Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
tübitak

Turk J Math
(2018) 42: 1566 - 1570
© TÜBİTAK
doi:10.3906/mat-1705-116

The rank of apparition of powers of Lucas sequence

Prasanta Kumar RAY ${ }^{1, *}{ }^{(1)}$, Nurettin IRMAK ${ }^{2}$ © ${ }^{\text {(}}$, Bijan Kumar PATEL $^{3}{ }^{\text {© }}$ (
${ }^{1}$ Department of Mathematics, Sambalpur University, Jyoti Vihar, Burla, India
${ }^{2}$ Department of Mathematics, Niğde Ömer Halisdemir University, Niğde, Turkey
${ }^{3}$ Department of Mathematics, International Institute of Information Technology, Bhubaneswar, India

| Received: 29.05 .2017 | Accepted/Published Online: $10.10 .2017 \quad$ Final Version: 24.07 .2018 |
| :--- | :--- | :--- | :--- |

Abstract

This note is devoted to studying the divisibility relation $u_{n}^{k+1} \mid u_{m}$ for a least positive integer m, where $\left\{u_{n}\right\}_{n \geq 0}$ is a nondegenerate Lucas sequence with characteristic polynomial $x^{2}-a x-b$, for some relatively prime integers a and b.

Key words: Lucas sequence, periodicity, rank of apparition, p-adic order

1. Introduction

Let $\left\{u_{n}\right\}_{n \geq 0}$ be a Lucas sequence of integers, so that $u_{0}=0, u_{1}=1$, and

$$
u_{n}=a u_{n-1}+b u_{n-2} ; \quad n \geq 2
$$

where a and b are relatively prime integers. Here $\left\{u_{n}\right\}_{n \geq 0}$ is assumed to be a nondegenerate Lucas sequence. That is, $b \neq 0$ and for the roots α, β of the characteristic equation $x^{2}-a x-b=0, \alpha / \beta$ is not a root of unity, which excludes the pairs

$$
(a, b) \in\{(\pm 2,-1),(\pm 1,-1),(0, \pm 1),(\pm 1,0)\}
$$

([7], pp. 5-6).
Many properties of the linear recurring sequences have been investigated by several authors from different point of views. Renault [6] studied the period, rank, and order of the (a, b)-Fibonacci sequence modulo any positive integer m, where $\operatorname{gcd}(m, b)=1$. For each positive integer m relatively prime with b,

$$
\alpha(m)=\min \left\{n \geq 1: m \mid u_{n}\right\}
$$

is well defined and is called the rank of apparition (order of appearance) of m. Clearly, $\alpha\left(u_{n}\right) \leq n$ for all positive integers n, while from the primitive divisor theorem [1] it follows that $\alpha\left(u_{n}\right)=n$ for all integers $n>30$ (and all the exceptionals $n \leq 30$ such that $\alpha\left(u_{n}\right)<n$ can be computed). The following result about the rank of apparition is found in [6].

Lemma 1.1 For each integer $m \geq 1$, we have $m \mid u_{n}$ for some positive integer n if and only if $\operatorname{gcd}(m, b)=1$ and $\alpha(m) \mid n$.

[^0]For a prime number p and a nonzero integer m, the p-adic valuation of m denoted by $\nu_{p}(m)$ is the exponent of p in the factorization of m. Recently, Sanna [8] derived a formula for the p-adic valuation of nondegenerate Lucas sequences as follows.

Lemma 1.2 If p is a prime number such that $p \nmid b$, then

$$
\nu_{p}\left(u_{n}\right)= \begin{cases}\nu_{p}(n)+\nu_{p}\left(u_{p}\right)-1, & \text { if } p|\Delta, p| n ; \\ 0, & \text { if } p \mid \Delta, p \nmid n ; \\ \nu_{p}(n)+\nu_{p}\left(u_{p \alpha(p)}\right)-1, & \text { if } p \nmid \Delta, \alpha(p)|n, p| n ; \\ \nu_{p}\left(u_{p \alpha(p)}\right), & \text { if } p \nmid \Delta, \alpha(p) \mid n, p \nmid n ; \\ 0, & \text { if } p \nmid \Delta, \alpha(p) \nmid n ;\end{cases}
$$

for each positive integer n, where $\Delta=a^{2}+4 b$.
In a subsequent paper, using the p-adic valuation of $\left\{u_{n}\right\}$, Sanna derived some formulas for the rank of apparition of the power of a prime number ([9], Lemma 2.5).

Indeed, the result in Lemma 1.2 is a reflection of the formula derived by Bilu et al. ([2], Proposition 2.1) as follows.

Lemma 1.3 For all prime $p \nmid b$,

$$
\nu_{p}\left(u_{n}\right)= \begin{cases}0, & \text { if } n \not \equiv 0(\bmod \alpha(p)) ; \\ \nu_{p}\left(u_{\alpha(p)}\right)+\nu_{p}(n / \alpha(p)), & \text { if } n \equiv 0(\bmod \alpha(p)), p=\text { odd } \\ \nu_{2}\left(u_{2}\right)+\nu_{2}(n / 2), & \text { if } n \equiv 0 \quad(\bmod 2), p=2, a=\text { even } \\ \nu_{2}\left(u_{3}\right), & \text { if } n \equiv 3 \quad(\bmod 6), p=2, a=\text { odd } \\ \nu_{2}\left(u_{6}\right)+\nu_{2}(n / 2), & \text { if } n \equiv 0 \quad(\bmod 6), p=2, a=\text { odd }\end{cases}
$$

In this paper, we study the rank of apparition of powers of Lucas sequences $\left\{u_{n}\right\}$; that is, we obtain a divisibility relation $u_{n}^{k+1} \mid u_{m}$ for a least positive integer m with $k \geq 0$. The results we prove subsequently are indeed the generalization of some of the previous results of Marques [4]. He derived $\alpha\left(u_{n}^{k+1}\right)$ for $a=b=1$, i.e. for the sequence of Fibonacci numbers $\left\{F_{n}\right\}_{n \geq 0}$, as follows.

Lemma 1.4 If F_{n} denotes the nth Fibonacci number, then

$$
\alpha\left(F_{n}^{k+1}\right)= \begin{cases}\frac{n}{2} F_{n}^{k}, & \text { if } n \equiv 3 \quad(\bmod 6) \text { and } k \geq 2 \\ n F_{n}^{k} & \text { otherwise } .\end{cases}
$$

In [4], Marques also established the formula $\alpha\left(L_{n}^{k}\right)$ in some cases of n and k, where $\left\{L_{n}\right\}_{n \geq 0}$ denote the sequence of Lucas numbers. Subsequently, Pongsriiam [5] derived the same formula for all $n, k \geq 1$.

Our main results are the following.
Theorem 1.5 For even a and for $b \equiv 1(\bmod 4), \alpha\left(u_{n}^{k+1}\right)=n u_{n}^{k}$ with $k \geq 0$.

Theorem 1.6 For odd a and for $b=1$, we have

$$
\alpha\left(u_{n}^{k+1}\right)=\left\{\begin{array}{cl}
\frac{n}{2} u_{n}^{k}, & \text { if } n \equiv 3 \quad(\bmod 6) \text { and } k \geq 2 \\
n u_{n}^{k} & \text { otherwise }
\end{array}\right.
$$

Theorem 1.7 For any a with $b \equiv-1(\bmod 4)$ and $k \geq 0, \alpha\left(u_{n}^{k+1}\right)=n u_{n}^{k}$.

2. The proofs

Proof [Proof of Theorem 1.5] For a prime $p \nmid b$ with a even, we need only to consider the case $\alpha(p) \mid n$. By virtue of Lemma 1.3, we obtain

$$
\begin{aligned}
\nu_{p}\left(u_{n u_{n}^{k}}\right) & =\nu_{p}\left(n u_{n}^{k}\right)+\nu_{p}\left(u_{\alpha(p)}\right)-\nu_{p}(\alpha(p)) \\
& =\nu_{p}(n)+\nu_{p}\left(u_{\alpha(p)}\right)-\nu_{p}(\alpha(p))+\nu_{p}\left(u_{n}^{k}\right) \\
& =\nu_{p}\left(u_{n}\right)+\nu_{p}\left(u_{n}^{k}\right) \\
& =\nu_{p}\left(u_{n}^{k+1}\right)
\end{aligned}
$$

Now consider the case for $p=2$ with a even. For $n \equiv 0(\bmod 2), n u_{n}^{k} \equiv 0(\bmod 2)$ for $k \geq 0$. Using Lemma 1.3 again, we have

$$
\begin{aligned}
\nu_{2}\left(u_{n u_{n}^{k}}\right) & =\nu_{2}\left(u_{2}\right)+\nu_{2}(n)+k \nu_{2}\left(u_{n}\right)-1 \\
& =(k+1)\left(\nu_{2}\left(u_{2}\right)+\nu_{2}(n)-1\right) \\
& =\nu_{2}\left(u_{n}^{k+1}\right) .
\end{aligned}
$$

Furthermore, as $n \equiv 0(\bmod 2), \frac{n u_{n}^{k}}{2} \equiv 0(\bmod 2)$. Therefore,

$$
\nu_{2}\left(u_{n u_{n}^{k} / 2}\right)=(k+1)\left(\nu_{2}\left(u_{2}\right)+\nu_{2}(n)-1\right)-1<\nu_{2}\left(u_{n}^{k+1}\right),
$$

which completes the proof.
The following lemma is useful while proving the subsequent theorem.

Lemma 2.1 For odd a and $b \equiv 1(\bmod 4), \nu_{2}\left(u_{6}\right)-\nu_{2}\left(u_{3}\right)=2$.
Proof We have $u_{6} / u_{3}=a\left(a^{2}+3 b\right)$ and $a^{2}+3 b \equiv 4(\bmod 8)$, since a is odd and $b=1$, so the claim follows.

Proof [Proof of Theorem 1.6] For an odd prime $p \nmid b$ with a odd, we need only to consider the case $\alpha(p) \mid n$. Using Lemma 1.3, we obtain

$$
\begin{aligned}
\nu_{p}\left(u_{n u_{n}^{k}}\right) & =\nu_{p}\left(n u_{n}^{k}\right)+\nu_{p}\left(u_{\alpha(p)}\right)-\nu_{p}(\alpha(p)) \\
& =\nu_{p}(n)+\nu_{p}\left(u_{\alpha(p)}\right)-\nu_{p}(\alpha(p))+\nu_{p}\left(u_{n}^{k}\right) \\
& =\nu_{p}\left(u_{n}\right)+\nu_{p}\left(u_{n}^{k}\right) \\
& =\nu_{p}\left(u_{n}^{k+1}\right) .
\end{aligned}
$$

Since a is odd and $\alpha(p) \mid n$, for $p=2$ then $\alpha(2)=3 \mid n$, so that $n \equiv 0(\bmod 6)$ or $n \equiv 3(\bmod 6)$. Consider the case $n \equiv 0(\bmod 6)$; then $n u_{n}^{k} \equiv 0(\bmod 6)$. Therefore, the use of Lemma 1.3 again gives

$$
\begin{aligned}
\nu_{2}\left(u_{n u_{n}^{k}}\right) & =\nu_{2}\left(n u_{n}^{k}\right)+\nu_{2}\left(u_{6}\right)-1 \\
& =\nu_{2}(n)+k \nu_{2}\left(u_{n}\right)+\nu_{2}\left(u_{6}\right)-1 \\
& =(k+1)\left(\nu_{2}(n)+\nu_{2}\left(u_{6}\right)-1\right) \\
& =\nu_{2}\left(u_{n}^{k+1}\right) .
\end{aligned}
$$

It follows that $u_{n}^{k+1} \mid u_{n u_{n}^{k}}$ for $n \equiv 0(\bmod 6)$ and hence $\alpha\left(u_{n}^{k+1}\right) \mid n u_{n}^{k}$. In order to get a conclusion, it suffices to show $u_{n}^{k+1} \nmid u_{n u_{n}^{k} / 2}$. Since $\frac{n u_{n}^{k}}{2} \equiv 0(\bmod 6)$, we have

$$
\begin{aligned}
\nu_{2}\left(u_{n u_{n}^{k} / 2}\right) & =\nu_{2}\left(n u_{n}^{k}\right)+\nu_{2}\left(u_{6}\right)-2 \\
& =(k+1)\left[\nu_{2}\left(u_{6}\right)+\nu_{2}(n)-1\right]-1 \\
& <(k+1)\left[\nu_{2}\left(u_{6}\right)+\nu_{2}(n)-1\right] \\
& =\nu_{2}\left(u_{n}^{k+1}\right),
\end{aligned}
$$

and the case follows. In order to prove the case $n \equiv 3(\bmod 6)$, we proceed as follows. Since $n \equiv 3(\bmod 6)$, $\frac{n u_{n}^{k}}{2} \equiv 0(\bmod 6)$ for $k \geq 2$. Using the fact $\nu_{2}\left(u_{6}\right) \geq \nu_{2}\left(u_{3}\right)+2$, we have

$$
\begin{aligned}
\nu_{2}\left(u_{n u_{n}^{k}}\right) & >\nu_{2}\left(u_{\frac{n u_{n}^{k}}{2}}\right) \\
& \geq \nu_{2}\left(u_{n}^{k+1}\right) .
\end{aligned}
$$

Now it is enough to show that $\nu_{2}\left(u_{n}^{k+1}\right)>\nu_{2}\left(u_{n u_{n}^{k} / 4}\right)$ for all $k \geq 2$. Here

$$
\begin{aligned}
\nu_{2}\left(u_{\frac{n u_{n}^{k}}{4}}\right) & =\nu_{2}\left(u_{6}\right)+k \nu_{2}\left(u_{3}\right)-3 \\
& =\nu_{2}\left(u_{3}\right)+k \nu_{2}\left(u_{3}\right)-1 \\
& <\nu_{2}\left(u_{n}^{k+1}\right)
\end{aligned}
$$

and the case follows. Finally we show for the case $k=1$. Since $n \equiv 3(\bmod 6), n u_{n} \equiv 0(\bmod 6)$. Therefore, by Lemma 2.1,

$$
\begin{aligned}
\nu_{2}\left(u_{n u_{n}}\right) & =\nu_{2}\left(u_{6}\right)+\nu_{2}\left(n u_{n}\right)-1 \\
& =\nu_{2}\left(u_{3}\right)+2+\nu_{2}\left(u_{3}\right)-1 \\
& =3>2=2 \nu_{2}\left(u_{3}\right) \\
& =\nu_{2}\left(u_{n}^{2}\right)
\end{aligned}
$$

Also, for $n \equiv 3(\bmod 6)$, we have $n u_{n} / 2 \equiv 3(\bmod 6)$ and we get

$$
\nu_{2}\left(u_{n u_{n} / 2}\right)=\nu_{2}\left(u_{3}\right)<2=\nu_{2}\left(u_{n}^{2}\right) .
$$

This ends the proof.

Proof [Proof of Theorem 1.7] For even a with $b \equiv-1(\bmod 4)$ the proof of the result $\alpha\left(u_{n}^{k+1}\right)=n u_{n}^{k}$ when $k \geq 0$ is analogous to Theorem 1.5. Consider the case for odd a. For $n \equiv 3(\bmod 6), n u_{n}^{k} \equiv 0(\bmod 6)$ for $k \geq 2$. By virtue of Lemma 1.3, we have

$$
\begin{aligned}
\nu_{2}\left(u_{n u_{n}^{k}}\right) & =\nu_{2}\left(u_{6}\right)+\nu_{2}\left(n u_{n}^{k}\right)-1 \\
& =\nu_{2}\left(u_{6}\right)+k \nu_{2}\left(u_{3}\right)-1 \\
& =\nu_{2}\left(u_{3}\right)+k \nu_{2}\left(u_{3}\right) \\
& =\nu_{2}\left(u_{n}^{k+1}\right) .
\end{aligned}
$$

Now it suffies to prove $\nu_{2}\left(u_{n}^{k+1}\right)>\nu_{2}\left(u_{n u_{n}^{k} / 2}\right)$, for all $k \geq 2$. Using the identity $u_{6} / u_{3}=a\left(a^{2}+3 b\right)$, we get

$$
\begin{aligned}
\nu_{2}\left(u_{\frac{n u_{n}^{k}}{2}}\right) & =\nu_{2}\left(u_{6}\right)+k \nu_{2}\left(u_{3}\right)-2 \\
& =\nu_{2}\left(u_{3}\right)+k \nu_{2}\left(u_{3}\right)-1 \\
& <\nu_{2}\left(u_{n}^{k+1}\right),
\end{aligned}
$$

and hence the result. For the remaining case, the proof is analogous to Theorem 1.6.

References

[1] Bilu Y, Hanrot G, Voutier PM. Existence of primitive divisors of Lucas and Lehmer numbers. J Reine Angew Math 2001; 539: 75-122.
[2] Bilu Y, Komatsu T, Luca F, Pizarro-Madariaga A, Stanica P. On a divisibility relation for Lucas sequences. J Number Theory 2016; 163: 1-18.
[3] Carlip W, Jacobson E. A criterion for stability of two-term recurrence sequences modulo 2^{k}. Finite Fields Appl 1996; 2: 369-406.
[4] Marques D. The order of appearance of powers of Fibonacci and Lucas numbers. Fibonacci Quart 2012; 50: 239-245.
[5] Pongsriiam P. A complete formula for the order of appearance of the powers of Lucas numbers. Commun Korean Math Soc 2016; 31: 447-450.
[6] Renault M. The period, rank, and order of the (a, b)-Fibonacci sequence mod m. Math Mag 2013; 86: 372-380.
[7] Ribenboim P. My Numbers, My Friends. Popular Lectures on Number Theory. Berlin, Germany: Springer-Verlag, 2000.
[8] Sanna C. The p-adic valuation of Lucas sequences. Fibonacci Quart 2016; 54: 118-124.
[9] Sanna C. On numbers n dividing the n-th term of a Lucas sequence. Int J Number Theory 2016; 1-10.

[^0]: *Correspondence: rayprasanta2008@gmail.com
 2010 AMS Mathematics Subject Classification: 11B37, 11B39

