

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Bounded solutions and asymptotic stability of nonlinear second-order neutral difference equations with quasi-differences

Magdalena NOCKOWSKA-ROSIAK*

Institute of Mathematics, Lodz University of Technology Łódź, Poland

Received: 12.08.2017	•	Accepted/Published Online: 08.05.2018	•	Final Version: 24.07.2018

Abstract: This work is devoted to the study of the nonlinear second-order neutral difference equations with quasidifferences of the form

 $\Delta \left(r_n \Delta \left(x_n + q_n x_{n-\tau} \right) \right) = a_n f(x_{n-\sigma}) + b_n$

with respect to (q_n) . For $q_n \to 1$, $q_n \in (0,1)$ the standard fixed point approach is insufficient to get the existence of the bounded solution, so we combine this method with an approximation technique to achieve our goal. Moreover, for $p \ge 1$ and $\sup |q_n| < 2^{1-p}$, using Krasnoselskii's fixed point theorem we obtain sufficient conditions for the existence of the solution that belongs to l^p space.

Key words: Nonlinear neutral difference equation, Krasnoselskii's fixed point theorem, approximation

1. Introduction

Difference equations are used in mathematical models in diverse areas such as economy, biology, and computer science; see, for example, [1, 7]. In the past thirty years, oscillation, nonoscillation, and the asymptotic behavior and existence of bounded solutions to many types of second-order difference equations have been widely examined; see, for example, [2, 4, 6, 9–11, 13, 14, 17–20, 26–31], and references therein.

The second-order difference equation with quasi-difference of the form

$$\Delta \left(r_n \Delta \left(x_n + q_n x_{n-\tau} \right) \right) = F(n, x_{n-\sigma})$$

is studied in the literature with respect to a sequence (q_n) . Fixed point theory is the standard technique to prove the existence of the bounded solution to the considered problem with constant (q_n) and sequences (q_n) for which absolute values are lower or grater than 1. Let us present a short overview of papers that deal with this problem. By using Banach's fixed point theorem, Jinfa [12] and Liu et al. [15] investigated the nonoscillatory solution to the second-order neutral delay difference equation of the following form:

$$\Delta\left(r_n\Delta\left(x_n+qx_{n-\tau}\right)\right)+f(n,x_{n-d_{1n}},\ldots,x_{n-d_{kn}})=c_n.$$

Liu et al. [15] proved the existence of uncountably many bounded nonoscillatory solutions for the above problem under the Lipschitz continuity condition. With the Leray–Schauder type of condensing operators Agarwal et

^{*}Correspondence: magdalena.nockowska@p.lodz.pl

²⁰¹⁰ AMS Mathematics Subject Classification: 39A10, 39A22

al. [2] examined the existence of a nonoscillatory solution to the problem

$$\Delta \left(r_n \Delta \left(x_n + q x_{n-\tau} \right) \right) + F(n+1, x_{n+1-\sigma}) = 0$$

where $q \in \mathbb{R} \setminus \{\pm 1\}$. Liu et al. [16] discussed the existence of uncountably many bounded positive solutions to

$$\Delta (r_n \Delta (x_n + b_n x_{n-\tau} - c_n)) + f(n, x(f_1(n)), \dots, x(f_k(n))) = d_n,$$

where $\sup_{n \in \mathbb{N}} b_n = b^*$, $b^* \neq 1$ or $\inf_{n \in \mathbb{N}} b_n = b_*$, $b_* \neq -1$ by Krasnoselskii's fixed point theorem.

On the other hand, Petropoulous and Siafarikas considered different types of difference equations in Hilbert space; see [21–23]. Moreover, the functional-analytical method for general nonautonomous difference equations of the form $x_{k+1} = f_k(x_k, x_{k+1})$ was considered by Ey and Pötzsche [8] and Pötzsche [24]. This approach allows us to better characterize solutions to difference equations.

In this paper we study the following second-order neutral difference equation with quasi-difference

$$\Delta \left(r_n \Delta \left(x_n + q_n x_{n-\tau} \right) \right) = a_n f(x_{n-\sigma}) + b_n, \tag{1}$$

where $\tau \in \mathbb{N}_0$, $\sigma \in \mathbb{Z}$, $a, b, q : \mathbb{N}_0 \to \mathbb{R}$, $r : \mathbb{N}_0 \to \mathbb{R} \setminus \{0\}$ and $f : \mathbb{R} \to \mathbb{R}$ is a continuous function. If the sequence (q_n) is convergent to 1, then the fixed point approach can not be applied to solve the studied problem, because Krasnoselskii's fixed point theorem need two operators, one of which is a contraction. To overcome the limitation of this method we combine this approach with the approximation technique under the additional assumption $q_n \in (0, 1)$. The approximation approach in this type of difference equations and the case when (q_n) is convergent to 1 has not been discussed so far, to our knowledge. Moreover, in the case $p \geq 1$ and $\sup |q_n| < 2^{1-p}$ we establish sufficient conditions of the existence of the solution to (1), which belongs to l^p space. To get our result Krasnoselskii's fixed point theorem is used.

2. Preliminaries

Throughout this paper, we assume that Δ is the forward difference operator, $\mathbb{N}_k := \{k, k+1, ...\}$, where k is a given nonnegative integer and \mathbb{R} is a set of all real numbers.

Let $k \in \mathbb{N}_0$. We consider the Banach space l_k^{∞} of all real bounded sequences $x \colon \mathbb{N}_k \to \mathbb{R}$ equipped with the standard supremum norm, i.e.

$$\|x\| = \sup_{n \in \mathbb{N}_k} |x_n|, \text{ for } x = (x_n)_{n \ge k} \in \ l_k^{\infty}$$

Definition 1 [5] A subset A of l_k^{∞} is said to be uniformly Cauchy if for every $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}_k$ such that $|x_i - x_j| < \varepsilon$ for any $i, j \ge n_0$ and $x = (x_n) \in A$.

Theorem 1 [5] A bounded, uniformly Cauchy subset of l_k^{∞} is relatively compact.

For a real $p \ge 1$ we define l_k^p as the Banach space of p-summable sequences as follows:

$$l_k^p := \{ x \colon \mathbb{N}_k \to \mathbb{R} : \sum_{n=k}^\infty |x(n)|^p < \infty \},\$$

with the standard norm, i.e.

$$||x||_{l_k^p} = \left(\sum_{n=k}^{\infty} |x(n)|^p\right)^{1/p}.$$

The relative compactness criterion in l^p is given in the following theorem:

Theorem 2 ([3], p.106) Let $p \in [1, \infty)$, $k \in \mathbb{N}_0$. A subset A of l_k^p is relatively compact if and only if A is bounded and

$$\lim_{l \to \infty} \sup_{x = (x_n) \in A} \sum_{n=l}^{\infty} |x_n|^p = 0.$$

To get the main results of this paper we use Krasnoselskii's fixed point theorem of the following form.

Theorem 3 ([32], 11.B p. 501) Let X be a Banach space; B be a bounded, closed, convex subset of X; and $S, G: B \to X$ be mappings such that $Sx + Gy \in B$ for any $x, y \in B$. If S is a contraction and G is compact, then the equation

$$Sx + Gx = x$$

has a solution in B.

To use the approximation technique we need the following Banach-Alaoglu theorem.

Theorem 4 [25] If X is a Banach space and $S^* = \{x^* \in X^* : ||x^*|| \le 1\}$, then S^* is weak*-compact.

Let us close the preliminaries paragraph with definitions of different types of solutions to (1). By a solution to equation (1) we mean a sequence $x : \mathbb{N}_{k-\max\{\tau,\sigma\}} \to \mathbb{R}$ that satisfies (1) for every $n \in \mathbb{N}_k$ for some $k \ge \max\{\tau,\sigma\}$. By a full solution to equation (1) we mean a sequence $x : \mathbb{N}_0 \to \mathbb{R}$ that satisfies (1) for every $n \ge \max\{\tau,\sigma\}$. For $p \ge 1$, a solution x to (1) is said to be an l^p solution if $x \in l_k^p$ for some $k \in \mathbb{N}_0$.

3. Dependence of existence of bounded solutions on the sequence (q_n)

Sufficient conditions for the existence of a bounded solution to equation (1) with respect to values of sequence (q_n) are derived. At the beginning of this section we formulate and prove the theorem in which values of sequences $(|q_n|)$ are less than 1. Based on this result we prove the existence of the bounded full solution for (q_n) convergent to 1.

In this section, unless otherwise noted, we assume $\tau \in \mathbb{N}_0$, $\sigma \in \mathbb{Z}$, $a, b, q : \mathbb{N}_0 \to \mathbb{R}$, $r : \mathbb{N}_0 \to \mathbb{R} \setminus \{0\}$ and $f : \mathbb{R} \to \mathbb{R}$.

Theorem 5 Assume that

 (H_f) f is a continuous function;

$$\begin{aligned} (H_s) \quad & \sum_{s=0}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} |a_t| < +\infty, \quad & \sum_{s=0}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} |b_t| < +\infty; \\ (H_q) \quad & \sup_{n \in \mathbb{N}_0} |q_n| = q^{\star} < 1. \end{aligned}$$

Then equation (1) possesses a bounded solution.

Proof Let M > 0. From the continuity of f on [-M, M] we get the existence of Q > 0 such that

$$|f(x)| \le Q$$
, for $x \in [-M, M]$

By (H_s) there exists $n_0 > \beta := \max\{\tau, \sigma\}$ such that

$$\sum_{s=n_0}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} \left(|a_t|Q + |b_t| \right) < (1 - q^*)M.$$
(2)

We consider the Banach space l_0^∞ and its subset

$$A_{n_0} = \{ x = (x_n)_{n \in \mathbb{N}_0} \in l_0^\infty : x_0 = \ldots = x_{n_0 + \beta - 1} = 0, \ |x_n| \le M, n \ge n_0 + \beta \}.$$

Observe that A_{n_0} is a nonempty, bounded, convex, and closed subset of l_0^{∞} . Define two mappings $T_1, T_2: l_0^{\infty} \to l_0^{\infty}$ as follows:

$$(T_1 x)_n = \begin{cases} 0, & \text{for } 0 \le n < n_0 + \beta \\ -q_n x_{n-\tau}, & \text{for } n \ge n_0 + \beta, \end{cases}$$

$$(T_2 x)_n = \begin{cases} 0, & \text{for } 0 \le n < n_0 + \beta \\ \sum_{s=n}^{\infty} \frac{1}{r_s} \sum_{t=s}^{\infty} \left(a_t f(x_{t-\sigma}) + b_t \right), & \text{for } n \ge n_0 + \beta. \end{cases}$$

Our next goal is to check assumptions of Theorem 3, Krasnoselskii's fixed point.

First, we show that $T_1x + T_2y \in A_{n_0}$ for $x, y \in A_{n_0}$. Let $x, y \in A_{n_0}$. For $n < n_0 + \beta$ $(T_1x + T_2y)_n = 0$. For $n \ge n_0 + \beta$ from assumption (H_q) and (2) we get

$$|(T_1x + T_2y)_n| \le |q_n x_{n-\tau}| + \sum_{s=n}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} (|a_t|Q + |b_t|) \le q^* M + (1 - q^*)M = M.$$

It is easy to see that

$$||T_1x - T_1y|| \le q^* ||x - y||, \text{ for } x, y \in A_{n_0},$$

so T_1 is a contraction.

Now we prove the continuity of T_2 . Let $x \in A_{n_0}$, $\varepsilon > 0$. The continuity of f implies that f is a uniformly continuous function on compact set [-M, M]. Hence, there exists $\delta > 0$ such that

$$|f(u) - f(v)| < \frac{\varepsilon}{\left(1 + \sum_{s=0}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} |a_t|\right)}, \text{ for } |u - v| < \delta, \ u, v \in [-M, M].$$

$$(3)$$

Let $y \in A_{n_0}$ such that $||x - y|| < \delta$. Then for any $n \ge n_0 + \beta$ we have that $|x_n - y_n| < \delta$, $x_n, y_n \in [-M, M]$, and from (3)

$$|(T_2x - T_2y)_n| \le \sum_{s=n}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} \left(|a_t| \cdot |f(x_{t-\sigma}) - f(y_{t-\sigma})| \right) < \varepsilon.$$

Hence, $||T_2x - T_2y|| < \varepsilon$ for $y \in A_{n_0}$, $||x - y|| < \delta$, which proves the continuity of T_2 in any $x \in A_{n_0}$. Now we show that $T_2(A_{n_0})$ is uniformly Cauchy. Let $\varepsilon > 0$. From (H_s) we get the existence of $n_{\varepsilon} \ge \beta + n_0$ such that

$$2\sum_{s=n_{\varepsilon}}^{\infty}\frac{1}{|r_s|}\sum_{t=s}^{\infty}\left(|a_t|Q+|b_t|\right)<\varepsilon.$$

For $m > n \ge n_{\varepsilon}$ and for $x \in A_{n_0}$ we have

$$|(T_2x)_n - (T_2x)_m| = \left| \sum_{s=n}^{\infty} \frac{1}{r_s} \sum_{t=s}^{\infty} (a_t f(x_{t-\sigma}) + b_t) - \sum_{s=m}^{\infty} \frac{1}{r_s} \sum_{t=s}^{\infty} (a_t f(x_{t-\sigma}) + b_t) \right|$$

$$\leq 2 \sum_{s=n_{\varepsilon}}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} (|a_t|Q + |b_t|) < \varepsilon.$$

Since $T_2(A_{n_0})$ is uniformly Cauchy and bounded, then by Theorem 1 $T_2(A_{n_0})$ is relatively compact in l_0^{∞} , which means that T_2 is a compact operator.

From Krasnosielskii's theorem we get that there exists $x = (x_n)_{n \in \mathbb{N}_0}$, the fixed point of $T_1 + T_2$ on A_{n_0} . Applying operator Δ to both sides of the above equation and multiplying by r_n and applying operator Δ a second time for $n \ge n_0 + 2\beta$, we get $x = (x_n)_{n \in \mathbb{N}_{n_0+\beta}}$ as the solution to (1). \Box To achieve the main result of this section we need to have a full solution to (1), which means a solution defined

for $n \in \mathbb{N}_0$. In the case of $\sup |q_n| < 1$ we obtain the full solution to (1) under one additional assumption in Theorem 5.

Corollary 1 Let the assumptions of Theorem 5 be fulfilled. If we additionally assume

 (H'_0) $\tau, \sigma \in \mathbb{N}_0, \ \tau > \sigma \ and \ q_n \neq 0 \ for \ n \in \mathbb{N}_0,$

then equation (1) possesses a bounded full solution.

Proof We find previous $n_0 + \max\{\tau, \sigma\}$ terms of sequence x by the following formula:

$$x_{n-\tau} = \frac{1}{q_n} \left(-x_n + \sum_{s=n}^{\infty} \frac{1}{r_s} \sum_{t=s}^{\infty} \left(a_t f(x_{t-\sigma}) + b_t \right) \right),$$

starting with putting $n := n_0 + 2\tau - 1$.

Using the same technique, we get the following result.

Corollary 2 Assume that:

$$(H_0)$$
 $\tau, \sigma \in \mathbb{N}_0, \tau > \sigma;$

 (H_f) f is a continuous function;

$$\begin{array}{ll} (H_s) & \sum\limits_{s=0}^{\infty} \frac{1}{|r_s|} \sum\limits_{t=s}^{\infty} |a_t| < +\infty, & \sum\limits_{s=0}^{\infty} \frac{1}{|r_s|} \sum\limits_{t=s}^{\infty} |b_t| < +\infty; \\ (H_q^1) & \inf\limits_{n \in \mathbb{N}_0} q_n = q^* > 1. \end{array}$$

Then there exists a bounded full solution to (1).

1960

Proof The proof is similar to the proof of Theorem 5 with operators

$$(T_1 x)_n = \begin{cases} 0, & \text{for } 0 \le n < n_0 \\ -\frac{1}{q_{n+\tau}} x_{n+\tau}, & \text{for } n \ge n_0, \end{cases}$$
$$(T_2 x)_n = \begin{cases} 0, & \text{for } 0 \le n < n_0 \\ \frac{1}{q_{n+\tau}} \sum_{s=n+\tau}^{\infty} \frac{1}{r_s} \sum_{t=s}^{\infty} \left(a_t f(x_{t-\sigma}) + b_t \right), & \text{for } n \ge n_0, \end{cases}$$

where for any M > 0 there exist Q > 0 and $n_0 > \beta := \max\{\tau, \sigma\}$ such that

$$\sum_{s=n_0}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} \left(|a_t|Q + |b_t| \right) < \left(1 - \frac{1}{q^*}\right) M.$$

Now we are in a position to formulate and prove the main result of this section using an approximation technique.

Theorem 6 Assume that:

- $(H_0) \quad \tau, \sigma \in \mathbb{N}_0, \ \tau > \sigma;$
- (H_f) f is a continuous function;
- (H_{sb}) there exist D > 0, $C \in (0,1)$, $k_0 \in \mathbb{N}$ and increasing sequence $(w_k)_{k \in \mathbb{N}} \subset (0,1)$ with $\sum_{k=0}^{\infty} (1-w_k) < \infty$ such that

$$\sum_{s=k}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} (|a_t| P + |b_t|) \le D(1 - w_k) (Cw_k)^k, \text{ for } k \ge k_0,$$

where $\max_{|x| \le D} |f(x)| \le P$;

 $(H_{q=1}) \quad q_n \in (0,1), \ n \in \mathbb{N}_0, \ \lim_{n \to \infty} q_n = 1, \ \inf_{n \in \mathbb{N}_0} q_n > 0.$

Then there exists a bounded full solution to equation (1).

Proof For any $k \in \mathbb{N}$, let us consider an auxiliary problem,

$$\Delta \left(r_n \Delta \left(x_n + w_k q_n x_{n-\tau} \right) \right) = a_n f(x_{n-\sigma}) + b_n, \tag{4}$$

where (w_k) is the sequence satisfying (H_{sb}) . It is obvious that

$$\sup\{w_k q_n : n \in \mathbb{N}_0\} = w_k < 1$$

Without loss of generality we can assume that

$$\inf\{q_n : n \in \mathbb{N}_0\} > C,$$

where C is the constant from assumption (H_{sb}) . By (H_{sb}) there exist $k_0 \in \mathbb{N}$, D > 0 such that for any $k \ge k_0$

$$\sum_{s=k}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} (|a_t|P + |b_t|) \le D(1 - w_k) (Cw_k)^k.$$
(5)

From Theorem 5, (4) possesses a bounded solution $x^k = (x_n^k)_{n \in \mathbb{N}_{n_k+\tau}}$ for some $n_k \in \mathbb{N}$. Moreover, by the proof of Theorem 5 we see that (5) implies (2) with $M_k = D(Cw_k)^k \leq D$. Hence, $x^k = (x_n^k)_{n \in \mathbb{N}_{n_k+\tau}} \in l_{n_k+\tau}^{\infty}$ is the fixed point of $T_1 + T_2$ on A_{n_k} with $n_k := k$ for $k \geq k_0$. This means that for $k \geq k_0$, $x^k = (x_n^k)_{n \geq k+\tau}$ solves (4) for $n \geq k + 2\tau$ and $|x_n^k| \leq D(Cw_k)^k$ for $n \geq k + \tau$. We find previous $k + \tau$ terms of sequence $(x_n^k)_{n \geq 0}$ and estimate them by using the following formula:

$$x_{n-\tau}^{k} = \frac{1}{w_{k}q_{n}} \left(-x_{n}^{k} + \sum_{s=n}^{\infty} \frac{1}{r_{s}} \sum_{t=s}^{\infty} \left(a_{t}f(x_{t-\sigma}) + b_{t} \right) \right).$$

Let $k \ge k_0$. Putting $n := n_k + 2\tau - 1 = k + 2\tau - 1$ above we obtain

$$\begin{aligned} |x_{n_k+\tau-1}^k| &= |x_{k+\tau-1}^k| \le \frac{1}{Cw_k} \left(D(Cw_k)^k + \sum_{s=k+2\tau-1}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} (|a_t|P + |b_t|) \right) \\ &\le \frac{1}{Cw_k} \left(D(Cw_k)^k + \sum_{s=k}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} (|a_t|P + |b_t|) \right) \le D(1 + (1 - w_k))(Cw_k)^{k-1}. \end{aligned}$$

Moreover,

$$\begin{aligned} |x_{n_k+\tau-2}^k| &= |x_{k+\tau-2}^k| \le \frac{1}{Cw_k} \left(|x_{k+2\tau-2}| + \sum_{s=k+2\tau-2}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} (|a_t|P + |b_t|) \right) \\ &\le \begin{cases} \frac{1}{Cw_k} \left(D(1 + (1 - w_k))(Cw_k)^{k-1} + \sum_{s=k}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} (|a_t|P + |b_t|) \right), & \text{for } \tau = 1 \\ \frac{1}{Cw_k} \left(D(Cw_k)^k + D(1 - w_k)(Cw_k)^k \right), & \text{for } \tau \ge 2 \end{cases} \\ &\le \begin{cases} D(1 + 2(1 - w_k))(Cw_k)^{k-2}, & \text{for } \tau = 1 \\ D(1 + (1 - w_k))(Cw_k)^{k-1}, & \text{for } \tau \ge 2 \end{cases}. \end{aligned}$$

We give the estimation of $|x_n^k|$ for the case $\tau = 1$, $\sigma = 0$. The other cases are analogous and are left to the reader. Indeed, for $k \ge k_0 + 1$,

$$\begin{aligned} |x_{k-2}^{k}| &\leq (Cw_{k})^{-1} \left(|x_{k-1}^{k}| + \sum_{s=k-1}^{\infty} \frac{1}{|r_{s}|} \sum_{t=s}^{\infty} (|a_{t}|P + |b_{t}|) \right) \\ &\leq (Cw_{k})^{k-3} \left(D + 2D(1-w_{k}) \right) + D \frac{(Cw_{k-1})^{k-1}}{Cw_{k}} (1-w_{k-1}) \\ &\leq (Cw_{k})^{k-3} (D + 2D(1-w_{k})) + D \frac{(Cw_{k})^{k-1}}{Cw_{k}} (1-w_{k-1}) \\ &\leq (Cw_{k})^{k-3} (D + 2D(1-w_{k}) + D(1-w_{k-1})) \leq D + 2D(1-w_{k}) + D(1-w_{k-1}) \end{aligned}$$

By induction for $i = 3, ..., k - k_0 + 1$,

$$|x_{k-i}^k| \le D(Cw_k)^{k-i-1} \left(1 + 2(1-w_k) + \sum_{j=k-i+1}^{k-1} (1-w_j) \right)$$

$$\le 2D + D \sum_{i=0}^{\infty} (1-w_i).$$

Moreover,

$$|x_{k_0-2}^k| \le \frac{1}{Cw_0} \left(2D + D\sum_{i=0}^{\infty} (1-w_i) + \sum_{s=k_0-1}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} (|a_t|P + |b_t|) \right),$$

and by induction

$$|x_0^k| \le \frac{1}{Cw_0} \left(2D + D \sum_{i=0}^{\infty} (1 - w_i) + \sum_{j=1}^{k_0 - 1} \sum_{s=j}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} (|a_t|P + |b_t|) \right).$$

Hence, for $n \in \mathbb{N}_{\tau}$, $k \geq k_0$,

$$|x_n^k| \le \frac{1}{Cw_0} \left(2D + D \sum_{i=0}^{\infty} (1 - w_i) + \sum_{j=1}^{k_0 - 1} \sum_{s=j}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} (|a_t|P + |b_t|) \right).$$

This means that the sequence $(x^k)_{k\geq k_0}$ is bounded in l_0^{∞} . Since $(l_0^1)^* = l_0^{\infty}$, then from Theorem 4, the Banach– Alaoglu theorem, we get that there exists $(x^{k_l})_{l\in\mathbb{N}} \subset (x^k)_{k\geq k_0}$, which is convergent on its coordinates. This means that there exists $\overline{x} = (\overline{x}_n)_{n\in\mathbb{N}_0} \in l_0^{\infty}$ such that

$$\lim_{l \to \infty} x_n^{k_l} = \overline{x}_n, \text{ for } n \in \mathbb{N}_0$$

and

$$\left|\overline{x}_{n}\right| \leq \frac{1}{Cw_{0}} \left(2D + D\sum_{i=0}^{\infty} (1-w_{i}) + \sum_{j=1}^{k_{0}-1} \sum_{s=j}^{\infty} \frac{1}{|r_{s}|} \sum_{t=s}^{\infty} (|a_{t}|P + |b_{t}|) \right),$$
(6)

for $n \in \mathbb{N}_0$. To get our results we pass with $l \to \infty$ in

$$x_{n}^{k_{l}} + w_{k_{l}}q_{n}x_{n-\tau}^{k_{l}} = \sum_{s=n}^{\infty} \frac{1}{r_{s}} \sum_{t=s}^{\infty} \left(a_{t}f(x_{t-\sigma}^{k_{l}}) + b_{t} \right), \text{ for } n \ge \tau.$$
(7)

It is easy to see that for $n \ge \tau$ we have

$$\lim_{l \to \infty} \left(x_n^{k_l} + w^{k_l} q_n x_{n-\tau}^{k_l} \right) = \overline{x}_n + q_n \overline{x}_{n-\tau}.$$

From Lebesgue's dominated convergence theorem and the continuity of f we get

$$\lim_{l \to \infty} \left(\sum_{s=n}^{\infty} \frac{1}{r_s} \sum_{t=s}^{\infty} \left(a_t f(x_{t-\sigma}^{k_l}) + b_t \right) \right) = \sum_{s=n}^{\infty} \frac{1}{r_s} \sum_{t=s}^{\infty} \left(a_t \left(\lim_{l \to \infty} f(x_{t-\sigma}^{k_l}) \right) + b_t \right) = \sum_{s=n}^{\infty} \frac{1}{r_s} \sum_{t=s}^{\infty} \left(a_t f(\overline{x}_{t-\sigma}) + b_t \right).$$

From (7) we get that

$$\overline{x}_n + q_n \overline{x}_{n-\tau} = \sum_{s=n}^{\infty} \frac{1}{r_s} \sum_{t=s}^{\infty} \left(a_t f(\overline{x}_{t-\sigma}) + b_t \right),$$

for $n \ge \tau$. Applying operator Δ to both sides of the above equation and multiplying by r_n and applying operator Δ a second time we get

$$\Delta \left(r_n \Delta (\overline{x}_n + q_n \overline{x}_{n-\tau}) \right) = a_n f(\overline{x}_{n-\sigma}) + b_n, \text{ for } n \ge \tau.$$

From (6) we get that $(\overline{x}_n)_{n \in \mathbb{N}_0}$ is the bounded full solution to (1).

Now we present an example of an equation that can be considered by our method.

Example 1 The following problem,

$$\Delta\left(\left(-1\right)^{n}\Delta\left(x_{n}+\left(1-\frac{1}{2^{n}}\right)x_{n-3}\right)\right) = \frac{3}{4}\frac{1}{2^{n}}(x_{n-1})^{6}, \ n \ge 3,$$
(8)

with $\tau = 3$, $\sigma = 1$, $r_n = (-1)^n$, $q_n = 1 - \frac{1}{2^n}$, $a_n = \frac{3}{4} \frac{1}{2^n}$, $b_n = 0$, $n \ge 1$, and $f(x) = x^6$ fulfills the assumptions of Theorem 6. We have to check only (H_{sb}) . For C = 9/10 and $w_k = 1 - (5/8)^k$, $k \ge 1$ and any D > 0 (with $P = D^6$), we get the existence k_0 such that for any $k \ge k_0$

$$3D^5 \left(\frac{8}{9}\right)^k < \left(1 - \left(\frac{5}{8}\right)^k\right)^k$$

Thus, for any $k \geq k_0$,

$$D^{6} \sum_{s=k}^{\infty} \sum_{t=s}^{\infty} |a_{t}| = D^{6} \sum_{s=k}^{\infty} \sum_{t=s}^{\infty} \frac{3}{4} \frac{1}{2^{t}} = 3D^{6} \frac{1}{2^{k}} < D\left(\frac{9}{10}\right)^{k} \left(1 - \left(\frac{5}{8}\right)^{k}\right)^{k} \left(\frac{5}{8}\right)^{k}.$$

It is easy to see that $x_n = (-1)^n$ is the bounded solution to (8).

Using the same technique, we get the following result.

Theorem 7 Assume that:

- $(H_0) \quad \tau, \sigma \in \mathbb{N}_0, \ \tau > \sigma;$
- (H_f) f is a continuous function;

 (H_{sb}) there exist D > 0, $k_0 \in \mathbb{N}$ and decreasing sequence $(w_k)_{k \in \mathbb{N}} \subset (1, \infty)$ with $\sum_{k=0}^{\infty} (w_k - 1) < \infty$ such that

$$\sum_{s=k}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} (|a_t|P + |b_t|) \le D(w_k - 1) w_k^{-k}, \text{ for } k \ge k_0$$

where $\max_{|x| \leq D} |f(x)| \leq P$;

 $(H_{q=1}^1) \quad q_n > 1, \ n \in \mathbb{N}_0, \ \lim_{n \to \infty} q_n = 1.$

Then there exists a bounded full solution to (1).

Remark 1 We obtain analogous theorems if we change the assumption $(H_{q=1})$ or $(H_{q=1}^1)$ to one of the following assumptions:

$$(H_{q=-1}) \quad q_n \in (-1,0), \ n \in \mathbb{N}_0, \quad \lim_{n \to \infty} q_n = -1, \ \sup_{n \in \mathbb{N}_0} q_n > 0.$$

 $(H_{q=-1}^1) \quad q_n < -1, \ n \in \mathbb{N}_0, \quad \lim_{n \to \infty} q_n = -1.$

4. The existence of l^p -solution

To get a better characterization of solutions to (1), we formulate sufficient conditions for the existence of an l^p solution to (1).

In this section, we also assume $\tau \in \mathbb{N}_0$, $\sigma \in \mathbb{Z}$, $a, b, q : \mathbb{N}_0 \to \mathbb{R}$, $r : \mathbb{N}_0 \to \mathbb{R} \setminus \{0\}$, and $f : \mathbb{R} \to \mathbb{R}$.

Theorem 8 Assume that:

 $(H_p) \quad p \ge 1;$

 (H_f) f is a continuous function;

$$(H_{sp}) \quad \sum_{n=0}^{\infty} \left(\sum_{s=n}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} |a_t| \right)^p < +\infty, \quad \sum_{n=0}^{\infty} \left(\sum_{s=n}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} |b_t| \right)^p < +\infty;$$

 $(H_{qp}) \sup_{n \in \mathbb{N}_0} |q_n| = q^{\star} \in (0, 2^{1-p}).$

Then equation (1) possesses an l^p -solution.

Proof From the continuity of f on [-1,1] we get the existence of W > 0 such that

$$|f(x)| \le W$$
, for $x \in [-1, 1]$.

The assumption (H_{sp}) implies there exists $n_0 > \beta := \max\{\tau, \sigma\}$ such that

$$4^{p-1} \left[W^p \sum_{n=n_0}^{\infty} \left(\sum_{s=n}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} |a_t| \right)^p + \sum_{n=n_0}^{\infty} \left(\sum_{s=n}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} |b_t| \right)^p \right] < 1 - 2^{p-1} q^{\star}.$$
(9)

We consider the Banach space l_0^p and its subset

$$A_{n_0} = \{ x = (x_n)_{n \in \mathbb{N}_0} \in l_0^p : x_0 = \ldots = x_{n_0 + \beta - 1} = 0, \ ||x||_{l^p} \le 1 \}.$$

Observe that A_{n_0} is a nonempty, bounded, convex, and closed subset of l_0^p . Define two mappings $T_1, T_2: l_0^p \to l_0^p$ as follows:

$$(T_1 x)_n = \begin{cases} 0, & \text{for } 0 \le n < n_0 + \beta \\ -q_n x_{n-\tau}, & \text{for } n \ge n_0 + \beta, \end{cases}$$
$$(T_2 x)_n = \begin{cases} 0, & \text{for } 0 \le n < n_0 + \beta \\ \sum_{s=n}^{\infty} \frac{1}{r_s} \sum_{t=s}^{\infty} \left(a_t f(x_{t-\sigma}) + b_t \right), & \text{for } n \ge n_0 + \beta. \end{cases}$$

Now we prove the assumptions of Theorem $\frac{3}{3}$ on Krasnoselskii's fixed point.

First, we show that $T_1x + T_2y \in A_{n_0}$ for $x, y \in A_{n_0}$. Let $x, y \in A_{n_0}$, for $n < n_0 + \beta$ $(T_1x + T_2y)_n = 0$. Using twice the classical inequality

$$(x+y)^p \le 2^{p-1}(x^p+y^p)$$
 for $x, y \ge 0, p \ge 1$,

for $n \ge n_0 + \beta$ we get

$$\begin{split} &|(T_1x+T_2y)_n|^p \le 2^{p-1} \left[(q^*)^p \left| x_{n-\tau} \right|^p + \left(\sum_{s=n}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} \left(|a_t|W + |b_t| \right) \right)^p \right], \\ &\le 2^{p-1} \left[q^* \left| x_{n-\tau} \right|^p + 2^{p-1} \left(W^p \left(\sum_{s=n}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} |a_t| \right)^p + \left(\sum_{s=n}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} |b_t| \right)^p \right) \right] \\ &\le 2^{p-1} q^* \left| x_{n-\tau} \right|^p + 4^{p-1} \left[W^p \left(\sum_{s=n}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} |a_t| \right)^p + \left(\sum_{s=n}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} |b_t| \right)^p \right]. \end{split}$$

By (9) we obtain that

$$\begin{aligned} ||T_1x + T_2y||_{l^p}^p &\leq 2^{p-1}q^* ||x||_{l^p}^p + 4^{p-1} \left[W^p \sum_{n=n_0+\beta}^{\infty} \left(\sum_{s=n}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} |a_t| \right)^p \right] \\ &+ \sum_{n=n_0+\beta}^{\infty} \left(\sum_{s=n}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} |b_t| \right)^p \right] &\leq 1. \end{aligned}$$

It is easy to see that

$$|T_1x - T_1y||_{l^p} \le q^* ||x - y||_{l^p}$$
, for $x, y \in A_{n_0}$,

so T_1 is a contraction.

Now we prove the continuity of T_2 . Let $x \in A_{n_0}$, $\varepsilon > 0$. The continuity of f implies that f is a uniformly continuous function on [-1, 1], which means there exists $\delta > 0$ such that

$$|f(u) - f(v)| < \left(\frac{\varepsilon}{\left(1 + \sum_{n=0}^{\infty} \left(\sum_{s=n}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} |a_t|\right)^p\right)}\right)^{1/p}, \text{ for } |u - v| < \delta, \ u, v \in [-1, 1].$$

Hence, for $y \in A_{n_0}$ and $n \ge n_0 + \beta$,

$$|(T_{2}x - T_{2}y)_{n}|^{p} \leq \left(\sum_{s=n}^{\infty} \frac{1}{|r_{s}|} \sum_{t=s}^{\infty} |a_{t}| |f(x_{t-\sigma}) - f(y_{t-\sigma})|\right)^{p}$$
$$\leq \left(\sum_{s=n}^{\infty} \frac{1}{|r_{s}|} \sum_{t=s}^{\infty} |a_{t}|\right)^{p} \frac{\varepsilon}{\left(1 + \sum_{n=0}^{\infty} \left(\sum_{s=n}^{\infty} \frac{1}{|r_{s}|} \sum_{t=s}^{\infty} |a_{t}|\right)^{p}\right)}.$$

Hence, we get that

$$||T_2x - T_2y||_{l_p} < \varepsilon$$
, for $||x - y||_{l_p} < \delta$, $y \in A_{n_0}$,

1966

which proves the continuity of T_2 on A_{n_0} . In an analogous way we get for $x \in A_{n_0}$ and $n \ge n_0 + \beta$

$$|(T_2x)_n|^p \le 2^{p-1} \left[W^p \left(\sum_{s=n}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} |a_t| \right)^p + \left(\sum_{s=n}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} |b_t| \right)^p \right]$$

and hence by (H_{sp})

$$\lim_{l \to \infty} \sup_{x \in A_{n_0}} \sum_{n=l}^{\infty} |(T_2 x)_n|^p \le \lim_{l \to \infty} \sum_{n=l}^{\infty} 2^{p-1} \left[W^p \left(\sum_{s=n}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} |a_t| \right)^p + \left(\sum_{s=n}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} |b_t| \right)^p \right] = 0,$$

which means that $T_2(A_{n_0})$ is a relatively compact subset of l^p .

From Theorem 3 we get that there exists $x = (x_n)_{n \in \mathbb{N}_1}$, the fixed point of $T_1 + T_2$ on A_{n_0} . Applying operator Δ to both sides of the above equation and multiplying by r_n and applying operator Δ a second time for $n \ge n_0 + 2\beta$ we get that $x = (x_n)_{n \in \mathbb{N}_{n_0+\beta}}$ is the $l_{n_0+\beta}^p$ -solution to (1).

Remark 2 It is worth mentioning that for p = 1 assumption (H_{sb}) implies assumption (H_{sp}) .

Now we present an example of an equation for which our method can be applied.

Example 2 Let us consider the following problem:

$$\Delta\left(\left(-1\right)^{n}\Delta\left(x_{n}+q_{n}x_{n-3}\right)\right) = 2^{-n}f(x_{n-1}) + \frac{1}{n(n+1)(n+2)(n+3)}, \ n \ge 3$$
(10)

with $\tau = 3$, $\sigma = 1$, $r_n = (-1)^n$, $a_n = 2^{-n}$, $b_n = \frac{1}{n(n+1)(n+2)(n+3)}$, $n \ge 1$, and any (q_n) , $\sup |q_n| < 1$, $f \in C^0(\mathbb{R})$. Note

$$\sum_{n=0}^{\infty} \sum_{s=n}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} |a_t| = 8,$$

$$\sum_{n=0}^{\infty} \sum_{s=n}^{\infty} \frac{1}{|r_s|} \sum_{t=s}^{\infty} |b_t| = \sum_{n=0}^{\infty} \sum_{s=n}^{\infty} \sum_{t=s}^{\infty} \frac{1}{t(t+1)(t+2)(t+3)}$$

$$= \sum_{n=0}^{\infty} \sum_{s=n}^{\infty} \frac{1}{4s(s+1)(s+2)} = \sum_{n=0}^{\infty} \frac{1}{12n(n+1)} < \infty,$$

which means that assumptions of Theorem 6 are fulfilled with p = 1. Hence, (10) has an l^1 -solution. It is obvious that this l^1 -solution is an l^p -solution for any p > 1.

Corollary 3 If in Theorem 8 we additionally assume

 (H'_0) $\tau, \sigma \in \mathbb{N}_0, \tau > \sigma \text{ and } q_n \neq 0, n \in \mathbb{N}_0,$

then equation (1) possesses a full l^p -solution.

References

- [1] Agarwal RP. Difference Equations and Inequalities. 2nd ed. New York, NY, USA: Marcel Dekker, 2000.
- [2] Agarwal RP, Grace SR, O'Regan D. Nonoscillatory solutions for discrete equations. Comput Math Appl 2003; 45: 1297-1302.
- [3] Costara C, Popa D. Exercises in Functional Analysis. Dordrecht, the Netherlands: Kluwer Academic Press, 2003.
- [4] Cheng SS. Existence of nonoscillatory solutions of a second-order linear neutral difference equation. Appl Math Lett 1999; 12: 71-78.
- [5] Cheng SS, Patula WT. An existence theorem for a nonlinear difference equation. Nonlinear Anal 1993; 20: 1297-1302.
- [6] Došlý O, Graef J, Jaroš J. Forced oscillation of second order linear and half-linear difference equations. P Am Math Soc 2002; 131: 2859-2867.
- [7] Elaydi SN. An Introduction to Difference Equations. 3rd ed. Undergraduate Texts in Mathematics. New York, NY, USA: Springer, 2005.
- [8] Ey K, Pötzsche C. Asymptotic behavior of recursions via fixed point theory. J Math Anal Appl 2008; 337: 1125-1141.
- [9] Galewski M, Jankowski R, Nockowska-Rosiak M, Schmeidel E. On the existence of bounded solutions for nonlinear second order neutral difference equations. Electron J Qual Theory Differ Equ 2014; 72: 1-12.
- [10] Gou Z, Liu M. Existence of non-oscillatory solutions for a higher-order nonlinear neutral difference equation. Electron J Diff Equ, 2010; 146: 1-7.
- Jankowski R, Schmeidel E. Almost oscillation criteria for second order neutral difference equation with quasidifferences. Int J Difference Equ 2014; 9: 77-86.
- [12] Jinfa C. Existence of a nonoscillatory solution of a second-order linear neutral difference equation. Appl Math Lett 2007; 20: 892-899.
- [13] Lalli BS, Grace SR. Oscillation theorems for second order neutral difference equations. Appl Math Comput 1994; 62: 47-60.
- [14] Lalli BS, Zhang BG. On existence of positive solutions and bounded oscillations for neutral difference equations. J Math Anal Appl 1992; 166: 272-287.
- [15] Liu Z, Xu Y, Kang SM. Global solvability for second order nonlinear neutral delay difference equation. Comput Math Appl 2009; 57: 587-595.
- [16] Liu Z, Zhao L, Kang SM, Ume JS. Existence of uncountably many bounded positive solutions for second order nonlinear neutral delay difference equations. Comput Math Appl 2011; 61: 2535-2545.
- [17] Luo JW, Bainov DD. Oscillatory and asymptotic behavior of second-order neutral difference equations with maxima. J Comput Appl Math 2001; 131: 333-341.
- [18] Meng Q, Yan J. Bounded oscillation for second-order nonlinear neutral difference equations in critical and noncritical states. J Comput Appl 2009; 57: 587-595.
- [19] Migda J. Approximate solutions of difference equations. Electron J Qual Theory Differ Equ 2014; 13: 1-26.
- [20] Migda J, Migda M. Asymptotic properties of solutions of second order neutral difference equations. Nonlinear Anal 2005; 63: 789-799.
- [21] Petropoulou E, Siafarikas P. Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane. II. Comput Math Appl 2001; 42: 427-452.
- [22] Petropoulou E, Siafarikas P. A functional-analytic method for the study of difference equations. Adv Difference Equ 2004; 3: 237-248.
- [23] Petropoulou E, Siafarikas P. Existence of complex l_2 solutions of linear delay systems of difference equations. J Differ Equations Appl 2006; 11: 49-62.

- [24] Pötzsche C. A functional-analytical approach to the asymptotic of recursions. P Am Math Soc 2009; 137: 3297-3307.
- [25] Rudin W. Functional Analysis. 2nd ed. New York, NY, USA: McGraw-Hill Inc., 1991.
- [26] Saker SH. New oscillation criteria for second-order nonlinear neutral delay difference equations. Appl Math Comput 2003; 142: 99-111.
- [27] Saker SH. Oscillation theorems of nonlinear difference equations of second order. Georgian Math J 2003; 10: 343-352.
- [28] Saker SH. Oscillation of second-order perturbed nonlinear difference equations. Appl Math Comput 2003 144: 305-324.
- [29] Schmeidel E. An application of measures of noncompactness in the investigation of boundedness of solutions of second order neutral difference equations. Adv Difference Equ 2013; 2013: 91.
- [30] Schmeidel E, Zbaszyniak Z. An application of Darbo's fixed point theorem in the investigation of periodicity of solutions of difference equations. Comput Math Appl 2012; 64: 2185-2191.
- [31] Thandapani E, Kavitha N, Pinelas S. Oscillation criteria for second-order nonlinear neutral difference equations of mixed type. Adv Difference Equ 2012; 2012: 4.
- [32] Zeidler E. Nonlinear Functional Analysis and Its Applications I. Fixed-Point Theorems. New York, NY, USA: Springer-Verlag, 1986.