

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2018) 42: 1566 – 1570 © TÜBİTAK doi:10.3906/mat-1705-116

Research Article

The rank of apparition of powers of Lucas sequence

Prasanta Kumar RAY^{1,*}, Nurettin IRMAK², Bijan Kumar PATEL³

¹Department of Mathematics, Sambalpur University, Jyoti Vihar, Burla, India

²Department of Mathematics, Niğde Ömer Halisdemir University, Niğde, Turkey ³Department of Mathematics, International Institute of Information Technology, Bhubaneswar, India

Received: 29.05.2017	•	Accepted/Published Online: 10.10.2017	•	Final Version: 24.07.2018

Abstract: This note is devoted to studying the divisibility relation $u_n^{k+1}|u_m$ for a least positive integer m, where $\{u_n\}_{n\geq 0}$ is a nondegenerate Lucas sequence with characteristic polynomial $x^2 - ax - b$, for some relatively prime integers a and b.

Key words: Lucas sequence, periodicity, rank of apparition, p-adic order

1. Introduction

Let $\{u_n\}_{n>0}$ be a Lucas sequence of integers, so that $u_0 = 0$, $u_1 = 1$, and

$$u_n = au_{n-1} + bu_{n-2}; \quad n \ge 2,$$

where a and b are relatively prime integers. Here $\{u_n\}_{n\geq 0}$ is assumed to be a nondegenerate Lucas sequence. That is, $b \neq 0$ and for the roots α , β of the characteristic equation $x^2 - ax - b = 0$, α/β is not a root of unity, which excludes the pairs

$$(a,b) \in \{(\pm 2,-1), (\pm 1,-1), (0,\pm 1), (\pm 1,0)\}$$

([7], pp. 5–6).

Many properties of the linear recurring sequences have been investigated by several authors from different point of views. Renault [6] studied the period, rank, and order of the (a, b)-Fibonacci sequence modulo any positive integer m, where gcd(m, b) = 1. For each positive integer m relatively prime with b,

$$\alpha(m) = \min\{n \ge 1 : m | u_n\}$$

is well defined and is called the rank of apparition (order of appearance) of m. Clearly, $\alpha(u_n) \leq n$ for all positive integers n, while from the primitive divisor theorem [1] it follows that $\alpha(u_n) = n$ for all integers n > 30 (and all the exceptionals $n \leq 30$ such that $\alpha(u_n) < n$ can be computed). The following result about the rank of apparition is found in [6].

Lemma 1.1 For each integer $m \ge 1$, we have $m|u_n$ for some positive integer n if and only if gcd(m,b) = 1and $\alpha(m)|n$.

^{*}Correspondence: rayprasanta2008@gmail.com

²⁰¹⁰ AMS Mathematics Subject Classification: 11B37, 11B39

For a prime number p and a nonzero integer m, the p-adic valuation of m denoted by $\nu_p(m)$ is the exponent of p in the factorization of m. Recently, Sanna [8] derived a formula for the p-adic valuation of nondegenerate Lucas sequences as follows.

Lemma 1.2 If p is a prime number such that $p \nmid b$, then

$$\nu_p(u_n) = \begin{cases} \nu_p(n) + \nu_p(u_p) - 1, & \text{if } p | \Delta, p | n; \\ 0, & \text{if } p | \Delta, p \nmid n; \\ \nu_p(n) + \nu_p(u_{p\alpha(p)}) - 1, & \text{if } p \nmid \Delta, \alpha(p) | n, p | n; \\ \nu_p(u_{p\alpha(p)}), & \text{if } p \nmid \Delta, \alpha(p) | n, p \nmid n; \\ 0, & \text{if } p \nmid \Delta, \alpha(p) \nmid n; \end{cases}$$

for each positive integer n, where $\Delta = a^2 + 4b$.

In a subsequent paper, using the *p*-adic valuation of $\{u_n\}$, Sanna derived some formulas for the rank of apparition of the power of a prime number ([9], Lemma 2.5).

Indeed, the result in Lemma 1.2 is a reflection of the formula derived by Bilu et al. ([2], Proposition 2.1) as follows.

Lemma 1.3 For all prime $p \nmid b$,

$$\nu_p(u_n) = \begin{cases} 0, & \text{if } n \not\equiv 0 \pmod{\alpha(p)}; \\ \nu_p(u_{\alpha(p)}) + \nu_p(n/\alpha(p)), & \text{if } n \equiv 0 \pmod{\alpha(p)}, \ p = \text{odd}; \\ \nu_2(u_2) + \nu_2(n/2), & \text{if } n \equiv 0 \pmod{2}, \ p = 2, \ a = \text{even}; \\ \nu_2(u_3), & \text{if } n \equiv 3 \pmod{6}, \ p = 2, \ a = \text{odd}; \\ \nu_2(u_6) + \nu_2(n/2), & \text{if } n \equiv 0 \pmod{6}, \ p = 2, \ a = \text{odd}. \end{cases}$$

In this paper, we study the rank of apparition of powers of Lucas sequences $\{u_n\}$; that is, we obtain a divisibility relation $u_n^{k+1}|u_m$ for a least positive integer m with $k \ge 0$. The results we prove subsequently are indeed the generalization of some of the previous results of Marques [4]. He derived $\alpha(u_n^{k+1})$ for a = b = 1, i.e. for the sequence of Fibonacci numbers $\{F_n\}_{n\ge 0}$, as follows.

Lemma 1.4 If F_n denotes the *n*th Fibonacci number, then

$$\alpha(F_n^{k+1}) = \begin{cases} \frac{n}{2}F_n^k, & \text{if } n \equiv 3 \pmod{6} \text{ and } k \ge 2; \\ nF_n^k & otherwise. \end{cases}$$

In [4], Marques also established the formula $\alpha(L_n^k)$ in some cases of n and k, where $\{L_n\}_{n\geq 0}$ denote the sequence of Lucas numbers. Subsequently, Pongsriiam [5] derived the same formula for all $n, k \geq 1$.

Our main results are the following.

Theorem 1.5 For even a and for $b \equiv 1 \pmod{4}$, $\alpha(u_n^{k+1}) = nu_n^k$ with $k \ge 0$.

Theorem 1.6 For odd a and for b = 1, we have

$$\alpha(u_n^{k+1}) = \begin{cases} \frac{n}{2}u_n^k, & \text{if } n \equiv 3 \pmod{6} \text{ and } k \ge 2;\\ nu_n^k & otherwise. \end{cases}$$

Theorem 1.7 For any a with $b \equiv -1 \pmod{4}$ and $k \geq 0$, $\alpha(u_n^{k+1}) = nu_n^k$.

2. The proofs

Proof [Proof of Theorem 1.5] For a prime $p \nmid b$ with a even, we need only to consider the case $\alpha(p)|n$. By virtue of Lemma 1.3, we obtain

$$\nu_p(u_{nu_n^k}) = \nu_p(nu_n^k) + \nu_p(u_{\alpha(p)}) - \nu_p(\alpha(p))$$

= $\nu_p(n) + \nu_p(u_{\alpha(p)}) - \nu_p(\alpha(p)) + \nu_p(u_n^k)$
= $\nu_p(u_n) + \nu_p(u_n^k)$
= $\nu_p(u_n^{k+1}).$

Now consider the case for p = 2 with a even. For $n \equiv 0 \pmod{2}$, $nu_n^k \equiv 0 \pmod{2}$ for $k \ge 0$. Using Lemma 1.3 again, we have

$$\nu_2(u_{nu_n^k}) = \nu_2(u_2) + \nu_2(n) + k\nu_2(u_n) - 1$$
$$= (k+1)(\nu_2(u_2) + \nu_2(n) - 1)$$
$$= \nu_2(u_n^{k+1}).$$

Furthermore, as $n \equiv 0 \pmod{2}$, $\frac{nu_n^k}{2} \equiv 0 \pmod{2}$. Therefore,

$$\nu_2(u_{nu_n^k/2}) = (k+1)(\nu_2(u_2) + \nu_2(n) - 1) - 1 < \nu_2(u_n^{k+1})$$

which completes the proof.

The following lemma is useful while proving the subsequent theorem.

Lemma 2.1 For odd a and $b \equiv 1 \pmod{4}$, $\nu_2(u_6) - \nu_2(u_3) = 2$.

Proof We have $u_6/u_3 = a(a^2 + 3b)$ and $a^2 + 3b \equiv 4 \pmod{8}$, since a is odd and b = 1, so the claim follows.

Proof [Proof of Theorem 1.6] For an odd prime $p \nmid b$ with a odd, we need only to consider the case $\alpha(p)|n$. Using Lemma 1.3, we obtain

$$\begin{split} \nu_p(u_{nu_n^k}) &= \nu_p(nu_n^k) + \nu_p(u_{\alpha(p)}) - \nu_p(\alpha(p)) \\ &= \nu_p(n) + \nu_p(u_{\alpha(p)}) - \nu_p(\alpha(p)) + \nu_p(u_n^k) \\ &= \nu_p(u_n) + \nu_p(u_n^k) \\ &= \nu_p(u_n^{k+1}). \end{split}$$

1568

Since a is odd and $\alpha(p)|n$, for p = 2 then $\alpha(2) = 3|n$, so that $n \equiv 0 \pmod{6}$ or $n \equiv 3 \pmod{6}$. Consider the case $n \equiv 0 \pmod{6}$; then $nu_n^k \equiv 0 \pmod{6}$. Therefore, the use of Lemma 1.3 again gives

$$\nu_2(u_{nu_n^k}) = \nu_2(nu_n^k) + \nu_2(u_6) - 1$$
$$= \nu_2(n) + k\nu_2(u_n) + \nu_2(u_6) - 1$$
$$= (k+1)(\nu_2(n) + \nu_2(u_6) - 1)$$
$$= \nu_2(u_n^{k+1}).$$

It follows that $u_n^{k+1}|u_{nu_n^k}$ for $n \equiv 0 \pmod{6}$ and hence $\alpha(u_n^{k+1})|nu_n^k$. In order to get a conclusion, it suffices to show $u_n^{k+1} \nmid u_{nu_n^k/2}$. Since $\frac{nu_n^k}{2} \equiv 0 \pmod{6}$, we have

$$\begin{split} \nu_2(u_{nu_n^k/2}) &= \nu_2(nu_n^k) + \nu_2(u_6) - 2 \\ &= (k+1) \left[\nu_2(u_6) + \nu_2(n) - 1\right] - 1 \\ &< (k+1) \left[\nu_2(u_6) + \nu_2(n) - 1\right] \\ &= \nu_2(u_n^{k+1}), \end{split}$$

and the case follows. In order to prove the case $n \equiv 3 \pmod{6}$, we proceed as follows. Since $n \equiv 3 \pmod{6}$, $\frac{nu_n^k}{2} \equiv 0 \pmod{6}$ for $k \ge 2$. Using the fact $\nu_2(u_6) \ge \nu_2(u_3) + 2$, we have

$$\nu_2(u_{nu_n^k}) > \nu_2\left(u_{\frac{nu_n^k}{2}}\right)$$
$$\geq \nu_2(u_n^{k+1}).$$

Now it is enough to show that $\nu_2(u_n^{k+1}) > \nu_2(u_{nu_n^k/4})$ for all $k \ge 2$. Here

$$\nu_2\left(u_{\frac{nu_n^k}{4}}\right) = \nu_2(u_6) + k\nu_2(u_3) - 3$$
$$= \nu_2(u_3) + k\nu_2(u_3) - 1$$
$$< \nu_2(u_n^{k+1}),$$

and the case follows. Finally we show for the case k = 1. Since $n \equiv 3 \pmod{6}$, $nu_n \equiv 0 \pmod{6}$. Therefore, by Lemma 2.1,

$$\nu_2(u_{nu_n}) = \nu_2(u_6) + \nu_2(nu_n) - 1$$

= $\nu_2(u_3) + 2 + \nu_2(u_3) - 1$
= $3 > 2 = 2\nu_2(u_3)$
= $\nu_2(u_n^2).$

Also, for $n \equiv 3 \pmod{6}$, we have $nu_n/2 \equiv 3 \pmod{6}$ and we get

$$\nu_2(u_{nu_n/2}) = \nu_2(u_3) < 2 = \nu_2(u_n^2).$$

This ends the proof.

Proof [Proof of Theorem 1.7] For even a with $b \equiv -1 \pmod{4}$ the proof of the result $\alpha(u_n^{k+1}) = nu_n^k$ when $k \geq 0$ is analogous to Theorem 1.5. Consider the case for odd a. For $n \equiv 3 \pmod{6}$, $nu_n^k \equiv 0 \pmod{6}$ for $k \geq 2$. By virtue of Lemma 1.3, we have

$$\begin{aligned} \nu_2(u_{nu_n^k}) &= \nu_2(u_6) + \nu_2(nu_n^k) - 1 \\ &= \nu_2(u_6) + k\nu_2(u_3) - 1 \\ &= \nu_2(u_3) + k\nu_2(u_3) \\ &= \nu_2(u_n^{k+1}). \end{aligned}$$

Now it suffies to prove $\nu_2(u_n^{k+1}) > \nu_2(u_{nu_n^k/2})$, for all $k \ge 2$. Using the identity $u_6/u_3 = a(a^2 + 3b)$, we get

$$\nu_2\left(u_{\frac{nu_n^k}{2}}\right) = \nu_2(u_6) + k\nu_2(u_3) - 2$$
$$= \nu_2(u_3) + k\nu_2(u_3) - 1$$
$$< \nu_2(u_n^{k+1}),$$

and hence the result. For the remaining case, the proof is analogous to Theorem 1.6.

References

- Bilu Y, Hanrot G, Voutier PM. Existence of primitive divisors of Lucas and Lehmer numbers. J Reine Angew Math 2001; 539: 75-122.
- [2] Bilu Y, Komatsu T, Luca F, Pizarro-Madariaga A, Stanica P. On a divisibility relation for Lucas sequences. J Number Theory 2016; 163: 1-18.
- [3] Carlip W, Jacobson E. A criterion for stability of two-term recurrence sequences modulo 2^k. Finite Fields Appl 1996; 2: 369-406.
- [4] Marques D. The order of appearance of powers of Fibonacci and Lucas numbers. Fibonacci Quart 2012; 50: 239-245.
- [5] Pongsriiam P. A complete formula for the order of appearance of the powers of Lucas numbers. Commun Korean Math Soc 2016; 31: 447-450.
- [6] Renault M. The period, rank, and order of the (a, b)-Fibonacci sequence mod m. Math Mag 2013; 86: 372-380.
- [7] Ribenboim P. My Numbers, My Friends. Popular Lectures on Number Theory. Berlin, Germany: Springer-Verlag, 2000.
- [8] Sanna C. The *p*-adic valuation of Lucas sequences. Fibonacci Quart 2016; 54: 118-124.
- [9] Sanna C. On numbers n dividing the n-th term of a Lucas sequence. Int J Number Theory 2016; 1-10.