т $̈$ вітак

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Turk J Math
(2018) 42: 1913 - 1926
© TÜBİTAK
doi:10.3906/mat-1701-22

Regularity of semigroups of transformations with restricted range preserving an alternating orientation order

Somphong JITMAN © , Rattana SRITHUS © Chalermpong WORAWANNOTAI* ${ }^{\text {© }}$
Department of Mathematics, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand

| Received: 09.01.2017 \quad Accepted/Published Online: 03.05.2018 | Final Version: 24.07 .2018 |
| :--- | :--- | :--- |

Abstract

It is well known that the transformation semigroup on a nonempty set X, which is denoted by $T(X)$, is regular, but its subsemigroups do not need to be. Consider a finite ordered set $X=(X ; \leq)$ whose order forms a path with alternating orientation. For a nonempty subset Y of X, two subsemigroups of $T(X)$ are studied. Namely, the semigroup $O T(X, Y)=\{\alpha \in T(X) \mid \alpha$ is order-preserving and $X \alpha \subseteq Y\}$ and the semigroup $O S(X, Y)=\{\alpha \in T(X) \mid \alpha$ is orderpreserving and $Y \alpha \subseteq Y\}$. In this paper, we characterize ordered sets having a coregular semigroup $O T(X, Y)$ and a coregular semigroup $O S(X, Y)$, respectively. Some characterizations of regular semigroups $O T(X, Y)$ and $O S(X, Y)$ are given. We also describe coregular and regular elements of both $O T(X, Y)$ and $O S(X, Y)$.

Key words: Order-preserving, fence, semigroup, regular, coregular

1. Introduction and preliminaries

Regularity is one of the most studied topics in semigroup theory due to its nice algebraic properties and wide applications. An element a in a semigroup S is called regular if there is an element $b \in S$ such that $a=a b a$. A regular semigroup is a semigroup in which every element is regular. There have been many research works studying regularity of semigroups (see [9-11, 13-15, 18, 20, 22]). A special case of a regular element is a coregular element. An element a in a semigroup S is called coregular if there is an element $b \in S$ such that $a b a=a=b a b$ and S is called coregular if every element of S is coregular. Clearly, every coregular element is regular. It has been proved that an element a in a semigroup S is coregular if and only if $a^{3}=a$ (see [21, Proposition 3]). For a nonempty set X, it is well known that the semigroup $T(X)$ of all transformations of X is regular (see [1, page 33]). However, a subsemigroup of $T(X)$ does not need to be regular. The regularity for various types of subsemigroups of $T(X)$ has been investigated. In 1966, Magill [12] introduced and studied the subsemigroup

$$
S(X, Y)=\{\alpha \in T(X) \mid Y \alpha \subseteq Y\}
$$

of $T(X)$ where Y is a nonempty subset of X. Nenthein et al. [15] described regular elements of $S(X, Y)$ and also determined the number of such elements for a finite set X.

For a nonempty subset Y of X, the subsemigroup

$$
T(X, Y)=\{\alpha \in T(X) \mid X \alpha \subseteq Y\}
$$

[^0]of $T(X)$ was first introduced by Symons [19] in 1975. A characterization of regular elements of $T(X, Y)$ was given [15]. Sanwong and Sommanee [18] obtained the largest regular subsemigroup of $T(X, Y)$ since, in general, $T(X, Y)$ does not need to be regular.

Consider X as the base set of an ordered set ($X ; \leq$). Throughout this paper, we represent an ordered set by its base set. A map $\alpha: X \rightarrow X$ is said to be order-preserving if $x \leq y$ implies $x \alpha \leq y \alpha$ for all $x, y \in X$. The order-preserving counterpart of the semigroup $T(X)$ is denoted by $O T(X)$, the semigroup of all order-preserving transformations of X. Such a semigroup is a subsemigroup of $T(X)$ and plays an important role in the study of algebraic systems. In [5], Gluskin showed that if $O T(X)$ is isomorphic to $O T(Y)$, then the ordered sets X and Y are isomorphic or antiisomorphic. Repnitski and Vernitski [16, Lemma 1.1] proved that every free semigroup can be represented by the semigroup $O T(X)$ of a chain (or a totally ordered set) and every semigroup is a homomorphic image of a free semigroup. Later, Higgins et al. [7] found that the rank of the semigroup $T(X)$ is related to the semigroup $O T(X)$ for some chain X.

There have been many research works focused on the regularity of order-preserving transformation semigroups (see $[4,9-11,14,20,22]$). Let X be a chain. Then the semigroup $O T(X)$ is a regular subsemigroup of $T(X)$ if X is finite (see [6, Exercise 6.1.9]). Keprasit and Changphas [9] showed that if X is order-isomorphic to a subchain of \mathbb{Z}, then $O T(X)$ is regular. In [4], Fernandes et al. described the largest regular subsemigroup of $O T(X)$.

For a nonempty subset Y of an ordered set X, the semigroups $O S(X, Y)$ and $O T(X, Y)$ are adapted from analogous conditions for $S(X, Y)$ and $T(X, Y)$, respectively. Precisely,

$$
O S(X, Y)=\{\alpha \in O T(X) \mid Y \alpha \subseteq Y\}
$$

and

$$
O T(X, Y)=\{\alpha \in O T(X) \mid X \alpha \subseteq Y\}
$$

are subsemigroups of $O T(X)$ and also of $T(X)$. For a chain X, Mora and Kemprasit [14] gave a necessary and sufficient condition for $O T(X, Y)$ to be regular and determined all regular elements. Fernandes et al. [4] characterized the largest regular subsemigroup of $O T(X, Y)$.

The semigroup $O T(X)$ and its subsemigroups have been studied by many mathematicians, but most of this research was done on a chain. Our interest focuses on ordered sets whose simplicity is "next" to that of chains. Such ordered sets are fences.

A fence X is an ordered set such that the order forms a path with alternating orientation. Indeed, the only comparability relations in X are either

$$
x_{1} \leq x_{2} \geq x_{3}, x_{3} \leq x_{4} \geq x_{5}, \ldots, x_{2 m-1} \leq x_{2 m} \geq x_{2 m+1}, \ldots
$$

or

$$
x_{1} \geq x_{2} \leq x_{3}, x_{3} \geq x_{4} \leq x_{5}, \ldots, x_{2 m-1} \geq x_{2 m} \leq x_{2 m+1}, \ldots
$$

where $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$. Every element in X is minimal or maximal. The cardinality of a fence X is defined to be the cardinality of X as a set and denoted by $|X|$. Here $|X|$ can be either finite or infinite. A fence X is said to be trivial if $|X|=1$ and nontrivial otherwise. A nonempty subset Y of a fence X is called a subfence of X if Y is a fence with respect to the order restricted from X.

For $x, y \in X$, the distance $d(x, y)$ from x to y in X is defined by

$$
d(x, y)=\inf \{|S|-1 \mid S \text { is a subfence of } X \text { and } x, y \in S\} .
$$

For an element $\alpha \in O T(X)$, let $\operatorname{ran} \alpha=\{x \alpha \mid x \in X\}$. We note that $Y \alpha=\{y \alpha \mid y \in Y\}$ is a subfence of X for every element $\alpha \in O T(X)$ and a subfence Y of X (see [8, Section 2]). In particular, ran $\alpha=X \alpha$ is subfence of X for $\alpha \in O T(X)$.

Algebraic properties of order-preserving transformations of fences have been long considered (see, for example, $[2,3,17])$. Recently, Jendana and Srithus [8] proved that, for a finite fence X, the semigroup $O T(X)$ is coregular if and only if $|X| \leq 2$, and they characterized coregular elements of $O T(X)$. Later, in 2016, Tanyawong et al. [8] described all regular semigroups of transformations preserving a fence, i.e. $O T(X)$ is regular if and only if $|X| \leq 4$. The regularity of elements in $O T(X)$ was discussed as well.

Throughout this paper, let X be a finite fence and let Y be a nonempty set of X. In general, $O T(X, Y)$ and $O S(X, Y)$ do not need to be regular (see Lemma 2.1). Our main purpose is to investigate the regularity of the semigroups $O S(X, Y)$ and $O T(X, Y)$. In Section 2, we characterize coregular elements in subsemigroups of $O T(X)$. In Section 3, we give necessary and sufficient conditions for $O T(X, Y)$ to be regular. Since an element in $O T(X, Y)$ does not need to be regular, the regular elements of $O T(X, Y)$ are completely determined. Finally, Section 4 is devoted to the study of the regularity of $O S(X, Y)$.

2. Coregular elements in subsemigroups of $O T(X)$

In this section we characterize coregular elements in any subsemigroup of $O T(X)$. Observe that for any element α of $O T(X), \alpha$ is coregular in a subsemigroup of $O T(X)$ if and only if α is coregular in $O T(X)$. Since $O T(X)$ is coregular if and only if $|X| \leq 2$ (see [8, Theorem 2.1]), in general $O T(X)$ does not need to be coregular. We now give an example of a map that is not coregular in $O T(X)$ when $|X| \geq 3$. Moreover, this map is regular in $O T(X)$ but is not regular in either $O T(X, Y)$ or $O S(X, Y)$ for some subset Y of X.

Lemma 2.1 Let a, b, and c be distinct elements in X satisfying (1) a and b are comparable, and (2) b and c are comparable. Define the map $\alpha: X \rightarrow X$ by

$$
x \alpha= \begin{cases}a & \text { if } x=c \\ b & \text { if } x \neq c\end{cases}
$$

Then the following statements hold:
(i) The map α is an element of $O T(X)$.
(ii) The map α is not coregular in $O T(X)$. Consequently, α is not coregular in any subsemigroup of $O T(X)$.
(iii) The map α is regular in $O T(X)$.
(iv) The map α is not regular in $O T(X, Y)$ for any subset Y of X that contains a and but does not contain c.
(v) The map α is not regular in $O S(X, Y)$ for any subset Y of X that contains a and but does not contain c.

Proof

(i) Assumptions (1) and (2) imply that a and c are both minimal or both maximal. Without loss of generality, assume that a and c are both minimal. Then $a<b$ and $c<b$. Let $x, y \in X$ be such that $x \leq y$. Clearly,
$x \alpha \leq y \alpha$ if $x=y$. Assume that $x<y$. Then x is minimal and y is maximal, which implies that $y \neq c$. Hence, $x \alpha=a<b=y \alpha$ if $x=c$, or $x \alpha=b \leq b=y \alpha$ if $x \neq c$. The proof is completed.
(ii) Recall that an element $\gamma \in O T(X)$ is coregular if and only if $\gamma^{3}=\gamma$. Since $c \alpha^{3}=b \neq a=c \alpha$, α is not regular in $O T(X)$.
(iii) Define the map $\beta: X \rightarrow X$ by

$$
x \beta= \begin{cases}c & \text { if } x=a \\ b & \text { if } x \neq a\end{cases}
$$

It is easy to check that $\beta \in O T(X)$ and $\alpha \beta \alpha=\alpha$. Therefore, α is regular in $O T(X)$.
(iv) Clearly $\alpha \in O T(X, Y)$. Suppose α is regular in $O T(X, Y)$. Then there exists an element β in $O T(X, Y)$ such that $\alpha \beta \alpha=\alpha$. By the definition of α, we have $c \alpha \beta \alpha=a \beta \alpha$. From $c \notin Y$, we have $a \beta \neq c$, implying $a \beta \alpha=b$. It follows that $c \alpha \beta \alpha=a \beta \alpha=b \neq a=c \alpha$, which is a contradiction. Hence, α is not regular in $O T(X, Y)$.
(v) The proof is similar to the proof of (iv).

In 2015, Jendana and Srithus gave a technical lemma that will be a tool for describing coregular elements in $O T(X)$, as stated below.

Lemma 2.2 ([8, Lemma 3.1]) Let S be a subfence of X and let $\alpha \in O T(X)$ with $\operatorname{ran} \alpha=S$ and $\left.\alpha\right|_{S}$ is a bijection. Assume that $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $x_{k} \alpha=x_{l}$ for some positive integer k and l. Let $w \in \mathbb{N}$ with $w \geq 2$. Then the following statements hold:
(i) Assume that $x_{k-1} \alpha=x_{l+1}$. If $x_{k \pm w} \in S$, then $x_{k \pm w} \alpha=x_{l \mp w}$.
(ii) Assume that $x_{k-1} \alpha=x_{l-1}$. If $x_{k \pm w} \in S$, then $x_{k \pm w} \alpha=x_{l \pm w}$.

The following lemma gives useful properties of elements in $O T(X)$.
Lemma 2.3 Let $\alpha \in O T(X)$, for which $\left.\alpha\right|_{\operatorname{ran} \alpha}$ is a bijection. Then the following statements hold:
(i) If $a, b \in \operatorname{ran} \alpha$ with $a<b$, then $a \alpha<b \alpha$.
(ii) If $a \in \operatorname{ran} \alpha$, then a and a α are both minimal or both maximal in X.

Proof

(i) Let $a, b \in \operatorname{ran} \alpha$ with $a<b$. From α being order-preserving and $a<b$, we have $a \alpha \leq b \alpha$. Since $\left.\alpha\right|_{\operatorname{ran} \alpha}$ is injective and $a \neq b$, we have $a \alpha \neq b \alpha$, which implies that $a \alpha<b \alpha$.
(ii) Let $a \in \operatorname{ran} \alpha$ with $a \alpha=b$. If $|\operatorname{ran} \alpha|=1$, then $a=b$. Hence, (ii) is satisfied. Consider $|\operatorname{ran} \alpha|>1$. We may assume that a and b are minimal and maximal in X, respectively. Since ran α is a subfence of X, there exists an element $c \in \operatorname{ran} \alpha$ with $a<c$. By (i), $b=a \alpha<c \alpha$. Thus, b is not maximal, a contradiction.

In what follows, we restrict our study to the case of a map α in $O T(X, Y)$ for which the restriction to its range is bijective. Theorem 2.4 shows that there are only 2 possibilities for such a map.

Theorem 2.4 Let $\alpha \in O T(X)$ and let $W=\operatorname{ran} \alpha$. Then $\left.\alpha\right|_{W}$ is a bijection if and only if one of the following statements holds:
(i) If $|W|$ is even, then $\left.\alpha\right|_{W}=i d_{W}$.
(ii) If $|W|$ is odd, then either $\left.\alpha\right|_{W}=i d_{W}$ or $x_{k} \alpha=x_{n-(k-1)}$ for all $k \in\{1,2, \ldots, n\}$ where $W=$ $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.

Proof Assume that $\left.\alpha\right|_{W}$ is a bijection. Let $W=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. First we show that $x_{1} \alpha \in\left\{x_{1}, x_{n}\right\}$. Suppose $x_{1} \alpha=x_{j}$ for some $j \in\{2,3, \ldots, n-1\}$. Then by Lemma 2.2 either $x_{1+s} \alpha=x_{j-s}$ for all $s \in\{0,1, \ldots, n-1\}$ or $x_{1+s} \alpha=x_{j+s}$ for all $s \in\{0,1, \ldots, n-1\}$. Since $j-s \leq n-1$ and $j+s \geq 2$ for all $s \in\{0,1, \ldots, n-1\}$, $x_{1+s} \alpha \neq x_{n}$ for all $s \in\{0,1, \ldots, n-1\}$ or $x_{1+s} \alpha \neq x_{1}$ for all $s \in\{0,1, \ldots, n-1\}$. Hence, $W \alpha \subsetneq W$, which is impossible since $\left.\alpha\right|_{W}$ is a bijection.

Therefore, we have $x_{1} \alpha \in\left\{x_{1}, x_{n}\right\}$. If $x_{1} \alpha=x_{1}$, then $x_{n} \alpha=x_{n}$ and $x_{n-1} \alpha=x_{n-1}$ since $\left.\alpha\right|_{W}$ is a bijection. By setting $k=n$ and $l=n$ in Lemma 2.2(ii), we have $\left.\alpha\right|_{W}=i d_{W}$. In the case where $x_{1} \alpha=x_{n}$, we have $x_{n} \alpha=x_{1}$ and $x_{n-1} \alpha=x_{2}$ since $\left.\alpha\right|_{W}$ is a bijection. By setting $k=n$ and $l=1$ in Lemma 2.2(i), it follows that $x_{k} \alpha=x_{n-k+1}$ for all $k \in\{1,2, \ldots, n\}$. If $|W|$ is even, then one of x_{1} and x_{n} is minimal and the other is maximal. Without loss of generality, we assume that x_{1} is minimal. By Lemma 2.3(ii) we have that x_{1} and $x_{1} \alpha$ are minimal. Since x_{2} is maximal, we get that $x_{1} \alpha \neq x_{n}$. Therefore, $x_{1} \alpha=x_{1}$ and $\left.\alpha\right|_{W}=i d_{W}$.

Conversely, assume that (i) or (ii) holds. Then clearly $\left.\alpha\right|_{W}$ is a bijection.
We shall characterize coregular elements in any subsemigroup of $O T(X)$. To do so we need results concerning coregular elements in $O T(X)$.

Theorem 2.5 ([8, Theorems 3.4 and 3.5]) Let $\alpha \in O T(X)$ and let $W=\operatorname{ran} \alpha$. Then α is coregular if and only if one of the following statements holds:
(i) If $|W|$ is even, then $\left.\alpha\right|_{W}=i d_{W}$.
(ii) If $|W|$ is odd, then either $\left.\alpha\right|_{W}=i d_{W}$ or $x_{k} \alpha=x_{n-(k-1)}$ for all $k \in\{1,2, \ldots, n\}$ where $W=$ $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.

Summarizing the results, we give a necessary and sufficient condition for an element in a subsemigroup of $O T(X)$ to be coregular.

Theorem 2.6 Let α be an element in a subsemigroup S of $O T(X)$ and let $W=\operatorname{ran} \alpha$. Then following statements are equivalent:
(i) α is coregular.
(ii) $\left.\alpha\right|_{W}$ is a bijection.
(iii) $d(a \alpha, b \alpha)=d(a, b)=|W|-1$ where a and b are the endpoints of W.

Proof

(i) \Leftrightarrow (ii): The result follows from Theorems 2.4 and 2.5.
(ii) \Rightarrow (iii): Assume that $\left.\alpha\right|_{W}$ is a bijection. Then by Theorem 2.4, $\{a, b\} \alpha=\{a, b\}$. It follows immediately that $d(a \alpha, b \alpha)=d(a, b)=|W|-1$.
$($ iii $) \Rightarrow(\mathrm{ii})$: Assume that $d(a \alpha, b \alpha)=d(a, b)=|W|-1$. Then from the fact that an order-preserving map sends a subfence to a subfence and $\operatorname{ran} \alpha=W$, the image $W \alpha=W$ implies that $\left.\alpha\right|_{W}$ is onto. Since W is finite, $\left.\alpha\right|_{W}$ is a bijection.

We close this section with results involving the fixed points of maps in $O T(X)$.

Proposition 2.7 Let $\alpha \in O T(X)$. Then there exists a positive integer m such that $\operatorname{ran}\left(\alpha^{m}\right)=\operatorname{ran}\left(\alpha^{m+1}\right)$ and the following statements hold.
(i) $\alpha^{m}=\alpha^{m+2}$ and $\alpha^{m+1}=\alpha^{m+3}$.
(ii) α^{m} and α^{m+1} are coregular.
(iii) If $\alpha^{m}=\alpha^{m+1}$, then $\operatorname{ran}\left(\alpha^{m}\right)$ is the set of all fixed points of α; otherwise, α has exactly one fixed point.

Proof Since ran $\alpha \supseteq \operatorname{ran}\left(\alpha^{2}\right) \supseteq \operatorname{ran}\left(\alpha^{3}\right) \supseteq \cdots$ is a chain of finite sets, there exists a positive integer m such that

$$
\begin{equation*}
\operatorname{ran}\left(\alpha^{m}\right)=\operatorname{ran}\left(\alpha^{m+1}\right)=\left(\operatorname{ran}\left(\alpha^{m}\right)\right) \alpha \tag{2.1}
\end{equation*}
$$

Equation (2.1) implies that $\left.\alpha\right|_{\operatorname{ran}\left(\alpha^{m}\right)}$ is a bijection on $\operatorname{ran}\left(\alpha^{m}\right)$. For simplicity, let $\beta=\left.\alpha\right|_{\operatorname{ran}\left(\alpha^{m}\right)}$. Then $\operatorname{ran} \beta=\operatorname{ran}\left(\alpha^{m}\right)$ and $\left.\beta\right|_{\operatorname{ran} \beta}=\left.\left(\left.\alpha\right|_{\operatorname{ran}\left(\alpha^{m}\right)}\right)\right|_{\operatorname{ran}\left(\alpha^{m}\right)}=\left.\alpha\right|_{\operatorname{ran}\left(\alpha^{m}\right)}$ is a bijection onto $\operatorname{ran}\left(\alpha^{m}\right)=\operatorname{ran} \beta$. By Theorem 2.4 the map $\left(\left.\beta\right|_{\operatorname{ran} \beta}\right)^{2}=\left(\left.\alpha\right|_{\operatorname{ran}\left(\alpha^{m}\right)}\right)^{2}$ is the identity on $\operatorname{ran} \beta=\operatorname{ran}\left(\alpha^{m}\right)$ and hence $\alpha^{m}=\alpha^{m+2}$. Similarly, $\alpha^{m+1}=\alpha^{m+3}$. Hence, (i) is proved.

By applying (2.1) recursively, it can be concluded that $\operatorname{ran}\left(\alpha^{m}\right)=\left(\operatorname{ran}\left(\alpha^{m}\right)\right) \alpha^{m}$. Therefore, $\left.\alpha^{m}\right|_{\operatorname{ran}\left(\alpha^{m}\right)}$ is a bijection and hence α^{m} is coregular by Theorem 2.6. Similarly, α^{m+1} is coregular. The proof of (ii) is completed.

To prove (iii), assume that $\alpha^{m}=\alpha^{m+1}$. Then $\left.\alpha\right|_{\operatorname{ran} \alpha^{m}}$ is the identity on $\operatorname{ran}\left(\alpha^{m}\right)$. Equivalently, $\operatorname{ran}\left(\alpha^{m}\right)$ is the set of all fixed points of α. If $\alpha^{m} \neq \alpha^{m+1}$, then $\left.\alpha\right|_{\operatorname{ran} \alpha^{m}}$ is the involution on ran $\left(\alpha^{m}\right)$ and α has exactly one fixed point.

Corollary 2.8 For $\alpha \in O T(X)$, the fixed points of α form a subfence.

3. Regularity of $O T(X, Y)$

In this section, we investigate the regularity of $O T(X, Y)$ where Y is a nonempty subset of X. Before doing so, we mention some basic knowledge involving order-preserving maps. It is well known (see [8, Section 2]) that if an ordered set P is connected, i.e. for all $a, b \in P$ there is a subfence of P with endpoints a and b, then every order-preserving map sends an order-connected set to an order-connected set. Because an order-connected subset of a fence is precisely a subfence, an order-preserving map sends a subfence to a subfence.

Observe that for an ordered set P, the identity map $i d_{P}$ and a constant map c_{a} that maps all elements in P to $a \in P$ are order-preserving. Because $\left(i d_{P}\right)^{3}=i d_{P}$ and $\left(c_{a}\right)^{3}=c_{a}$, we get that $i d_{P}$ and c_{a} are coregular and hence regular in $O T(P)$. If X is a trivial fence, then $X=Y$ is a singleton and $O S(X, Y)=O T(X)=O T(X, Y)$ is the set of the identity map. Hence, $O T(X, Y)$ is coregular and also regular. From Lemma 2.1, in general $O T(X, Y)$ does not need to be regular. It is natural to ask when the semigroup $O T(X, Y)$ is regular and coregular, respectively. The answer is shown in the following theorems.

Theorem 3.1 The semigroup $O T(X, Y)$ is regular if and only if $|X|=|Y| \leq 4$ or Y does not contain nontrivial subfences.

Proof Assume that $O T(X, Y)$ is regular. If $X=Y$, then $O T(X)=O T(X, Y)$ is regular, and hence $|X|=|Y| \leq 4$ by [20, Theorem 3.9]. Assume that Y is a proper subset of X. To show that Y does not contain non-trivial subfences, we proceed by contradiction. Suppose that Y contains a nontrivial subfence. Then there are two comparable elements a and b in Y and an element $c \in X \backslash Y$ such that b and c are comparable. Then the map α from Lemma 2.1 is an element in $O T(X, Y)$ but it is not regular in $O T(X, Y)$, a contradiction. Therefore, Y does not contain nontrivial subfences.

Conversely, assume that $|X|=|Y| \leq 4$ or Y does not contain nontrivial subfences. If $|X|=|Y| \leq 4$, then $O T(X, Y)=O T(X)$ is regular by [20, Theorem 3.9]. If Y does not contain nontrivial subfences, then $O T(X, Y)$ contains only constant maps. Since constant maps are regular, $O T(X, Y)$ is regular.

Note that if Y is a subfence of X that does not contain nontrivial subfences, then $|Y|=1$. Therefore, we have the following corollary.

Corollary 3.2 If Y is a subfence of X, then $O T(X, Y)$ is regular if and only if $|X|=|Y| \leq 4$ or $|Y|=1$
By a similar argument as in the proof of Theorem 3.1 and the fact that $O T(X)$ is coregular if and only if $|X| \leq 2$, the following theorem is obtained.

Theorem 3.3 The semigroup $O T(X, Y)$ is coregular if and only if $|X|=|Y| \leq 2$ or Y does not contain nontrivial subfences.

Corollary 3.4 If Y is a subfence of X, then $O T(X, Y)$ is coregular if and only if $|X|=|Y| \leq 2$ or $|Y|=1$
We now characterize regular elements in $O T(X, Y)$.

Theorem 3.5 Let $\alpha \in O T(X, Y)$. Then the following statements are equivalent:
(i) α is regular.
(ii) There exists a subfence Z of Y such that $\left.\alpha\right|_{Z}$ is a bijection onto $\operatorname{ran} \alpha$.
(iii) There exist $x, y \in Y$ such that $x \in a \alpha^{-1}, y \in b \alpha^{-1}$, and $d(x, y)=|\operatorname{ran} \alpha|-1$ where a and b are the endpoints of $\operatorname{ran} \alpha$.

Proof $(\mathrm{i}) \Rightarrow$ (ii): Assume that α is regular. Then there exists an element $\beta \in O T(X, Y)$ such that $\alpha \beta \alpha=\alpha$. Define $Z=(\operatorname{ran} \alpha) \beta$. Clearly Z is a subfence of Y and $|Z| \leq|\operatorname{ran} \alpha|$. Now $Z \alpha=(\operatorname{ran} \alpha) \beta \alpha=X \alpha \beta \alpha=$
$X \alpha=\operatorname{ran} \alpha$. In particular, $|Z| \geq|\operatorname{ran} \alpha|$. Therefore, $|Z|=|\operatorname{ran} \alpha|=|Z \alpha|$, and hence $\left.\alpha\right|_{Z}$ is a bijection onto ran α.
(ii) \Rightarrow (i): Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and let Z be a subfence of Y such that $\left.\alpha\right|_{Z}$ is a bijection onto ran α. Define $\gamma=\left(\left.\alpha\right|_{Z}\right)^{-1}$. Let ran $\alpha=\left\{x_{l}, x_{l+1}, \ldots, x_{m}\right\}$ for some $1 \leq l \leq m \leq n$. Define a map $\beta: X \rightarrow Y$ by

$$
x_{i} \beta= \begin{cases}x_{l} \gamma & \text { if } 1 \leq i<l \\ x_{i} \gamma & \text { if } l \leq i \leq m \\ x_{m} \gamma & \text { if } m<i \leq n\end{cases}
$$

Observe that $\beta \in O T(X, Y)$ and $\beta \alpha$ is the identity on $\operatorname{ran} \alpha$. Therefore, $x \alpha \beta \alpha=(x \alpha)(\beta \alpha)=x \alpha$ for all $x \in X$. Hence, α is regular.
(ii) \Rightarrow (iii): Assume that there exists a subfence Z of Y such that $\left.\alpha\right|_{Z}$ is a bijection onto ran α. Then $|Z|=|\operatorname{ran} \alpha|$ and $\operatorname{ran} \alpha=Z \alpha$. Let a and b be the endpoints of $\operatorname{ran} \alpha$ and let x and y be the endpoints of Z. Then $x, y \in Y$ and $d(x, y)=|Z|-1=|\operatorname{ran} \alpha|-1$. Since $\left.\alpha\right|_{Z}$ is a bijection onto ran α, either $a=x \alpha$ and $b=y \alpha$ or $b=x \alpha$ and $a=y \alpha$. The desired result follows.
(iii) \Rightarrow (ii): Assume that there exist $x, y \in Y$ such that $x \in a \alpha^{-1}, y \in b \alpha^{-1}$, and $d(x, y)=|\operatorname{ran} \alpha|-1$ where a and b are the endpoints of $\operatorname{ran} \alpha$. Let Z be the subfence of Y whose endpoints are x and y. Then $|Z|=d(x, y)+1=|\operatorname{ran} \alpha|=d(a, b)+1=d(x \alpha, y \alpha)+1 \leq|Z \alpha| \leq|Z|$. It follows that $|Z|=|\operatorname{ran} \alpha|$ and $\operatorname{ran} \alpha=Z \alpha$. Hence, $\left.\alpha\right|_{Z}$ is a bijection onto $\operatorname{ran} \alpha$.

In general, the product of two regular elements in $O T(X, Y)$ might not be regular. A necessary and sufficient condition for a product to be regular is given below.

Theorem 3.6 Let α be a regular element of $O T(X, Y)$ and let $\beta \in O T(X, Y)$. Then the following statements are equivalent:
(i) $\alpha \beta$ is regular.
(ii) There exists a subfence W of $\operatorname{ran} \alpha$ such that $\left.\beta\right|_{W}$ is a bijection onto $\operatorname{ran}(\alpha \beta)$.
(iii) There exists $x, y \in Y$ such that $x \in a \beta^{-1} \cap \operatorname{ran} \alpha, y \in b \beta^{-1} \cap \operatorname{ran} \alpha$, and $d(x, y)=d(a, b)=|\operatorname{ran}(\alpha \beta)|-1$ where a and b are the endpoints of $\operatorname{ran} \alpha$.

Proof $(\mathrm{i}) \Rightarrow(\mathrm{ii})$: Suppose $\alpha \beta$ is regular. By Theorem 3.5, there exists a fence $Z \subseteq Y$ such that $\left.(\alpha \beta)\right|_{Z}$ is a bijection onto $\operatorname{ran}(\alpha \beta)=Z \alpha \beta$. Clearly $W=Z \alpha$ is the desired subfence.
$($ ii $) \Rightarrow(\mathrm{i})$: Let W be a subfence of $\operatorname{ran} \alpha$ such that $\left.\beta\right|_{W}$ is a bijection onto $\operatorname{ran}(\alpha \beta)=W \beta$. Since α is regular, by Theorem 3.5 there exists a fence $Z^{\prime} \subseteq Y$ such that $\left.\alpha\right|_{Z^{\prime}}$ is a bijection onto ran α. Since W is a subfence of $\operatorname{ran} \alpha=Z^{\prime} \alpha$, there exists a subfence Z of Z^{\prime} such that $\left.\alpha\right|_{Z}$ is a bijection onto $W=Z \alpha$. Now $Z \alpha \beta=W \beta=\operatorname{ran}(\alpha \beta)$ and $\left.(\alpha \beta)\right|_{Z}$ is a bijection onto $\operatorname{ran}(\alpha \beta)$. By Theorem 3.5 the product $\alpha \beta$ is regular.
(ii) \Leftrightarrow (iii): By Theorem 3.5 (ii) \Leftrightarrow (iii).

In particular, if α and β are regular elements in $O T(X, Y)$, Theorem 3.6 gives necessary and sufficient conditions for $\alpha \beta$ to be regular as well.

We close this section with some properties of regular elements in $O T(X, Y)$.

Proposition 3.7 Let α be a regular element in $O T(X, Y)$. The following statements hold:
(i) $\operatorname{ran} \alpha=Y \alpha$.
(ii) If $\operatorname{ran} \alpha=Y$, then α is coregular.

Proof (i) Since α is regular, there exists $\beta \in O T(X, Y)$ such that $\alpha \beta \alpha=\alpha$. Let $z \in \operatorname{ran} \alpha$. Then $z \alpha=z \alpha \beta \alpha \in Y \alpha$. Therefore, $\operatorname{ran} \alpha=Y \alpha$.
(ii) Suppose $\operatorname{ran} \alpha=Y$. Then $(\operatorname{ran} \alpha) \alpha=Y \alpha=\operatorname{ran} \alpha$ where the latter equality holds by (i). Therefore, α is a bijection on ran α and thus α is coregular by Theorem 2.6.

4. Regularity in $O S(X, Y)$

In this section, we focus on the regularity of a semigroup $O S(X, Y)$ and its elements. With the use of the map α defined in Lemma 2.1, we obtain that $O S(X, Y)$ does not need to be regular or coregular. Throughout this section, let Y be a subfence of X. In the following results, necessary and sufficient conditions for the semigroup $O S(X, Y)$ to be regular are completely determined. Some lemmas needed in the characterization are given as follows.

Lemma 4.1 Let $\alpha \in O T(X)$. If $\left.\alpha\right|_{\mathrm{ran} \alpha}$ is not a bijection, then $|\operatorname{ran} \alpha| \leq|X|-2$.
Proof Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Assume that $|\operatorname{ran} \alpha| \geq|X|-1$. Clearly, $\left.\alpha\right|_{\text {ran } \alpha}$ is a bijection if $|\operatorname{ran} \alpha|=|X|$. Assume that $|\operatorname{ran} \alpha|=|X|-1$. Since $\operatorname{ran} \alpha$ is a subfence of X, it follows that ran $\alpha=\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\}$ or $\operatorname{ran} \alpha=\left\{x_{2}, x_{3}, \ldots, x_{n}\right\}$. Without loss of generality, assume that $\operatorname{ran} \alpha=\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\}$. Then $x_{i} \alpha \neq x_{j} \alpha$ for all $1 \leq i<j \leq n-1$. Hence, $\left.\alpha\right|_{\operatorname{ran} \alpha}$ is a bijection.

Lemma 4.2 Let Y be a proper subfence of X. If $|Y| \geq 2$, then $O S(X, Y)$ is not regular.
Proof Assume that $|Y| \geq 2$. Then there are two comparable elements a and b in Y and an element $c \in X \backslash Y$ such that b and c are comparable. Then the map α from Lemma 2.1(iv) is an element in $O S(X, Y)$ but it is not regular in $O S(X, Y)$. Therefore, $O S(X, Y)$ is not a regular semigroup.

Proposition 4.3 Let $x \in X$. Then $O S(X,\{x\})$ is regular if and only if $X \backslash\{x\}$ does not contain subfences of size greater than 2 .

Proof Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
Assume that $X \backslash\{x\}$ contains a subfence of size greater than 2 . Without loss of generality, assume that $\left\{x_{k}=x, x_{k+1}, x_{k+2}, x_{k+3}\right\} \subseteq X$ for some $1 \leq k \leq n-3$. Let $\alpha \in O S(X,\{x\})$ be defined by

$$
x_{i} \alpha= \begin{cases}x_{k} & \text { if } 1 \leq i<k+3, \\ x_{k+1} & \text { if } k+3 \leq i \leq n\end{cases}
$$

Suppose that there exists an element $\beta \in O S(X,\{x\})$ such that $\alpha=\alpha \beta \alpha$. Then $x_{k+1}=x_{k+3} \alpha=$ $x_{k+3} \alpha \beta \alpha=x_{k+1} \beta \alpha$. Since $x_{k} \beta=x_{k}$, we have $x_{k+1} \beta \in\left\{x_{k-1}, x_{k}, x_{k+1}\right\}$. It follows that $x_{k+1}=x_{k+1} \beta \alpha \in$ $\left\{x_{k-1}, x_{k}, x_{k+1}\right\} \alpha=\left\{x_{k}\right\}$, a contradiction. Hence, α is not regular in $\operatorname{OS}(X,\{x\})$.

Conversely, assume that $X \backslash\{x\}$ does not contain subfences of size greater than 2. Then $n \leq 5$. Precisely, we have 1) $n \leq 3 ; 2) n=4$ and $x \in\left\{x_{2}, x_{3}\right\}$; or 3) $n=5$ and $x=x_{3}$. Let $\alpha \in O S(X,\{x\})$.

Case $\left.1 \alpha\right|_{\text {ran } \alpha}$ is a bijection. By Theorem 3.5, α is regular in $O T(X, \operatorname{ran} \alpha)$. Then there exists $\beta \in O T(X, \operatorname{ran} \alpha)$ such that $\alpha \beta \alpha=\alpha$. Consequently, $x \alpha=x \alpha \beta \alpha=x \beta \alpha$. Since $x \beta \in \operatorname{ran} \alpha$ and $\left.\alpha\right|_{\operatorname{ran} \alpha}$ is injective, we have $x=x \beta$, which implies that $\beta \in O S(X,\{x\})$. Hence, α is regular in $O S(X,\{x\})$.

Case $\left.2 \alpha\right|_{\text {ran } \alpha}$ is not a bijection. By Lemma 4.1, we have $|\operatorname{ran} \alpha| \leq n-2 \leq 5-2=3$. If \mid ran $\alpha \mid=1$, then α is a constant map that is regular in $O S(X,\{x\})$. We consider the remaining two cases.

Case 2.1 $|\operatorname{ran} \alpha|=2$. Then $3 \leq n \leq 5$. Suppose $x \in\left\{x_{1}, x_{n}\right\}$. Without loss of generality assume that $x=x_{1}$. Then ran $\alpha=\left\{x, x_{2}\right\}$ and $X \backslash\{x\}=\left\{x_{2}, x_{3}\right\}$. Since $\left.\alpha\right|_{\text {ran } \alpha}$ is not a bijection, $x_{2} \alpha=x \alpha=x$ and so $x_{3} \alpha=x$, i.e. $\operatorname{ran} \alpha=\{x\}$, a contradiction. Therefore, $x=x_{k}$ for some $2 \leq k \leq n-1$. We then have $\operatorname{ran} \alpha=\left\{x_{k-1}, x\right\}$ or $\operatorname{ran} \alpha=\left\{x, x_{k+1}\right\}$. Without loss of generality, assume that $\operatorname{ran} \alpha=\left\{x_{k-1}, x\right\}$. Since $\left.\alpha\right|_{\operatorname{ran} \alpha}$ is not a bijection, $x_{k-1} \alpha=x \alpha=x$. If $x_{k+1} \alpha=x$, then ran $\alpha=\{\mathrm{x}\}$, a contradiction. Thus, $x_{k+1} \alpha=x_{k-1}$ and $\operatorname{ran} \alpha=\left\{x_{k-1}, x\right\}=\left\{x, x_{k+1}\right\} \alpha$. By setting $Y=\left\{x_{k-1}, x, x_{k+1}\right\}$ and $Z=\left\{x, x_{k+1}\right\}$ in Theorem 3.5, α is regular in $O T(X, Y)$. Then there exists $\beta \in O T(X, Y)$ such that $\alpha \beta \alpha=\alpha$. In particular, $x \beta \in Y$. If $x \beta=x_{k+1}$, then $x \alpha \beta \alpha=x \beta \alpha=x_{k+1} \alpha=x_{k-1} \neq x=x \alpha$, a contradiction. If $x \beta=x_{k-1}$, then $x_{k-1} \beta=x_{k-1}$ and $x_{k+1} \alpha \beta \alpha=x_{k-1} \beta \alpha=x_{k-1} \alpha=x \neq x_{k-1}=x_{k+1} \alpha$, a contradiction. Hence, $x \beta=x$, which implies that $\beta \in O S(X,\{x\})$. Therefore, the map α is regular in $O S(X,\{x\})$.

Case 2.2 $|\operatorname{ran} \alpha|=3$. Since $\left.\alpha\right|_{\operatorname{ran} \alpha}$ is not a bijection, $5=|\operatorname{ran} \alpha|+2 \leq n$ by Lemma 4.1. As $n \leq 5$, it follows that $n=5$ and $x=x_{3}$. Since $x \alpha=x$, we have $\left\{x_{1}, x_{2}, x\right\} \alpha=\operatorname{ran} \alpha=\left\{x, x_{4}, x_{5}\right\}$ or $\left\{x, x_{4}, x_{5}\right\} \alpha=\operatorname{ran} \alpha=\left\{x_{1}, x_{2}, x\right\}$. Without loss of generality, assume that $\left\{x, x_{4}, x_{5}\right\} \alpha=\operatorname{ran} \alpha=\left\{x_{1}, x_{2}, x\right\}$. By Theorem 3.5, α is regular in $O T\left(X,\left\{x_{1}, x_{2}, x\right\}\right)$. There exists $\beta \in O T\left(X,\left\{x_{1}, x_{2}, x\right\}\right)$ such that $\alpha \beta \alpha=$ α. Then $x \beta \in \operatorname{ran} \alpha=\left\{x_{1}, x_{2}, x\right\}$. Suppose that $x \beta \in\left\{x_{1}, x_{2}\right\}$. Then $\left\{x_{1}, x_{2}, x\right\}=X \alpha=X \alpha \beta \alpha=$ $\left\{x_{1}, x_{2}, x\right\} \beta \alpha \subseteq\left\{x_{1}, x_{2}\right\} \alpha$, a contradiction. Hence, $x \beta=x$, which implies that $\beta \in O S(X,\{x\})$. Therefore, α is regular in $O S(X,\{x\})$.

Corollary 4.4 If $|Y|=1$ and $|X| \geq 6$, then $O S(X, Y)$ is not regular.
Proof We note that $X \backslash Y$ contains a subfence of size greater than 2 for all $Y \subsetneq X$ such that $|Y|=1$. Hence, $O S(X, Y)$ is not regular by Proposition 4.3.

The regularity of $O S(X, Y)$ is characterized in the following theorem.

Theorem 4.5 Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and Y is a subfence of X. Then $O S(X, Y)$ is regular if and only if one of the following statements hold:
(i) $|X|=|Y| \leq 4$.
(ii) $|X| \leq 3$ and $|Y|=1$.
(iii) $|X|=4$ and $Y \in\left\{\left\{x_{2}\right\},\left\{x_{3}\right\}\right\}$.
(iv) $|X|=5$ and $Y=\left\{x_{3}\right\}$.

Proof Assume that $O S(X, Y)$ is regular. If $X=Y$, then $O T(X)=O S(X, Y)$ is regular, and hence $|X|=|Y| \leq 4$ by [20, Theorem 3.9]. Assume that Y is a proper subfence of X. By Lemma 4.2 and Corollary 4.4, we have that $|X| \leq 5$ and $|Y|=1$. By Proposition 4.3, $X \backslash Y$ does not contain subfences of size greater than 2 , or equivalently, 1) $n \leq 3,2) n=4$ and $Y \in\left\{\left\{x_{2}\right\},\left\{x_{3}\right\}\right\}$, or 3) $n=5$ and $Y=\left\{x_{3}\right\}$.

Conversely, assume that one of statements (i)-(iv) holds. If $|X|=|Y| \leq 4$, then $O S(X, Y)=O T(X)$ is regular by [20, Theorem 3.9]. If one of statements (ii)-(iv) holds, then $X \backslash Y$ does not contain subfences of size greater than 2. Hence, $O S(X, Y)$ is regular by Proposition 4.3.

From Theorem 4.5, in many cases, $O S(X, Y)$ is not regular. The characterization of regular elements in $O S(X, Y)$ is given as follows.

Lemma 4.6 If α is regular in $O S(X, Y)$, then $Y \alpha=Y \cap \operatorname{ran} \alpha$.
Proof Let $\alpha \in O S(X, Y)$. Assume that α is regular. Then there exists $\beta \in O S(X, Y)$ such that $\alpha \beta \alpha=\alpha$. Clearly, $Y \alpha \subseteq Y \cap X \alpha=Y \cap \operatorname{ran} \alpha$. Let $y \in Y \cap \operatorname{ran} \alpha$. Then $y=x \alpha$ for some $x \in X$. It follows that $y=x \alpha=x \alpha \beta \alpha=y \beta \alpha \in Y \beta \alpha \subseteq Y \alpha$. Hence, $Y \alpha=Y \cap \operatorname{ran} \alpha$.

Theorem 4.7 Let $\alpha \in O S(X, Y)$. Then the following statements are equivalent:
(i) α is regular.
(ii) There exist subfences $Z \subseteq X$ and $W \subseteq Y \cap Z$ such that $\left.\alpha\right|_{Z}$ is a bijection onto $\operatorname{ran} \alpha$ and $\left.\alpha\right|_{W}$ is a bijection onto $Y \cap \operatorname{ran} \alpha$.

Proof (i) \Rightarrow (ii): Assume that α is regular. Then there exists $\beta \in O S(X, Y)$ such that $\alpha \beta \alpha=\alpha$. Let $Z=(\operatorname{ran} \alpha) \beta$. Then Z is a subfence of X and $|Z| \leq|\operatorname{ran} \alpha|$. Since $Z \alpha=(\operatorname{ran} \alpha) \beta \alpha=X \alpha \beta \alpha=X \alpha=\operatorname{ran} \alpha$, we have $|Z| \geq|\operatorname{ran} \alpha|$. Hence, $|Z|=|\operatorname{ran} \alpha|=|Z \alpha|$. Therefore, $\left.\alpha\right|_{Z}$ is a bijection onto ran α.

Define $W=(Y \cap \operatorname{ran} \alpha) \beta$. Then $W=(Y \alpha) \beta \subseteq Y \cap Z$ by Lemma 4.6. Since β is a map, it follows that $|W| \leq|Y \alpha|$. We have $W \alpha=(Y \alpha) \beta \alpha=Y \alpha \beta \alpha=Y \alpha$, which implies that $|W| \geq|Y \alpha|$. Hence, $|W|=|Y \alpha|=|W \alpha|$. Therefore, $\left.\alpha\right|_{W}$ is a bijection onto $Y \alpha=Y \cap \operatorname{ran} \alpha$.
(ii) \Rightarrow (i): Let $Z \subseteq X$ and $W \subseteq Y \cap Z$ such that $\left.\alpha\right|_{Z}$ is a bijection onto ran α and $\left.\alpha\right|_{W}$ is a bijection onto $Y \cap \operatorname{ran} \alpha$. Assume that $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Let $\gamma=\left(\left.\alpha\right|_{Z}\right)^{-1}$ and let $\operatorname{ran} \alpha=\left\{x_{l}, x_{l+1}, \ldots, x_{m}\right\}$ for some $l \leq m$. Define a map $\beta: X \rightarrow X$ by

$$
x_{i} \beta= \begin{cases}x_{l} \gamma & \text { if } 1 \leq i<l \\ x_{i} \gamma & \text { if } l \leq i \leq m \\ x_{m} \gamma & \text { if } m<i \leq n\end{cases}
$$

Since $\beta \alpha$ is the identity on $\operatorname{ran} \alpha$, we have $x \alpha \beta \alpha=(x \alpha)(\beta \alpha)=x \alpha$ for all $x \in X$. It is not difficult to see that $\beta \in O T(X)$. Since $\left.\alpha\right|_{W}$ is a bijection onto $Y \cap \operatorname{ran} \alpha$, it follows that $W \alpha=Y \cap \operatorname{ran} \alpha$. We consider the following three cases.

Case $1 Y \subseteq \operatorname{ran} \alpha$. Then $Y=Y \cap \operatorname{ran} \alpha$. Hence, $Y \beta=(Y \cap \operatorname{ran} \alpha) \beta=(W \alpha) \beta=W \subseteq Y$ since $\alpha \beta$ is the identity on W. It follows that $\beta \in O S(X, Y)$.

Case $2 \operatorname{ran} \alpha \subseteq Y$. It is not difficult to see that $\beta \in O S(X, Y)$.

Case $3 Y \nsubseteq \operatorname{ran} \alpha$ and $\operatorname{ran} \alpha \nsubseteq Y$. Suppose that $x_{l}, x_{m} \notin Y \cap \operatorname{ran} \alpha$. Since $x_{l}, x_{m} \in \operatorname{ran} \alpha$, we have $x_{l}, x_{m} \notin Y$. Then $Y \subseteq \operatorname{ran} \alpha$, which is a contradiction. Hence, $x_{l} \in Y \cap \operatorname{ran} \alpha$ or $x_{m} \in Y \cap \operatorname{ran} \alpha$. Without loss of generality, assume that $x_{l} \in Y \cap \operatorname{ran} \alpha$. If $x_{m} \in Y \cap \operatorname{ran} \alpha$, then $\operatorname{ran} \alpha \subseteq Y$, which is impossible. Hence, $x_{m} \notin Y \cap \operatorname{ran} \alpha$. Then $Y \backslash \operatorname{ran} \alpha \subseteq\left\{x_{1}, x_{2}, \ldots, x_{l-1}\right\}$. Since $\left.\alpha\right|_{W}$ is a bijection from W onto $Y \cap \operatorname{ran} \alpha$ and $x_{l} \in Y \cap \operatorname{ran} \alpha$, we have $x_{l} \gamma=x_{l}\left(\left.\alpha\right|_{Z}\right)^{-1}=x_{l}\left(\left.\alpha\right|_{W}\right)^{-1} \in W \subseteq Y \cap Z \subseteq Y$. It can be deduced that $(Y \backslash \operatorname{ran} \alpha) \beta \subseteq\left\{x_{l} \gamma\right\} \subseteq Y$. Moreover, $(Y \cap \operatorname{ran} \alpha) \beta=(W \alpha) \beta=W \subseteq Y$ since $\alpha \beta$ is the identity on W. Hence, $\beta \in O S(X, Y)$.

Therefore, α is regular in $O S(X, Y)$ as desired.
Next, relations between the set $\operatorname{Reg}(O T(X, Y))$ of regular elements in $O T(X, Y)$ and the set $\operatorname{Reg}(O S(X, Y))$ of regular elements in $O S(X, Y)$ are studied.

Lemma 4.8 We have

$$
\operatorname{Reg}(O S(X, Y)) \subseteq \operatorname{Reg}(O T(X, Y)) \cup(O S(X, Y) \backslash O T(X, Y))
$$

Proof Let $\alpha \in \operatorname{Reg}(O S(X, Y))$. Assume that $\alpha \in O T(X, Y)$. Then ran $\alpha \subseteq Y$, and hence ran $\alpha=Y \cap \operatorname{ran} \alpha$. Since α is regular in $O S(X, Y)$, by Theorem 4.7, there exist subfences $Z \subseteq X$ and $W \subseteq Y \cap Z$ such that $\left.\alpha\right|_{W}$ is a bijection onto $Y \cap \operatorname{ran} \alpha=\operatorname{ran} \alpha$. Equivalently, $W \subseteq Y$ and $\left.\alpha\right|_{W}$ is a bijection onto ran α. Therefore, $\alpha \in \operatorname{Reg}(O T(X, Y))$ by Theorem 3.5.

In some cases, the equality in Lemma 4.8 holds.

Theorem 4.9 If $|X \backslash Y|=1$ and $|Y| \leq 4$, then

$$
\operatorname{Reg}(O S(X, Y))=\operatorname{Reg}(O T(X, Y)) \cup(O S(X, Y) \backslash O T(X, Y))
$$

Proof Assume that $|X \backslash Y|=1$ and $|Y| \leq 4$. By Lemma 4.8, we have

$$
\operatorname{Reg}(O S(X, Y)) \subseteq \operatorname{Reg}(O T(X, Y)) \cup(O S(X, Y) \backslash O T(X, Y))
$$

For the reverse inclusion, assume that $X=Y \cup\{x\}$. Clearly, $\operatorname{Reg}(O T(X, Y)) \subseteq \operatorname{Reg}(O S(X, Y))$ since $O T(X, Y) \subseteq O S(X, Y)$. Let $\alpha \in O S(X, Y) \backslash O T(X, Y)$. Then $Y \alpha \subseteq Y$. It follows that, for each $a \in X$, $a \alpha=x$ if and only if $x=a$. Hence, $\left.\alpha\right|_{Y} \in O T(Y)$. Since $|Y| \leq 4,\left.\alpha\right|_{Y}$ is regular in $O T(Y)$ by [20, Theorem 3.9]. Then there exists $\beta \in O T(Y)$ such that $\left.\left.\alpha\right|_{Y} \beta \alpha\right|_{Y}=\left.\alpha\right|_{Y}$. Define $\bar{\beta}: X \rightarrow X$ by

$$
a \bar{\beta}= \begin{cases}a \beta & \text { if } a \in Y \\ x & \text { if } a=x\end{cases}
$$

It is not difficult to see that $\bar{\beta} \in O S(X, Y)$ and $\alpha \bar{\beta} \alpha=\alpha$. Hence, $\alpha \in \operatorname{Reg}(O S(X, Y))$. Therefore, the result follows.

In the following part, we focus on coregularity of $O S(X, Y)$. First, we determine a necessary and sufficient condition for $O S(X,\{x\})$ to be regular.

Lemma 4.10 Let $x \in X$. Then $O S(X,\{x\})$ is coregular if and only if $X \backslash\{x\}$ is a fence of size less than or equal to 2 .

Proof Assume that $X \backslash\{x\}$ is not a fence of size less than or equal to 2 .
Case $1 X \backslash\{x\}$ is not a fence. Then $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ for some $n \geq 3$. It follows that there exists an integer $1 \leq k \leq n-2$ such that $\left\{x_{k}, x=x_{k+1}, x_{k+2}\right\} \subseteq X$. Then it is not difficult to verify that the map

$$
x_{i} \alpha= \begin{cases}x=x_{k+1} & \text { if } 1 \leq i \leq k+1 \\ x_{k} & \text { if } k+2 \leq i \leq n\end{cases}
$$

is an element in $O S(X,\{x\})$ that is not coregular. Therefore, $O S(X,\{x\})$ is not coregular.
Case $2 X \backslash\{x\}$ is a fence of size greater than 2 . Then $|X| \geq 4$ and x is one of the end points of X. By Theorem 4.5, $O S(X,\{x\})$ is not regular, which implies that $O S(X,\{x\})$ is not coregular.

Conversely, assume that $X \backslash\{x\}$ is a fence of size less than or equal to 2. If $|X \backslash\{x\}|=1$, then the elements in $O S(X,\{x\})$ are $i d_{X}$ and c_{x}, which are regular. Assume that $|X \backslash\{x\}|=2$. Then $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ is a fence of size 3 and $X \backslash\{x\}=\left\{x_{1}, x_{2}\right\}$ or $X \backslash\{x\}=\left\{x_{2}, x_{3}\right\}$. We may assume that $X \backslash\{x\}=\left\{x_{1}, x_{2}\right\}$. In this case, $x=x_{3}$. It is not difficult to see that the elements in $O S(X,\{x\})$ are $i d_{X}, c_{x_{3}},\left(\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ x_{2} & x_{2} & x_{3}\end{array}\right)$, and $\left(\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ x_{3} & x_{2} & x_{3}\end{array}\right)$, which are coregular.

Theorem 4.11 The semigroup $O S(X, Y)$ is coregular if and only if one of the following statements holds:
(i) $|X| \leq 2$.
(ii) $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $Y \in\left\{\left\{x_{1}\right\},\left\{x_{3}\right\}\right\}$.

Proof Assume that $O S(X, Y)$ is coregular. If $X=Y$, then $O S(X, Y)=O T(X, Y)$. By Corollary 3.4, it can be concluded that $|X| \leq 2$. Assume that Y is a proper subset of X. If $|Y|>1$, then $O S(X, Y)$ is not regular by Lemma 4.2, and hence it is not coregular. It follows that $|Y|=1$. By Lemma 4.10, $X \backslash Y$ is a fence of size less than or equal to 2. Consequently, $|X|=2$ or $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $Y \in\left\{\left\{x_{1}\right\},\left\{x_{3}\right\}\right\}$.

Conversely, assume that one of the two conditions holds. If $X=Y$ and $|X| \leq 2$, then $O S(X, Y)=$ $O T(X, Y)$ is coregular by Corollary 3.4. Otherwise, $|Y|=1$ and $X \backslash Y$ is a fence of size less than or equal to 2. Hence, $O S(X, Y)$ is coregular by Lemma 4.10.

Acknowledgments

The authors would like to thank the anonymous referees for their helpful comments.

References

[1] Clifford AH, Preston GB. The Algebraic Theory of Semigroups, Vol. II. Mathematical Surveys, Vol. 7. Providence, RI, USA: American Mathematical Society, 1967.
[2] Demetrovics J, Rónyai L. Algebraic properties of crowns and fences. Order 1989; 6: 91-99.
[3] Farley JD. The number of order-preserving maps between fences and crowns. Order 1995; 12: 5-44.
[4] Fernandes VH, Honyam P, Quinteiro TM, Singha B. On semigroups of endomorphisms of a chain with restriced range. Semigroup Forum 2014; 89: 77-104.
[5] Gluskin LM. Isotone transformation semigroups. Usp Mat Nauk 1961; 16: 157-162
[6] Higgins PM. Techniques of Semigroup Theory. Oxford, UK: Oxford University Press, 1992.
[7] Higgins PM, Mitchell D, Rus̆uc N. Generating the full transformation semigroups using order-preserving mappings. Glasgow Math J 2003; 45: 557-566.
[8] Jendana K, Srithus R. Coregularity of order-preserving self-mapping semigroups of fences. Commun Korean Math Soc 2015; 30: 349-361.
[9] Kemprasit Y, Changphas T. Regular order-preserving transformation semigroups. Bull Austral Math Soc 2000; 62: 511-524.
[10] Kim VI, Kozhukhov IB. Regularity conditions for semigroups of isotone transformations of countable chains. J Math Sci 2008; 152: 203-208.
[11] Ma M, You T, Luo S, Yang Y, Wang L. Regularity and Green's relation for finite E-order-preserving transformations semigroups. Semigroup Forum 2010; 80: 164-173.
[12] Magill KD Jr. Subsemigroups of $S(X)$. Math Japon 1966; 11: 109-115.
[13] Magill KD Jr, Subbiah S. Green's relations for regular elements of semigroups of endomorphisms. Can J Math 1974; 26: 1484-1497.
[14] Mora W, Kemprasit Y. Regular elements of some order-preserving transformation semigroups. Int J Algebra 2010; 4: 631-641.
[15] Nenthein S, Youngkhong P, Kemprasit Y. Regular elements of some transformation semigroups. Pure Mathematics and Applications 2005; 16: 307-314.
[16] Repnitskǐ VB, Vernitskǐ AS. Semigroups of order-preserving mappings. Commun Algebra 2000; 28: 3635-3641.
[17] Rutkowski A. The formula for the number of order-preserving selfmappings of a fence. Order 1992; 9: 127-137.
[18] Sanwong J, Sommanee W. Regularity and Green's relations on a semigroup of transformations with restricted range. Int J Math Math Sci 2008; 2008: 794013.
[19] Symons JSV. Some results concerning a transformation semigroup. J Austral Math Soc 1975; 119: 413-425.
[20] Tanyawong R, Srithus R, Chinram R. Regular subsemigroups of the semigroups of transformations preserving a fence. Asian-European Journal of Mathematics 2016; 9: 1650003.
[21] Wongpinit W, Leeratanavalee S. The relationship between some regular subsemigroups of $\operatorname{Hyp}_{G}(2)$. J Math 2014; 2014: 181397.
[22] Zhao P, Yang M. Regularity and Green's relations on semigroups of transformation preserving order and compression. Bull Korean Math Soc 2012; 49: 1015-1025.

[^0]: *Correspondence: worawannotai_c@silpakorn.edu
 2010 AMS Mathematics Subject Classification: 20M20, 20M05, 20M17
 This work was supported by the Faculty of Science of Silpakorn University, contract number SRF-PRG-2558-09.

