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Abstract: In this paper our purpose is to find the upper bound estimate for the second Hankel determinant |a2a4 − a2
3|

for functions defined by convolution belonging to the class Nµ,δ
σ (λ, t) by using Chebyshev polynomials.
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1. Introduction
Let A denote the class of functions f(z) analytic in the open unit disk U := {z ∈ C : |z| < 1} and normalized
by

f(z) = z +
∑
n≥2

anz
n. (1.1)

Because of the Koebe one-quarter theorem it is well known that every univalent function f ∈ A has an
inverse f−1 : f(U) → U satisfying

f−1 (f(z)) = z, (z ∈ U)

and
f
(
f−1(w)

)
= w, (|w| < 1/4).

Moreover, it is easy to check that the inverse function has the series expansion of the form

f−1(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + ..., w ∈ f(U). (1.2)

A function f ∈ A is said to be bi-univalent in U if both f and its inverse g = f−1 are univalent in U . Let σ
denote the class of bi-univalent functions in U given by (1.1). For a brief history of functions in the class σ ,
and also various other properties of the bi-univalent function, one can see recent works [2, 8, 12, 21, 26] and the
references therein.
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Some of the prominent and well-examined subclasses of univalent functions of class S are those of the
class S⋆(α) of starlike functions of order α in U and the class K(α) of convex functions of order α in U .
Moreover, by means of the analytic descriptions, we have

S⋆(α) :=

{
f : f ∈ A and Re

(
zf ′(z)

f(z)

)
> α; z ∈ U; 0 ≤ α < 1

}
and

K(α) :=

{
f : f ∈ A and Re

(
1 +

zf ′′(z)

f ′(z)

)
> α; z ∈ U; 0 ≤ α < 1

}
.

For 0 ≤ α < 1 , a function f ∈ σ is in the class S⋆
σ(α) of bi-starlike function of order α , or Kσ(α) of bi-convex

function of order α if both f and its inverse f−1 are, respectively, starlike or convex functions of order α .
We say that f ∈ A is subordinate to the function g ∈ A in U , written f(z) ≺ g(z) , if there exists a

Schwarz function w , analytic in U , with w(0) = 0 and |w(z)| < 1 , and such that f(z) = g(w(z)) .
For f(z) given by (1.1) and Θ(z) defined by

Θ(z) = z +
∑
n≥2

θnz
n, (θn ≥ 0), (1.3)

the Hadamard product (or convolution) (f ∗Θ)(z) of the functions f(z) and Θ(z) is defined by

(f ∗Θ)(z) = z +
∑
n≥2

anθnz
n = (Θ ∗ f)(z). (1.4)

Next, we consider the function

fδ(z) =

∫ z

0

(
1 + r

1− r
)δ

1

1− r2
dr

=z + δz2 +
1

3
(2δ2 + 1)z3 + ... (1.5)

=z +
∑
n≥2

bn(δ)z
n, (δ > 0, z ∈ U).

It is worth mentioning that if δ < 1 , then zf ′δ(z) is starlike with two slits. Moreover, we can see that since
zf ′1(z) is the Koebe function, all the functions fδ are univalent and convex in U . For more detail about the
function fδ(z) one can refer to [27]. If we put the function fδ(z) defined by (1.5) in for the function Θ(z) given
by (1.3) in the equality (1.4), we have

hδ(z) = (f ∗ fδ)(z) = z +
∑
n≥2

anbn(δ)z
n = (fδ ∗ f)(z). (1.6)

In 1976, Noonan and Thomas [20] defined the q th Hankel determinant of f given by (1.1) for integers
n ≥ 1 and q ≥ 1 by

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an+2 . . . an+q−2

...
...

...
...

an+q−1 an+q−2 . . . an+2q−2

∣∣∣∣∣∣∣∣∣ , (a1 = 1).
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This determinant has been investigated by several authors in the literature [13, 20]. For instance, this determi-
nant is useful in showing that a function of bounded characteristic in U , i.e. a function that is a ratio of two
bounded analytic functions with its Laurent series around the origin having integral coefficients, is rational [9].
Moreover, it is important to mention that the Hankel determinants H2(1) = a3−a22 and H2(2) = a2a4−a23 are
well known as Fekete–Szegö and second Hankel determinant functionals, respectively. In 1969, the Fekete–Szegö
problem for the classes S⋆ and K was investigated by Keogh and Merkes [17]. Recently, many authors have
discussed upper bounds for the Hankel determinant of functions belonging to various subclasses of univalent
functions (see [1, 11, 18] and the references therein). Very recently, the upper bounds of H2(2) for the classes
S⋆
σ(α) and Kσ(α) were investigated by Deniz et al. [12]. Later, the works were extended by Orhan et al.

[23, 24] and Altınkaya and Yalçın [4].
Chebyshev polynomials, which are used by us in this study, play an important role in many branches of

mathematics, especially in numerical analysis (see [10]). We know that there are several kinds of Chebyshev
polynomials. In particular, we shall introduce the first and second kind of polynomials, Tn(x) and Un(x) . For
a brief history of the Chebyshev polynomials of first kind Tn(x) and second kind Un(x) and their numerous
uses in different applications, one can refer [3, 14, 15].

The most remarkable kinds of the Chebyshev polynomials are the first and second kinds, and in the case
of real variable x on (−1, 1) they are defined by

Tn(x) = cos(n arccosx) Un(x) =
sin[(n+ 1) arccosx]

sin(arccosx) =
sin[(n+ 1) arccosx]√

1− x2
.

Now we consider the function that is the generating function of a Chebyshev polynomial:

G(t, z) =
1

1− 2tz + z2
, t ∈ (

1

2
, 1), z ∈ U.

It is well known that if t = cos θ, t = (−π/3, π/3) , then

G(t, z) =1 +
∑
n≥1

sin(n+ 1)θ

sin θ zn

=1 + 2 cos θz + (3 cos2 θ − sin2 θ)z2 + ..., (z ∈ U).

That is, in view of [28], we can write

G(t, z) = 1 + U1(t)z + U2(t)z
2 + U3(t)z

3 + ..., t ∈ (
1

2
, 1), z ∈ U, (1.7)

where Un(t) stands for the second kind of Chebyshev polynomials. From the definition of the second kind
of Chebyshev polynomials, we easily arrive at U1(t) = 2t . Also, it is well known that we have the following
recurrence relation:

Un+1(t) = 2tUn(t)− Un−2(t),

for all n ∈ N . From here, we can easily obtain

U1(t) = 2t, U2(t) = 4t2 − 1, U3(t) = 8t3 − 4t, U4(t) = 16t4 − 12t2 + 1, .... (1.8)
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Definition 1 For λ ≥ 1 , µ ≥ 0 , δ ≥ 1 and t ∈ (1/2, 1] , a function hδ ∈ σ given by (1.6) is said to be in class
N µ,δ

σ (λ, t) if the following subordinations hold for all z, w ∈ U :

(1− λ)(
hδ(z)

z
)µ + λh′δ(z)(

hδ(z)

z
)µ−1 ≺ G(z, t) (1.9)

and

(1− λ)(
kδ(w)

w
)µ + λk′δ(w)(

kδ(w)

w
)µ−1 ≺ G(w, t), (1.10)

where the function kδ = h−1
δ is defined by (1.2).

Obviously, for δ = 1 , we get that N µ,1
σ (λ, t) = N µ

σ (λ, t) . It is important to mention that the class
N µ

σ (λ, t) was introduced and investigated by Bulut et al. [6]. They also discussed initial coefficient estimates
and Fkete–Szegö bounds for the class N µ

σ (λ, t) and its subclasses, given in the following remark.

Remark 1 (i) For δ = 1 and µ = 1 , we get the class N 1,1
σ (λ, t) = Bσ(λ, t) consisting of functions f ∈ σ

satisfying the condition

(1− λ)
f(z)

z
+ λf ′(z) ≺ G(z, t)

and

(1− λ)
g(w)

w
+ λg′(w) ≺ G(w, t)

where the function g = f−1 is defined by (1.2). This class was introduced and studied by Bulut et al. [7]
(see also [19]).

(ii) For δ = 1 and λ = 1 , we obtain the class N µ,1
σ (1, t) = Bµ

σ(t) consisting of bi-Bazilevic̆ functions:

f ′(z)

(
f(z)

z

)µ−1

≺ G(z, t)

and

g′(w)

(
g(w)

w

)µ−1

≺ G(w, t),

where the function g = f−1 is defined by (1.2). This class was introduced and studied by Altınkaya and
Yalçın [5].

(iii) For δ = 1 , µ = 1 , and λ = 1 , we have the class N 1,1
σ (1, t) = Bσ(t) consisting of functions f satisfying

the condition
f ′(z) ≺ G(z, t)

and
g′(w) ≺ G(w, t),

where the function g = f−1 is defined by (1.2).
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(iv) For δ = 1 , λ = 1 , and µ = 0 , we have the class N 0,1
σ = S⋆

σ(t) satisfying the condition

zf ′(z)

f(z)
≺ G(z, t)

and
wg′(z)

g(w)
≺ G(w, t),

where the function g = f−1 is defined by (1.2).

Let us take a look at some lemmas that are very useful in building our main results.
Let P denote the class of analytic functions p in U such that p(0) = 1 and Re(p(z)) > 0 , z ∈ U . We

know that this class is usually called the Carathéodory class.

Lemma 1 (see [25]) If the function p ∈ P is given by the following series:

p(z) = 1 + c1z + c2z
2 + c3z

3 + ..., (1.11)

then the sharp estimate given by

|cn| ≤ 2 (n = 1, 2, 3, ...) (1.12)

holds true.

Lemma 2 [16] If the function p ∈ P is given by the series (1.11), then

2c2 =c21 + x(4− c21),

4c3 =c31 + 2(4− c21)c1x− c1(4− c21)x
2 + 2(4− c21)(1− |x|2)z,

for some x and z with |x| ≤ 1 and |y| ≤ 1 .

In the present investigation, we seek the upper bound for the second Hankel determinant for functions
hδ belonging to the class N µ,δ

σ (λ, t) by making use of the Chebyshev polynomial expansions and the Hadamard
product. Also, we give some remarkable consequences related to the class N µ,δ

σ (λ, t) .

2. Main results

Theorem 1 Let hδ ∈ σ of the form (1.6) be in N µ,δ
σ (λ; t) . Then

∣∣a2a4 − a23
∣∣ ≤


φ(2−, t), χ1 ≥ 0 χ2 ≥ 0

36t2

(2δ2+1)2(2λ+µ)2 , χ1 ≤ 0 χ2 ≤ 0

max
{

36t2

(2δ2+1)2(2λ+µ)2 , φ(2−, t)
}
, χ1 > 0 χ2 < 0

max {φ(c0, t), φ(2−, t)} , χ1 < 0 χ2 > 0

,
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where

φ(2−, t) =
9U2

1 (t)

(2δ2 + 1)2(2λ+ µ)2
+

χ1 + 9χ2

6δ(δ3 + 2δ)(2δ2 + 1)2(3λ+ µ)(2λ+ µ)2(λ+ µ)4
,

φ(c0, t) =− 27χ2
2

8χ1δ(δ3 + 2δ)(2δ2 + 1)2(3λ+ µ)(2λ+ µ)2(λ+ µ)4

+
9U2

1 (t)

(2δ2 + 1)2(2λ+ µ)2
, c0 =

√
−18χ2

χ1

and

χ1 =18(λ+ µ)3
(
3δ(δ3 + 2δ)(λ+ µ)(3λ+ µ)− (2δ2 + 1)2(2λ+ µ)2

)
U2
1 (t)

+ (2λ+ µ)2U1(t) |Ωλ,µ,δ(t)| − 9(λ+ µ)2(2λ+ µ)U1(t)

(
(3λ+ µ)(8δ4 − 4δ2 + 5)U2

1 (t)

+ 4(2δ2 + 1)2(2λ+ µ)(λ+ µ)U2(t)

)
,

χ2 =

[
(2λ+ µ)(3λ+ µ)

(
8δ4 − 4δ2 + 5

)
U3
1 (t) + 4(2δ2 + 1)2(λ+ µ)(2λ+ µ)2U1(t)U2(t)

+ (λ+ µ)U2
1 (t)

(
2(2δ2 + 1)2(2λ+ µ)2 − 12δ(δ3 + 2δ)(λ+ µ)(3λ+ µ)

)]
(λ+ µ)2,

Ωλ,µ,δ(t) = 18(2δ2 + 1)2(λ+ µ)3U3(t)− U3
1 (t)(3λ+ µ)

(
3(2δ2 + 1)2(µ2 + 3µ− 4) + 54δ(δ3 + 2δ)

)
.

Proof Let hδ ∈ N µ,δ
σ (λ, t) . Then we have

(1− λ)(
hδ(z)

z
)µ + λh′δ(z)(

hδ(z)

z
)µ−1 = G(t, u(z)) (2.1)

and

(1− λ)(
kδ(w)

w
)µ + λk′δ(w)(

kδ(w)

w
)µ−1 = G(t, v(w)) (2.2)

where p1, p2 ∈ P and defined by

p1(z) =
1 + u(z)

1− u(z)
= 1 + c1z + c2z

2 + c3z
3 + ... (2.3)

and

p2(w) =
1 + v(w)

1− v(w)
= 1 + d1w + d2w

2 + d3w
3 + .... (2.4)

It follows from (2.3) and (2.4) that

u(z) =
p1(z)− 1

p1(z) + 1
=

1

2

[
c1z +

(
c2 −

c21
2

)
z2 +

(
c3 − c1c2 +

c31
4

)
z3 + ...

]
(2.5)
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and

v(w) =
p2(w)− 1

p2(w) + 1
=

1

2

[
d1w +

(
d2 −

d21
2

)
w2 +

(
d3 − d1d2 +

d31
4

)
w3 + ...

]
. (2.6)

Using (2.5) together with (2.6), and taking G(z, t) as given in (1.7), we get that

G(t, u(z)) =1 +
U1(t)

2
c1z +

[
U1(t)

2

(
c2 −

c21
2

)
+
U2(t)

4
c21

]
z2 (2.7)

+

[
U1(t)

2

(
c3 − c1c2 +

c31
4

)
+
U2(t)

2
c1

(
c2 −

c21
2

)
+
U3(t)

8
c31

]
z3 + ...

and

G(t, v(w)) =1 +
U1(t)

2
d1w +

[
U1(t)

2

(
d2 −

d21
2

)
+
U2(t)

4
d21

]
w2 (2.8)

+

[
U1(t)

2

(
d3 − d1d2 +

d31
4

)
+
U2(t)

2
d1

(
d2 −

d21
2

)
+
U3(t)

8
d31

]
w3 + ....

By considering (2.1), (2.7) and (2.2), (2.8), when some elementary calculations are done, we get that

(λ+ µ)a2b2(δ) =
U1(t)

2
c1, (2.9)

(2λ+ µ)

[
a3b3(δ) + (µ− 1)

a22b
2
2(δ)

2

]
=
U1(t)

2
(c2 −

c21
2
) +

U2(t)

4
c21, (2.10)

(3λ+ µ)

[
a4b4(δ)+(µ− 1)a2a3b2(δ)b3(δ) + (µ− 1)(µ− 2)

a32b
3
2(δ)

6

]
=

=
U1(t)

2

(
c3 − c1c2 +

c31
4

)
+
U2(t)

2
c1

(
c2 −

c21
2

)
+
U3(t)

8
c31, (2.11)

and

−(λ+ µ)a2b2(δ) =
U1(t)

2
d1, (2.12)

(2λ+ µ)

[
(µ+ 3)

a22b
2
2(δ)

2
− a3b3(δ)

]
=
U1(t)

2
(d2 −

d21
2
) +

U2(t)

4
d21, (2.13)

(3λ+ µ)

[
(µ+ 4)a2a3b2(δ)b3(δ)− (µ+ 4)(µ+ 5)

a32b
3
2(δ)

6
− a4b4(δ)

]

=
U1(t)

2

(
d3 − d1d2 +

d31
4

)
+
U2(t)

2
d1

(
d2 −

d21
2

)
+
U3(t)

8
d31. (2.14)

Using (2.9) along with (2.12), we find that
c1 = −d1 (2.15)
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and

a2 =
U1(t)

2δ(λ+ µ)
c1. (2.16)

Now, from (2.10), (2.13), and (2.16), we obtain that

a3 =
3

2δ2 + 1

[
U2
1 (t)

4(λ+ µ)2
c21 +

U1(t)

4(2λ+ µ)
(c2 − d2)

]
. (2.17)

Also, subtracting (2.14) from (2.11) and using (2.16) together with (2.17), we get that

a4 =
3

δ3 + 2δ

[(
U1(t)− 2U2(t) + U3(t)

8(3λ+ µ)
− (µ2 + 3µ− 4)U3

1 (t)

48(λ+ µ)3

)
c31 +

U1(t)

4(3λ+ µ)
(c3 − d3)

+
5U2

1 (t)

16(λ+ µ)(2λ+ µ)
c1(c2 − d2) +

U2(t)− U1(t)

4(3λ+ µ)
c1(c2 + d2)

]
. (2.18)

Thus, we can easily determine that

∣∣a2a4 − a23
∣∣ =∣∣∣∣ U1(t)∆λ,µ,δ(t)

96δ(δ3 + 2δ)(2δ2 + 1)2(3λ+ µ)(λ+ µ)4
c41 −

9U2
1 (t)

16(2δ2 + 1)2(2λ+ µ)2
(c2 − d2)

2

+
3U1(t) [U2(t)− U1(t)]

8δ(δ3 + 2δ)(λ+ µ)(3λ+ µ)
c21(c2 + d2) +

3U2
1 (t)

8δ(δ3 + 2δ)(λ+ µ)(3λ+ µ)
c1(c3 − d3)

+
U3
1 (t)

[
15(2δ2 + 1)2 − 36δ(δ3 + 2δ)

]
32δ(δ3 + 2δ)(2δ2 + 1)2(λ+ µ)2(2λ+ µ)

c21(c2 − d2)

∣∣∣∣, (2.19)

where

∆λ,µ,δ(t) =18(2δ2 + 1)2(λ+ µ)3((U1(t)− 2U2(t) + U3(t))

− U3
1 (t)(3λ+ µ)

(
3(2δ2 + 1)2(µ2 + 3µ− 4) + 54δ(δ3 + 2δ)

)
.

In view of Lemma 2 and (2.15), we write

c2 − d2 =
4− c21

2
(x− y), (2.20)

c2 + d2 =c21 +
4− c21

2
(x+ y), (2.21)

c3 − d3 =
c31
2

+
(4− c21)c1

2
(x+ y)− (4− c21)c1

4
(x2 + y2) +

4− c21
2

[
(1− |x|2)z − (1− |y|2)w

]
, (2.22)

for some x , y and z , w with |x| ≤ 1 , |y| ≤ 1 , |z| ≤ 1 , and |w| ≤ 1 . Next, we will need to plug the last three
equations given by (2.20), (2.21), and (2.22) into the Hankel functional given by equation (2.19). Also, with
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the help of an application of the triangle inequality, we have

∣∣a2a4 − a23
∣∣ ≤ U1(t) |Ωλ,µ,δ(t)|

96δ(δ3 + 2δ)(2δ2 + 1)2(3λ+ µ)(λ+ µ)4
c41 +

3U2
1 (t)c1(4− c21)

8δ(δ3 + 2δ)(λ+ µ)(3λ+ µ)

+

[(
15(2δ2 + 1)2 − 36δ(δ3 + 2δ)

)
U3
1 c

2
1(4− c21)

64δ(δ3 + 2δ)(2δ2 + 1)2(λ+ µ)2(2λ+ µ)
+

3U1(t)U2(t)c
2
1(4− c21)

16δ(δ3 + 2δ)(λ+ µ)(3λ+ µ)

]
(|x|+ |y|)

+

[
3U2

1 (t)c
2
1(4− c21)

32δ(δ3 + 2δ)(λ+ µ)(3λ+ µ)
− 3U2

1 (t)c1(4− c21)

16δ(δ3 + 2δ)(λ+ µ)(3λ+ µ)

]
(|x|2 + |y|2)

+
9U2

1 (t)(4− c21)
2

64(2δ2 + 1)2(2λ+ µ)2
(|x|+ |y|)2,

where

Ωλ,µ,δ(t) = 18(2δ2 + 1)2(λ+ µ)3U3(t)− U3
1 (t)(3λ+ µ)

(
3(2δ2 + 1)2(µ2 + 3µ− 4) + 54δ(δ3 + 2δ)

)
.

Since class P is invariant under the rotations, by (1.12) we may suppose without loss of generality that
c1 := c ∈ [0, 2] . Therefore, for η = |x| ≤ 1 and ζ = |y| ≤ 1 , we obtain∣∣a2a4 − a23

∣∣ ≤ κ1 + κ2(γ1 + γ2) + κ3(γ
2
1 + γ22) + κ4(γ1 + γ2)

2 = ψ(γ1, γ2)

where

κ1 =
U1(t) |Ωλ,µ,δ(t)|

96δ(δ3 + 2δ)(2δ2 + 1)2(3λ+ µ)(λ+ µ)4
c4 +

3U2
1 (t)c(4− c2)

8δ(δ3 + 2δ)(λ+ µ)(3λ+ µ)
≥ 0,

κ2 =

[(
15(2δ2 + 1)2 − 36δ(δ3 + 2δ)

)
U3
1 c

2(4− c2)

64δ(δ3 + 2δ)(2δ2 + 1)2(λ+ µ)2(2λ+ µ)
+

3U1(t)U2(t)c
2(4− c2)

16δ(δ3 + 2δ)(λ+ µ)(3λ+ µ)

]
≥ 0,

κ3 =
3U2

1 (t)c(c− 2)(4− c2)

32δ(δ3 + 2δ)(λ+ µ)(3λ+ µ)
≤ 0,

κ4 =
9U2

1 (t)(4− c2)2

64(2δ2 + 1)2(2λ+ µ)2
≥ 0,

1

2
< t < 1.

Now let us consider the closed square S = {(γ1, γ2) : 0 ≤ γ1 ≤ 1, 0 ≤ γ2 ≤ 1} . In that case, all that we need to
do is to maximize the function ψ(γ1, γ2) in the closed square S for c ∈ [0, 2] . Since κ3 ≤ 0 and κ3 + 2κ4 ≥ 0

for all t ∈ ( 12 , 1) and c ∈ (0, 2) , we conclude that

ψγ1γ1
ψγ2γ2

− (ψγ1γ2
)2 < 0, for all γ1, γ2 ∈ S.

Thus, the function ψ cannot have a local maximum in the interior of the square S . Now we investigate the
maximum of ψ on the boundary of the square S .

For γ1 = 0 and 0 ≤ γ2 ≤ 1 (similarly γ2 = 0 and 0 ≤ γ1 ≤ 1), we get

ψ(0, γ2) = ϕ(γ2) = κ1 + κ2γ2 + (κ3 + κ4)γ
2
2 .

Next, we are going to be dealing with the following two cases separately.
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Case 1 Let κ3 + κ4 ≥ 0 . In this case for 0 < γ2 < 1 , and any fixed c with 0 ≤ c < 2 and for all t with
1
2 < t < 1 , it is clear that ϕ′(γ2) = 2(κ3 +κ4)γ2 +κ2 > 0 , that is, ϕ(γ2) is an increasing function. Hence,
for fixed c ∈ [0, 2) and t ∈ (1/2, 1) , the function ϕ(γ2) attains a maximum at γ2 = 1 and

max (ϕ(γ2)) = ϕ(1) = κ1 + κ2 + κ3 + κ4.

Case 2 Let κ3 + κ4 < 0 . Since κ2 + 2(κ3 + κ4) ≥ 0 for 0 < γ2 < 1 , any fixed c with 0 ≤ c < 2 , and all
t ∈ (1/2, 1) , it is clear that κ2 +2(κ3 + κ4) < 2(κ3 + κ4)γ2 + κ2 < κ2 and so ϕ′(γ2) > 0 . Hence, for fixed
c ∈ [0, 2) and t ∈ ( 12 , 1) , the function ϕ(γ2) attains a maximum at γ2 = 1 .

For γ1 = 1 and 0 ≤ γ2 ≤ 1 (similarly γ2 = 1 and 0 ≤ γ1 ≤ 1), we get

ψ(1, γ2) = Ψ(γ2) = (κ3 + κ4)γ
2
2 + (κ2 + 2κ4)γ2 + κ1 + κ2 + κ3 + κ4.

Thus, from the above cases of κ3 + κ4 , we get that

maxΨ(γ2) = Ψ(1) = κ1 + 2κ2 + 2κ3 + 4κ4.

Since ϕ(1) ≤ Ψ(1) for c ∈ (0, 2) and t ∈ ( 12 , 1) , we obtain

max(ψ(γ1, γ2)) = ψ(1, 1)

on the boundary of the square S . Thus, the maximum of ψ occurs at γ1 = 1 and γ2 = 1 in the closed square
S .

Let a function φ : [0, 2] → R defined by

φ(c, t) = max (ψ(γ1, γ2)) = ψ(1, 1) = κ1 + 2κ2 + 2κ3 + 4κ4 (2.23)

for fixed values of t . Substituting the values of κ1, κ2, κ3 , and κ4 in the function φ defined by (2.23) yields

φ(c, t) =
9U2

1 (t)

(2δ2 + 1)2(2λ+ µ)2
+

χ1c
4 + 36χ2c

2

96δ(δ3 + 2δ)(2δ2 + 1)2(3λ+ µ)(2λ+ µ)2(λ+ µ)4
,

where

χ1 =18(λ+ µ)3
(
3δ(δ3 + 2δ)(λ+ µ)(3λ+ µ)− (2δ2 + 1)2(2λ+ µ)2

)
U2
1 (t)

+ (2λ+ µ)2U1(t) |Ωλ,µ,δ(t)| − 9(λ+ µ)2(2λ+ µ)U1(t)

(
(3λ+ µ)(8δ4 − 4δ2 + 5)U2

1 (t)

+ 4(2δ2 + 1)2(2λ+ µ)(λ+ µ)U2(t)

)
,

χ2 =

[
(2λ+ µ)(3λ+ µ)

(
8δ4 − 4δ2 + 5

)
U3
1 (t) + 4(2δ2 + 1)2(λ+ µ)(2λ+ µ)2U1(t)U2(t)

+ (λ+ µ)U2
1 (t)

(
2(2δ2 + 1)2(2λ+ µ)2 − 12δ(δ3 + 2δ)(λ+ µ)(3λ+ µ)

)]
(λ+ µ)2.
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Assuming that φ(c, t) has a maximum value in an interior of c ∈ [0, 2] , by elementary calculation, we obtain
that

φ′(c, t) =
χ1c

3 + 18χ2c

24δ(δ3 + 2δ)(2δ2 + 1)2(3λ+ µ)(2λ+ µ)2(λ+ µ)4
.

We will examine the sign of the function φ′(c, t) depending on the different cases of the signs of χ1 and χ2 as
follows:

1. Let χ1 ≥ 0 and χ2 ≥ 0 , and then φ′(c, t) ≥ 0 , so φ(c, t) is an increasing function. Therefore,

max {φ(c, t) : c ∈ (0, 2)} = φ(2−, t) =
χ1 + 9χ2

6δ(δ3 + 2δ)(2δ2 + 1)2(3λ+ µ)(2λ+ µ)2(λ+ µ)4

+
9U2

1 (t)

(2δ2 + 1)2(2λ+ µ)2
. (2.24)

That is, max {max {ψ(γ1, γ2) : 0 ≤ γ1, γ2 ≤ 1} : 0 < c < 2} = φ(2−, t) .

2. Let χ1 ≤ 0 and χ2 ≤ 0 , and then φ′(c, t) ≤ 0 , so φ(c, t) is an decreasing function on the interval (0, 2) .
Therefore,

max {φ(c, t) : c ∈ (0, 2)} = φ(0+, t) = 4κ4 =
9U2

1 (t)

(2δ2 + 1)2(2λ+ µ)2
. (2.25)

3. Let χ1 > 0 and χ2 < 0 , and then c0 =
√

−18χ2

χ1
is a critical point of the function φ(c, t) . We suppose

that c0 ∈ (0, 2) , and since φ′′(c0, t) > 0 , c0 is a local minimum point of the function φ(c, t) . That is, the
function φ(c, t) cannot have a local maximum.

4. Let χ1 < 0 and χ2 > 0 , and then c0 is a critical point of the function φ(c, t) . We assume that c0 ∈ (0, 2) .
Since φ′′(c0, t) < 0 , c0 is a local maximum point of the function φ(c, t) and the maximum value occurs
at c = c0 . Therefore,

max {φ(c, t) : c ∈ (0, 2)} = φ(c0, t) (2.26)

where

φ(c0, t) =
9U2

1 (t)

(2δ2 + 1)2(2λ+ µ)2
− 27χ2

2

8χ1δ(δ3 + 2δ)(2δ2 + 1)2(3λ+ µ)(2λ+ µ)2(λ+ µ)4
.

Thus, from (2.24) to (2.26), the proof of Theorem 1 is completed. 2

Now we would like to draw attention to some remarkable results obtained for some values of λ , µ , and
δ in Theorem 1.

Corollary 1 Let hδ ∈ σ of the form (1.6) be in Bδ
σ(λ, t) . Then

∣∣a2a4 − a23
∣∣ ≤


φ(2−, t), χ3 ≥ 0 χ4 ≥ 0

36t2

(2δ2+1)2(2λ+1)2 , χ3 ≤ 0 χ4 ≤ 0

max
{

36t2

(2δ2+1)2(2λ+1)2 , φ(2−, t)
}
, χ3 > 0 χ4 < 0

max {φ(c0, t), φ(2−, t)} , χ3 < 0 χ4 > 0

,

where

1937



ORHAN et al./Turk J Math

φ(2−, t) =
9U2

1 (t)

(2δ2 + 1)2(2λ+ 1)2
+

χ3 + 9χ4

6δ(δ3 + 2δ)(2δ2 + 1)2(3λ+ 1)(2λ+ 1)2(λ+ 1)4
,

φ(c0, t) =
9U2

1 (t)

(2δ2 + 1)2(2λ+ 1)2
− 27χ2

4

8χ3δ(δ3 + 2δ)(2δ2 + 1)2(3λ+ 1)(2λ+ 1)2(λ+ 1)4
,

and c0 =
√

−18χ4

χ3
, χ3 = χ1(λ, µ = 1, δ; t) , χ4 = χ2(λ, µ = 1, δ; t) .

Taking λ = 1 in Theorem 1, we get the following result.

Corollary 2 Let hδ ∈ σ of the form (1.6) be in Bµ,δ
σ (t) . Then

∣∣a2a4 − a23
∣∣ ≤


φ(2−, t), χ5 ≥ 0 χ6 ≥ 0

36t2

(2δ2+1)2(2+µ)2 , χ5 ≤ 0 χ6 ≤ 0

max
{

36t2

(2δ2+1)2(2+µ)2 , φ(2−, t)
}
, χ5 > 0 χ6 < 0

max {φ(c0, t), φ(2−, t)} , χ5 < 0 χ6 > 0

,

where

φ(2−, t) =
9U2

1 (t)

(2δ2 + 1)2(2 + µ)2
+

χ5 + 9χ6

6δ(δ3 + 2δ)(2δ2 + 1)2(3 + µ)(2 + µ)2(1 + µ)4
,

φ(c0, t) =
9U2

1 (t)

(2δ2 + 1)2(2 + µ)2
− 27χ2

6

8χ5δ(δ3 + 2δ)(2δ2 + 1)2(3 + µ)(2 + µ)2(1 + µ)4
,

and c0 =
√

−18χ6

χ5
, χ5 = χ1(λ = 1, µ, δ; t) , χ6 = χ2(λ = 1, µ, δ; t) .

Putting λ = 1 and µ = 1 in Theorem 1, we find the following result.

Corollary 3 If hδ ∈ Bδ
σ(t) is of the form (1.6), then

∣∣a2a4 − a23
∣∣ ≤ {

φ(2−, t), 1
2 < t ≤ t0

φ(c0, t), t0 < t < 1
,

where

φ(2−, t) =
3t2

(
(2δ2 + 1)2 − t(5δ4 + 2δ2 + 2)

)
(δ2 + 2)(2δ3 + δ)2

,

φ(c0, t) =−
t(∇(3,1,−1)

(4,20,−3);(22,40,64))
2

δ(2δ2 + 1)2(δ3 + 2δ)
(
∇(3,1,−1)

(−4,4,−3);(22,40,64) + 6t |t(5δ4 + 2δ2 + 2)− (2δ2 + 1)2|
)

+
4t2

(2δ2 + 1)2
,

∇(m,n,r)
(a,b,c);(d,e,f)(δ; t) = ∇(m,n,r)

(a,b,c);(d,e,f) = m(1 + 2δ2)2 + nt(a+ bt2 + ct4) + rt2(d+ et2 + ft4) . Moreover, the value

of t0 is the root of equation χ1 = 0 for λ = µ = 1 and 1
2 < t < 1 .

Setting δ = 1 in Corollary 3, we obtain the following result.
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Corollary 4 If hδ ∈ Bσ(t) is of the form (1.6), then

∣∣a2a4 − a23
∣∣ ≤ {

t2(1− t2), 1
2 < t ≤ t01

t(260t4+84t3−139t2−18t+9)
8(18t3+42t2−17t−9) , t01 < t < 1

,

where the value of t01 , which is approximately t01 = 0.603615 , is the root of equation χ1 = 0 for λ = µ = δ = 1

and 1
2 < t < 1 .

Next, taking λ = 1 and µ = 0 in Theorem 1, we arrive at the following result.

Corollary 5 If hδ ∈ S⋆,δ
σ (t) is of the form (1.6), then

∣∣a2a4 − a23
∣∣ ≤ {

φ(2−, t), 1
2 < t ≤ t02

φ(c0, t), t02 < t < 1
,

where

φ(2−, t) =
8t2

(
(2δ2 + 1)2 − 6t2(δ2 − 1)2

)
(2δ3 + δ)2(δ2 + 2)

,

φ(c0, t) =−
t(∇(−2,−1,1)

(−2,10,1);(23,20,56))
2

δ(2δ2 + 1)2(δ3 + 2δ)
(
∇(−4,1,2)

(4,−2,7);(23,20,56) − 8t |6t2(δ2 − 1)2 − (2δ2 + 1)2|
)

+
9t2

(2δ2 + 1)2
.

Moreover, the value of t02 is the root of equation χ1 = 0 for λ = 1 , µ = 0 , and 1
2 < t < 1 .

Now, taking δ = 1 in Corollary 5, we attain the following result.

Corollary 6 If hδ ∈ S⋆
σ(t) is of the form (1.6), then

∣∣a2a4 − a23
∣∣ ≤ {

8t2

3 ,
1
2 < t ≤ 7+

√
401

44

t2 + t(2+t−11t2)2

3(−4−7t+22t2) ,
7+

√
401

44 < t < 1
.

When δ = 1 , we note that the results given above coincide with the results in [22].
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