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Abstract: This note is devoted to studying the divisibility relation uk+1
n |um for a least positive integer m , where

{un}n≥0 is a nondegenerate Lucas sequence with characteristic polynomial x2 − ax − b, for some relatively prime
integers a and b .
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1. Introduction
Let {un}n≥0 be a Lucas sequence of integers, so that u0 = 0 , u1 = 1 , and

un = aun−1 + bun−2; n ≥ 2,

where a and b are relatively prime integers. Here {un}n≥0 is assumed to be a nondegenerate Lucas sequence.
That is, b ̸= 0 and for the roots α , β of the characteristic equation x2−ax− b = 0 , α/β is not a root of unity,
which excludes the pairs

(a, b) ∈ {(±2,−1), (±1,−1), (0,±1), (±1, 0)}

([7], pp. 5–6).
Many properties of the linear recurring sequences have been investigated by several authors from different

point of views. Renault [6] studied the period, rank, and order of the (a, b) -Fibonacci sequence modulo any
positive integer m , where gcd(m, b) = 1 . For each positive integer m relatively prime with b ,

α(m) = min{n ≥ 1 : m|un}

is well defined and is called the rank of apparition (order of appearance) of m . Clearly, α(un) ≤ n for all
positive integers n , while from the primitive divisor theorem [1] it follows that α(un) = n for all integers
n > 30 (and all the exceptionals n ≤ 30 such that α(un) < n can be computed). The following result about
the rank of apparition is found in [6].

Lemma 1.1 For each integer m ≥ 1 , we have m|un for some positive integer n if and only if gcd(m, b) = 1

and α(m)|n.
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For a prime number p and a nonzero integer m , the p -adic valuation of m denoted by νp(m) is the
exponent of p in the factorization of m . Recently, Sanna [8] derived a formula for the p -adic valuation of
nondegenerate Lucas sequences as follows.

Lemma 1.2 If p is a prime number such that p ∤ b, then

νp(un) =



νp(n) + νp(up)− 1, if p|∆, p|n;

0, if p|∆, p ∤ n;

νp(n) + νp(upα(p))− 1, if p ∤ ∆, α(p)|n, p|n;

νp(upα(p)), if p ∤ ∆, α(p)|n, p ∤ n;

0, if p ∤ ∆, α(p) ∤ n;

for each positive integer n , where ∆ = a2 + 4b.

In a subsequent paper, using the p -adic valuation of {un} , Sanna derived some formulas for the rank of
apparition of the power of a prime number ([9], Lemma 2.5).

Indeed, the result in Lemma 1.2 is a reflection of the formula derived by Bilu et al. ([2], Proposition 2.1)
as follows.

Lemma 1.3 For all prime p ∤ b ,

νp(un) =



0, if n ̸≡ 0 (mod α(p));

νp(uα(p)) + νp(n/α(p)), if n ≡ 0 (mod α(p)), p = odd;
ν2(u2) + ν2(n/2), if n ≡ 0 (mod 2), p = 2, a = even;
ν2(u3), if n ≡ 3 (mod 6), p = 2, a = odd;
ν2(u6) + ν2(n/2), if n ≡ 0 (mod 6), p = 2, a = odd.

In this paper, we study the rank of apparition of powers of Lucas sequences {un} ; that is, we obtain a
divisibility relation uk+1

n |um for a least positive integer m with k ≥ 0 . The results we prove subsequently are
indeed the generalization of some of the previous results of Marques [4]. He derived α(uk+1

n ) for a = b = 1 , i.e.
for the sequence of Fibonacci numbers {Fn}n≥0 , as follows.

Lemma 1.4 If Fn denotes the n th Fibonacci number, then

α(F k+1
n ) =

{
n
2F

k
n , if n ≡ 3 (mod 6) and k ≥ 2;

nF k
n otherwise.

In [4], Marques also established the formula α(Lk
n) in some cases of n and k , where {Ln}n≥0 denote the

sequence of Lucas numbers. Subsequently, Pongsriiam [5] derived the same formula for all n, k ≥ 1 .

Our main results are the following.

Theorem 1.5 For even a and for b ≡ 1 (mod 4) , α(uk+1
n ) = nuk

n with k ≥ 0 .
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Theorem 1.6 For odd a and for b = 1 , we have

α(uk+1
n ) =

{
n
2u

k
n, if n ≡ 3 (mod 6) and k ≥ 2;

nuk
n otherwise.

Theorem 1.7 For any a with b ≡ −1 (mod 4) and k ≥ 0 , α(uk+1
n ) = nuk

n .

2. The proofs

Proof [Proof of Theorem 1.5] For a prime p ∤ b with a even, we need only to consider the case α(p)|n . By
virtue of Lemma 1.3, we obtain

νp(unuk
n
) = νp(nu

k
n) + νp(uα(p))− νp(α(p))

= νp(n) + νp(uα(p))− νp(α(p)) + νp(u
k
n)

= νp(un) + νp(u
k
n)

= νp(u
k+1
n ).

Now consider the case for p = 2 with a even. For n ≡ 0 (mod 2) , nuk
n ≡ 0 (mod 2) for k ≥ 0. Using Lemma

1.3 again, we have

ν2(unuk
n
) = ν2(u2) + ν2(n) + kν2(un)− 1

= (k + 1)(ν2(u2) + ν2(n)− 1)

= ν2(u
k+1
n ).

Furthermore, as n ≡ 0 (mod 2) , nuk
n

2 ≡ 0 (mod 2) . Therefore,

ν2(unuk
n/2

) = (k + 1)(ν2(u2) + ν2(n)− 1)− 1 < ν2(u
k+1
n ),

which completes the proof. 2

The following lemma is useful while proving the subsequent theorem.

Lemma 2.1 For odd a and b ≡ 1 (mod 4) , ν2(u6)− ν2(u3) = 2.

Proof We have u6/u3 = a(a2 + 3b) and a2 + 3b ≡ 4 (mod 8), since a is odd and b = 1 , so the claim follows.
2

Proof [Proof of Theorem 1.6] For an odd prime p ∤ b with a odd, we need only to consider the case α(p)|n .
Using Lemma 1.3, we obtain

νp(unuk
n
) = νp(nu

k
n) + νp(uα(p))− νp(α(p))

= νp(n) + νp(uα(p))− νp(α(p)) + νp(u
k
n)

= νp(un) + νp(u
k
n)

= νp(u
k+1
n ).
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Since a is odd and α(p)|n, for p = 2 then α(2) = 3|n , so that n ≡ 0 (mod 6) or n ≡ 3 (mod 6) . Consider the
case n ≡ 0 (mod 6) ; then nuk

n ≡ 0 (mod 6). Therefore, the use of Lemma 1.3 again gives

ν2(unuk
n
) = ν2(nu

k
n) + ν2(u6)− 1

= ν2(n) + kν2(un) + ν2(u6)− 1

= (k + 1) (ν2(n) + ν2(u6)− 1)

= ν2(u
k+1
n ).

It follows that uk+1
n |unuk

n
for n ≡ 0 (mod 6) and hence α(uk+1

n )|nuk
n . In order to get a conclusion, it suffices

to show uk+1
n ∤ unuk

n/2
. Since nuk

n

2 ≡ 0 (mod 6) , we have

ν2(unuk
n/2

) = ν2(nu
k
n) + ν2(u6)− 2

= (k + 1) [ν2(u6) + ν2(n)− 1]− 1

< (k + 1) [ν2(u6) + ν2(n)− 1]

= ν2(u
k+1
n ),

and the case follows. In order to prove the case n ≡ 3 (mod 6), we proceed as follows. Since n ≡ 3 (mod 6) ,
nuk

n

2 ≡ 0 (mod 6) for k ≥ 2 . Using the fact ν2(u6) ≥ ν2(u3) + 2 , we have

ν2(unuk
n
) > ν2

(
unuk

n
2

)
≥ ν2(u

k+1
n ).

Now it is enough to show that ν2(u
k+1
n ) > ν2(unuk

n/4
) for all k ≥ 2. Here

ν2

(
unuk

n
4

)
= ν2(u6) + kν2(u3)− 3

= ν2(u3) + kν2(u3)− 1

< ν2(u
k+1
n ),

and the case follows. Finally we show for the case k = 1 . Since n ≡ 3 (mod 6), nun ≡ 0 (mod 6). Therefore,
by Lemma 2.1,

ν2(unun) = ν2(u6) + ν2(nun)− 1

= ν2(u3) + 2 + ν2(u3)− 1

= 3 > 2 = 2ν2(u3)

= ν2(u
2
n).

Also, for n ≡ 3 (mod 6), we have nun/2 ≡ 3 (mod 6) and we get

ν2(unun/2) = ν2(u3) < 2 = ν2(u
2
n).

This ends the proof. 2
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Proof [Proof of Theorem 1.7] For even a with b ≡ −1 (mod 4) the proof of the result α(uk+1
n ) = nuk

n when
k ≥ 0 is analogous to Theorem 1.5. Consider the case for odd a . For n ≡ 3 (mod 6) , nuk

n ≡ 0 (mod 6) for
k ≥ 2. By virtue of Lemma 1.3, we have

ν2(unuk
n
) = ν2(u6) + ν2(nu

k
n)− 1

= ν2(u6) + kν2(u3)− 1

= ν2(u3) + kν2(u3)

= ν2(u
k+1
n ).

Now it suffies to prove ν2(u
k+1
n ) > ν2(unuk

n/2
), for all k ≥ 2. Using the identity u6/u3 = a(a2 + 3b) , we get

ν2

(
unuk

n
2

)
= ν2(u6) + kν2(u3)− 2

= ν2(u3) + kν2(u3)− 1

< ν2(u
k+1
n ),

and hence the result. For the remaining case, the proof is analogous to Theorem 1.6. 2
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