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for x > 0 . Then 𝟋 ∈ Gσ ([17]) and 𝟋′ (x) = Θn(f
′) (x) . Thus,

Aσ (f)p(·) = Aσ (f −𝟋)p(·) ≲
1

σ

∥∥(f −𝟋)
′∥∥

p(·)

=
1

σ
∥f ′ −𝟋′∥p(·) =

1

σ
∥f ′ −Θn(f

′)∥p(·)

≲ 1

σ
Aσ (f

′)p(·)

(6.1) follows from the last inequality. 2

Corollary 6.2 Let p(·) ∈P. Then for every f ∈ W
p(·)
r , r ∈ {0} ∪ N , the inequalities

Aσ (f)p(·) ≲
1

σr
Ω

(
f (r),

1

σ

)
p(·)

(6.2)

hold with constants depending only on p (·) .

7. constructive characterization of Lipschitz classes
Theorem 7.1 Under the conditions of Theorem 4.1, if the inequality

Aσ (f)p(·) ≲ σ−β

holds for some β > 0 , then we have

Ω(f, δ)p(·) ≲

 δβ , 1 > β;
δβ log 1

δ , 1 = β;
δ , 1 < β.

Proof [Proof of Theorem 7.1] Let f ∈ Lp(·) and

Aσ (f)p(·) ≲ σ−β

for some β > 0 . We suppose that δ > 0 and N := ⌊1/δ⌋ . From Theorem 5.1 we get

Ω(f, δ)p(·) ≤ Ω

(
f,

1

N

)
p(·)

≲ 1

N

N∑
ν=0

Aν (f)p(·)

≲ 1

N
A0(f)p(·) +

1

N

N∑
ν=1

Aν(f)p(·)

≲ 1

N

(
∥f∥p(·) +

N∑
ν=1

1

νβ

)
.

If 1 > β , then by some computations we get

Ωr (f, δ)p(·) ≲
1

N

(
∥f∥p(·) +

N∑
ν=1

1

νβ

)
≲ δβ .
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If 1 = β , then
N∑

ν=1

ν−β =

n∑
ν=1

ν−1 ≤ 1 + log(1/δ)

and hence
Ω(f, δ)p(·) ≲ δβ log(1/δ).

If 1 < β , then the series
∑∞

j=0 j
−β is convergent and

Ω(f, δ)p(·) ≲ δ

A0(f)p(·) +

∞∑
j=1

j−β

 ≲ δ

holds. 2

Using Theorem 5.2 we similarly get the following:

Corollary 7.2 Let p(·) ∈P and f ∈ Lp(·) . If

Aσ (f)p(·) ≲
1

σr+α
, α > 0,

then f ∈ W r
p(·) and

Ω
(
f (r), δ

)
p(·)

≲

 δα , 1 > α,
δα log (1/δ) , 1 = α,
δ , 1 < α.

Theorem 7.3 Let 0 < β < 1 and r ∈ N . Under the conditions of Theorem 4.1, we have:

(i) f ∈ Lipβp (·) iff Aσ (f)p(·) ≲ σ−β .

(ii) f ∈ W r,β
p(·) iff Aσ (f)p(·) ≲ σ−β−r.
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