Bounded solutions and asymptotic stability of nonlinear second-order neutral difference equations with quasi-differences

Magdalena NOCKOWSKA-ROSIAK* ${ }^{\text {(}}$
Institute of Mathematics, Lodz University of Technology Łódź, Poland

| Received: 12.08 .2017 | \bullet | Accepted/Published Online: 08.05 .2018 | Final Version: 24.07 .2018 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

This work is devoted to the study of the nonlinear second-order neutral difference equations with quasidifferences of the form $$
\Delta\left(r_{n} \Delta\left(x_{n}+q_{n} x_{n-\tau}\right)\right)=a_{n} f\left(x_{n-\sigma}\right)+b_{n}
$$ with respect to $\left(q_{n}\right)$. For $q_{n} \rightarrow 1, q_{n} \in(0,1)$ the standard fixed point approach is insufficient to get the existence of the bounded solution, so we combine this method with an approximation technique to achieve our goal. Moreover, for $p \geq 1$ and $\sup \left|q_{n}\right|<2^{1-p}$, using Krasnoselskii's fixed point theorem we obtain sufficient conditions for the existence of the solution that belongs to l^{p} space.

Key words: Nonlinear neutral difference equation, Krasnoselskii's fixed point theorem, approximation

1. Introduction

Difference equations are used in mathematical models in diverse areas such as economy, biology, and computer science; see, for example, [1, 7]. In the past thirty years, oscillation, nonoscillation, and the asymptotic behavior and existence of bounded solutions to many types of second-order difference equations have been widely examined; see, for example, $[2,4,6,9-11,13,14,17-20,26-31]$, and references therein.

The second-order difference equation with quasi-difference of the form

$$
\Delta\left(r_{n} \Delta\left(x_{n}+q_{n} x_{n-\tau}\right)\right)=F\left(n, x_{n-\sigma}\right)
$$

is studied in the literature with respect to a sequence $\left(q_{n}\right)$. Fixed point theory is the standard technique to prove the existence of the bounded solution to the considered problem with constant $\left(q_{n}\right)$ and sequences $\left(q_{n}\right)$ for which absolute values are lower or grater than 1 . Let us present a short overview of papers that deal with this problem. By using Banach's fixed point theorem, Jinfa [12] and Liu et al. [15] investigated the nonoscillatory solution to the second-order neutral delay difference equation of the following form:

$$
\Delta\left(r_{n} \Delta\left(x_{n}+q x_{n-\tau}\right)\right)+f\left(n, x_{n-d_{1 n}}, \ldots, x_{n-d_{k n}}\right)=c_{n}
$$

Liu et al. [15] proved the existence of uncountably many bounded nonoscillatory solutions for the above problem under the Lipschitz continuity condition. With the Leray-Schauder type of condensing operators Agarwal et

[^0]al. [2] examined the existence of a nonoscillatory solution to the problem
$$
\Delta\left(r_{n} \Delta\left(x_{n}+q x_{n-\tau}\right)\right)+F\left(n+1, x_{n+1-\sigma}\right)=0
$$
where $q \in \mathbb{R} \backslash\{ \pm 1\}$. Liu et al. [16] discussed the existence of uncountably many bounded positive solutions to
$$
\Delta\left(r_{n} \Delta\left(x_{n}+b_{n} x_{n-\tau}-c_{n}\right)\right)+f\left(n, x\left(f_{1}(n)\right), \ldots, x\left(f_{k}(n)\right)\right)=d_{n}
$$
where $\sup _{n \in \mathbb{N}} b_{n}=b^{\star}, b^{\star} \neq 1$ or $\inf _{n \in \mathbb{N}} b_{n}=b_{\star}, b_{\star} \neq-1$ by Krasnoselskii's fixed point theorem.
On the other hand, Petropoulous and Siafarikas considered different types of difference equations in Hilbert space; see [21-23]. Moreover, the functional-analytical method for general nonautonomous difference equations of the form $x_{k+1}=f_{k}\left(x_{k}, x_{k+1}\right)$ was considered by Ey and Pötzsche [8] and Pötzsche [24]. This approach allows us to better characterize solutions to difference equations.

In this paper we study the following second-order neutral difference equation with quasi-difference

$$
\begin{equation*}
\Delta\left(r_{n} \Delta\left(x_{n}+q_{n} x_{n-\tau}\right)\right)=a_{n} f\left(x_{n-\sigma}\right)+b_{n} \tag{1}
\end{equation*}
$$

where $\tau \in \mathbb{N}_{0}, \sigma \in \mathbb{Z}, a, b, q: \mathbb{N}_{0} \rightarrow \mathbb{R}, r: \mathbb{N}_{0} \rightarrow \mathbb{R} \backslash\{0\}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function. If the sequence $\left(q_{n}\right)$ is convergent to 1 , then the fixed point approach can not be applied to solve the studied problem, because Krasnoselskii's fixed point theorem need two operators, one of which is a contraction. To overcome the limitation of this method we combine this approach with the approximation technique under the additional assumption $q_{n} \in(0,1)$. The approximation approach in this type of difference equations and the case when $\left(q_{n}\right)$ is convergent to 1 has not been discussed so far, to our knowledge. Moreover, in the case $p \geq 1$ and $\sup \left|q_{n}\right|<2^{1-p}$ we establish sufficient conditions of the existence of the solution to (1), which belongs to l^{p} space. To get our result Krasnoselskii's fixed point theorem is used.

2. Preliminaries

Throughout this paper, we assume that Δ is the forward difference operator, $\mathbb{N}_{k}:=\{k, k+1, \ldots\}$, where k is a given nonnegative integer and \mathbb{R} is a set of all real numbers.

Let $k \in \mathbb{N}_{0}$. We consider the Banach space l_{k}^{∞} of all real bounded sequences $x: \mathbb{N}_{k} \rightarrow \mathbb{R}$ equipped with the standard supremum norm, i.e.

$$
\|x\|=\sup _{n \in \mathbb{N}_{k}}\left|x_{n}\right|, \text { for } x=\left(x_{n}\right)_{n \geq k} \in l_{k}^{\infty} .
$$

Definition 1 [5] A subset A of l_{k}^{∞} is said to be uniformly Cauchy if for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}_{k}$ such that $\left|x_{i}-x_{j}\right|<\varepsilon$ for any $i, j \geq n_{0}$ and $x=\left(x_{n}\right) \in A$.

Theorem 1 [5] A bounded, uniformly Cauchy subset of l_{k}^{∞} is relatively compact.
For a real $p \geq 1$ we define l_{k}^{p} as the Banach space of p-summable sequences as follows:

$$
l_{k}^{p}:=\left\{x: \mathbb{N}_{k} \rightarrow \mathbb{R}: \sum_{n=k}^{\infty}|x(n)|^{p}<\infty\right\}
$$

with the standard norm, i.e.

$$
\|x\|_{l_{k}^{p}}=\left(\sum_{n=k}^{\infty}|x(n)|^{p}\right)^{1 / p}
$$

The relative compactness criterion in l^{p} is given in the following theorem:
Theorem 2 ([3], p.106) Let $p \in[1, \infty), k \in \mathbb{N}_{0}$. A subset A of l_{k}^{p} is relatively compact if and only if A is bounded and

$$
\lim _{l \rightarrow \infty} \sup _{x=\left(x_{n}\right) \in A} \sum_{n=l}^{\infty}\left|x_{n}\right|^{p}=0
$$

To get the main results of this paper we use Krasnoselskii's fixed point theorem of the following form.
Theorem 3 ([32], 11.B p. 501) Let X be a Banach space; B be a bounded, closed, convex subset of X; and $S, G: B \rightarrow X$ be mappings such that $S x+G y \in B$ for any $x, y \in B$. If S is a contraction and G is compact, then the equation

$$
S x+G x=x
$$

has a solution in B.
To use the approximation technique we need the following Banach-Alaoglu theorem.

Theorem 4 [25] If X is a Banach space and $S^{\star}=\left\{x^{\star} \in X^{\star}:\left\|x^{\star}\right\| \leq 1\right\}$, then S^{\star} is weak${ }^{\star}$-compact.
Let us close the preliminaries paragraph with definitions of different types of solutions to (1). By a solution to equation (1) we mean a sequence $x: \mathbb{N}_{k-\max \{\tau, \sigma\}} \rightarrow \mathbb{R}$ that satisfies (1) for every $n \in \mathbb{N}_{k}$ for some $k \geq \max \{\tau, \sigma\}$. By a full solution to equation (1) we mean a sequence $x: \mathbb{N}_{0} \rightarrow \mathbb{R}$ that satisfies (1) for every $n \geq \max \{\tau, \sigma\}$. For $p \geq 1$, a solution x to (1) is said to be an l^{p} solution if $x \in l_{k}^{p}$ for some $k \in \mathbb{N}_{0}$.

3. Dependence of existence of bounded solutions on the sequence $\left(q_{n}\right)$

Sufficient conditions for the existence of a bounded solution to equation (1) with respect to values of sequence $\left(q_{n}\right)$ are derived. At the beginning of this section we formulate and prove the theorem in which values of sequences $\left(\left|q_{n}\right|\right)$ are less than 1. Based on this result we prove the existence of the bounded full solution for $\left(q_{n}\right)$ convergent to 1.

In this section, unless otherwise noted, we assume $\tau \in \mathbb{N}_{0}, \sigma \in \mathbb{Z}, a, b, q: \mathbb{N}_{0} \rightarrow \mathbb{R}, r: \mathbb{N}_{0} \rightarrow \mathbb{R} \backslash\{0\}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$.

Theorem 5 Assume that
$\left(H_{f}\right) f$ is a continuous function;
$\left(H_{s}\right) \quad \sum_{s=0}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|a_{t}\right|<+\infty, \quad \sum_{s=0}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|b_{t}\right|<+\infty ;$
$\left(H_{q}\right) \sup _{n \in \mathbb{N}_{0}}\left|q_{n}\right|=q^{\star}<1$.
Then equation (1) possesses a bounded solution.

NOCKOWSKA-ROSIAK/Turk J Math

Proof Let $M>0$. From the continuity of f on $[-M, M]$ we get the existence of $Q>0$ such that

$$
|f(x)| \leq Q, \text { for } x \in[-M, M]
$$

By $\left(H_{s}\right)$ there exists $n_{0}>\beta:=\max \{\tau, \sigma\}$ such that

$$
\begin{equation*}
\sum_{s=n_{0}}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left(\left|a_{t}\right| Q+\left|b_{t}\right|\right)<\left(1-q^{\star}\right) M \tag{2}
\end{equation*}
$$

We consider the Banach space l_{0}^{∞} and its subset

$$
A_{n_{0}}=\left\{x=\left(x_{n}\right)_{n \in \mathbb{N}_{0}} \in l_{0}^{\infty}: x_{0}=\ldots=x_{n_{0}+\beta-1}=0,\left|x_{n}\right| \leq M, n \geq n_{0}+\beta\right\}
$$

Observe that $A_{n_{0}}$ is a nonempty, bounded, convex, and closed subset of l_{0}^{∞}.
Define two mappings $T_{1}, T_{2}: l_{0}^{\infty} \rightarrow l_{0}^{\infty}$ as follows:

$$
\begin{gathered}
\left(T_{1} x\right)_{n}= \begin{cases}0, & \text { for } 0 \leq n<n_{0}+\beta \\
-q_{n} x_{n-\tau}, & \text { for } n \geq n_{0}+\beta,\end{cases} \\
\left(T_{2} x\right)_{n}= \begin{cases}0, & \text { for } 0 \leq n<n_{0}+\beta \\
\sum_{s=n}^{\infty} \frac{1}{r_{s}} \sum_{t=s}^{\infty}\left(a_{t} f\left(x_{t-\sigma}\right)+b_{t}\right), & \text { for } n \geq n_{0}+\beta .\end{cases}
\end{gathered}
$$

Our next goal is to check assumptions of Theorem 3, Krasnoselskii's fixed point.
First, we show that $T_{1} x+T_{2} y \in A_{n_{0}}$ for $x, y \in A_{n_{0}}$. Let $x, y \in A_{n_{0}}$. For $n<n_{0}+\beta\left(T_{1} x+T_{2} y\right)_{n}=0$. For $n \geq n_{0}+\beta$ from assumption $\left(H_{q}\right)$ and (2) we get

$$
\left|\left(T_{1} x+T_{2} y\right)_{n}\right| \leq\left|q_{n} x_{n-\tau}\right|+\sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left(\left|a_{t}\right| Q+\left|b_{t}\right|\right) \leq q^{\star} M+\left(1-q^{\star}\right) M=M
$$

It is easy to see that

$$
\left\|T_{1} x-T_{1} y\right\| \leq q^{\star} \mid\|x-y\|, \text { for } x, y \in A_{n_{0}}
$$

so T_{1} is a contraction.
Now we prove the continuity of T_{2}. Let $x \in A_{n_{0}}, \varepsilon>0$. The continuity of f implies that f is a uniformly continuous function on compact set $[-M, M]$. Hence, there exists $\delta>0$ such that

$$
\begin{equation*}
|f(u)-f(v)|<\frac{\varepsilon}{\left(1+\sum_{s=0}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|a_{t}\right|\right)}, \text { for }|u-v|<\delta, u, v \in[-M, M] \tag{3}
\end{equation*}
$$

Let $y \in A_{n_{0}}$ such that $\|x-y\|<\delta$. Then for any $n \geq n_{0}+\beta$ we have that $\left|x_{n}-y_{n}\right|<\delta, x_{n}, y_{n} \in[-M, M]$, and from (3)

$$
\left|\left(T_{2} x-T_{2} y\right)_{n}\right| \leq \sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left(\left|a_{t}\right| \cdot\left|f\left(x_{t-\sigma}\right)-f\left(y_{t-\sigma}\right)\right|\right)<\varepsilon
$$

Hence, $\left\|T_{2} x-T_{2} y\right\|<\varepsilon$ for $y \in A_{n_{0}},\|x-y\|<\delta$, which proves the continuity of T_{2} in any $x \in A_{n_{0}}$.
Now we show that $T_{2}\left(A_{n_{0}}\right)$ is uniformly Cauchy. Let $\varepsilon>0$. From $\left(H_{s}\right)$ we get the existence of $n_{\varepsilon} \geq \beta+n_{0}$ such that

$$
2 \sum_{s=n_{\varepsilon}}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left(\left|a_{t}\right| Q+\left|b_{t}\right|\right)<\varepsilon
$$

For $m>n \geq n_{\varepsilon}$ and for $x \in A_{n_{0}}$ we have

$$
\begin{aligned}
& \left|\left(T_{2} x\right)_{n}-\left(T_{2} x\right)_{m}\right|=\left|\sum_{s=n}^{\infty} \frac{1}{r_{s}} \sum_{t=s}^{\infty}\left(a_{t} f\left(x_{t-\sigma}\right)+b_{t}\right)-\sum_{s=m}^{\infty} \frac{1}{r_{s}} \sum_{t=s}^{\infty}\left(a_{t} f\left(x_{t-\sigma}\right)+b_{t}\right)\right| \\
& \leq 2 \sum_{s=n_{\varepsilon}}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left(\left|a_{t}\right| Q+\left|b_{t}\right|\right)<\varepsilon
\end{aligned}
$$

Since $T_{2}\left(A_{n_{0}}\right)$ is uniformly Cauchy and bounded, then by Theorem $1 T_{2}\left(A_{n_{0}}\right)$ is relatively compact in l_{0}^{∞}, which means that T_{2} is a compact operator.

From Krasnosielskii's theorem we get that there exists $x=\left(x_{n}\right)_{n \in \mathbb{N}_{0}}$, the fixed point of $T_{1}+T_{2}$ on $A_{n_{0}}$. Applying operator Δ to both sides of the above equation and multiplying by r_{n} and applying operator Δ a second time for $n \geq n_{0}+2 \beta$, we get $x=\left(x_{n}\right)_{n \in \mathbb{N}_{n_{0}+\beta}}$ as the solution to (1).
To achieve the main result of this section we need to have a full solution to (1), which means a solution defined for $n \in \mathbb{N}_{0}$. In the case of $\sup \left|q_{n}\right|<1$ we obtain the full solution to (1) under one additional assumption in Theorem 5.

Corollary 1 Let the assumptions of Theorem 5 be fulfilled. If we additionally assume
$\left(H_{0}^{\prime}\right) \quad \tau, \sigma \in \mathbb{N}_{0}, \tau>\sigma$ and $q_{n} \neq 0$ for $n \in \mathbb{N}_{0}$,
then equation (1) possesses a bounded full solution.
Proof We find previous $n_{0}+\max \{\tau, \sigma\}$ terms of sequence x by the following formula:

$$
x_{n-\tau}=\frac{1}{q_{n}}\left(-x_{n}+\sum_{s=n}^{\infty} \frac{1}{r_{s}} \sum_{t=s}^{\infty}\left(a_{t} f\left(x_{t-\sigma}\right)+b_{t}\right)\right)
$$

starting with putting $n:=n_{0}+2 \tau-1$.
Using the same technique, we get the following result.

Corollary 2 Assume that:
$\left(H_{0}\right) \quad \tau, \sigma \in \mathbb{N}_{0}, \tau>\sigma$;
$\left(H_{f}\right) f$ is a continuous function;
$\left(H_{s}\right) \quad \sum_{s=0}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|a_{t}\right|<+\infty, \quad \sum_{s=0}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|b_{t}\right|<+\infty ;$
$\left(H_{q}^{1}\right) \inf _{n \in \mathbb{N}_{0}} q_{n}=q^{\star}>1$.
Then there exists a bounded full solution to (1).

Proof The proof is similar to the proof of Theorem 5 with operators

$$
\begin{gathered}
\left(T_{1} x\right)_{n}= \begin{cases}0, & \text { for } 0 \leq n<n_{0} \\
-\frac{1}{q_{n+\tau}} x_{n+\tau}, & \text { for } n \geq n_{0},\end{cases} \\
\left(T_{2} x\right)_{n}= \begin{cases}0, & \text { for } 0 \leq n<n_{0} \\
\frac{1}{q_{n+\tau}} \sum_{s=n+\tau}^{\infty} \frac{1}{r_{s}} \sum_{t=s}^{\infty}\left(a_{t} f\left(x_{t-\sigma}\right)+b_{t}\right), & \text { for } n \geq n_{0},\end{cases}
\end{gathered}
$$

where for any $M>0$ there exist $Q>0$ and $n_{0}>\beta:=\max \{\tau, \sigma\}$ such that

$$
\sum_{s=n_{0}}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left(\left|a_{t}\right| Q+\left|b_{t}\right|\right)<\left(1-\frac{1}{q^{\star}}\right) M
$$

Now we are in a position to formulate and prove the main result of this section using an approximation technique.

Theorem 6 Assume that:
$\left(H_{0}\right) \quad \tau, \sigma \in \mathbb{N}_{0}, \tau>\sigma ;$
$\left(H_{f}\right) f$ is a continuous function;
$\left(H_{s b}\right)$ there exist $D>0, C \in(0,1), k_{0} \in \mathbb{N}$ and increasing sequence $\left(w_{k}\right)_{k \in \mathbb{N}} \subset(0,1)$ with $\sum_{k=0}^{\infty}\left(1-w_{k}\right)<\infty$ such that

$$
\sum_{s=k}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left(\left|a_{t}\right| P+\left|b_{t}\right|\right) \leq D\left(1-w_{k}\right)\left(C w_{k}\right)^{k}, \text { for } k \geq k_{0}
$$

where $\max _{|x| \leq D}|f(x)| \leq P$;
$\left(H_{q=1}\right) \quad q_{n} \in(0,1), n \in \mathbb{N}_{0}, \lim _{n \rightarrow \infty} q_{n}=1, \inf _{n \in \mathbb{N}_{0}} q_{n}>0$.
Then there exists a bounded full solution to equation (1).
Proof For any $k \in \mathbb{N}$, let us consider an auxiliary problem,

$$
\begin{equation*}
\Delta\left(r_{n} \Delta\left(x_{n}+w_{k} q_{n} x_{n-\tau}\right)\right)=a_{n} f\left(x_{n-\sigma}\right)+b_{n} \tag{4}
\end{equation*}
$$

where $\left(w_{k}\right)$ is the sequence satisfying $\left(H_{s b}\right)$. It is obvious that

$$
\sup \left\{w_{k} q_{n}: n \in \mathbb{N}_{0}\right\}=w_{k}<1
$$

Without loss of generality we can assume that

$$
\inf \left\{q_{n}: n \in \mathbb{N}_{0}\right\}>C
$$

NOCKOWSKA-ROSIAK/Turk J Math

where C is the constant from assumption $\left(H_{s b}\right)$. By $\left(H_{s b}\right)$ there exist $k_{0} \in \mathbb{N}, D>0$ such that for any $k \geq k_{0}$

$$
\begin{equation*}
\sum_{s=k}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left(\left|a_{t}\right| P+\left|b_{t}\right|\right) \leq D\left(1-w_{k}\right)\left(C w_{k}\right)^{k} \tag{5}
\end{equation*}
$$

From Theorem 5, (4) possesses a bounded solution $x^{k}=\left(x_{n}^{k}\right)_{n \in \mathbb{N}_{n_{k}+\tau}}$ for some $n_{k} \in \mathbb{N}$. Moreover, by the proof of Theorem 5 we see that (5) implies (2) with $M_{k}=D\left(C w_{k}\right)^{k} \leq D$. Hence, $x^{k}=\left(x_{n}^{k}\right)_{n \in \mathbb{N}_{n_{k}+\tau}} \in l_{n_{k}+\tau}^{\infty}$ is the fixed point of $T_{1}+T_{2}$ on $A_{n_{k}}$ with $n_{k}:=k$ for $k \geq k_{0}$. This means that for $k \geq k_{0}, x^{k}=\left(x_{n}^{k}\right)_{n \geq k+\tau}$ solves (4) for $n \geq k+2 \tau$ and $\left|x_{n}^{k}\right| \leq D\left(C w_{k}\right)^{k}$ for $n \geq k+\tau$. We find previous $k+\tau$ terms of sequence $\left(x_{n}^{k}\right)_{n \geq 0}$ and estimate them by using the following formula:

$$
x_{n-\tau}^{k}=\frac{1}{w_{k} q_{n}}\left(-x_{n}^{k}+\sum_{s=n}^{\infty} \frac{1}{r_{s}} \sum_{t=s}^{\infty}\left(a_{t} f\left(x_{t-\sigma}\right)+b_{t}\right)\right)
$$

Let $k \geq k_{0}$. Putting $n:=n_{k}+2 \tau-1=k+2 \tau-1$ above we obtain

$$
\begin{aligned}
& \left|x_{n_{k}+\tau-1}^{k}\right|=\left|x_{k+\tau-1}^{k}\right| \leq \frac{1}{C w_{k}}\left(D\left(C w_{k}\right)^{k}+\sum_{s=k+2 \tau-1}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left(\left|a_{t}\right| P+\left|b_{t}\right|\right)\right) \\
& \leq \frac{1}{C w_{k}}\left(D\left(C w_{k}\right)^{k}+\sum_{s=k}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left(\left|a_{t}\right| P+\left|b_{t}\right|\right)\right) \leq D\left(1+\left(1-w_{k}\right)\right)\left(C w_{k}\right)^{k-1} .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \left|x_{n_{k}+\tau-2}^{k}\right|=\left|x_{k+\tau-2}^{k}\right| \leq \frac{1}{C w_{k}}\left(\left|x_{k+2 \tau-2}\right|+\sum_{s=k+2 \tau-2}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left(\left|a_{t}\right| P+\left|b_{t}\right|\right)\right) \\
& \leq \begin{cases}\frac{1}{C w_{k}}\left(D\left(1+\left(1-w_{k}\right)\right)\left(C w_{k}\right)^{k-1}+\sum_{s=k}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left(\left|a_{t}\right| P+\left|b_{t}\right|\right)\right), & \text { for } \tau=1 \\
\frac{1}{C w_{k}}\left(D\left(C w_{k}\right)^{k}+D\left(1-w_{k}\right)\left(C w_{k}\right)^{k}\right),\end{cases} \\
& \leq \begin{cases}D\left(1+2\left(1-w_{k}\right)\right)\left(C w_{k}\right)^{k-2}, & \text { for } \tau=1 \\
D\left(1+\left(1-w_{k}\right)\right)\left(C w_{k}\right)^{k-1}, & \text { for } \tau \geq 2\end{cases}
\end{aligned}
$$

We give the estimation of $\left|x_{n}^{k}\right|$ for the case $\tau=1, \sigma=0$. The other cases are analogous and are left to the reader. Indeed, for $k \geq k_{0}+1$,

$$
\begin{aligned}
& \left|x_{k-2}^{k}\right| \leq\left(C w_{k}\right)^{-1}\left(\left|x_{k-1}^{k}\right|+\sum_{s=k-1}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left(\left|a_{t}\right| P+\left|b_{t}\right|\right)\right) \\
& \leq\left(C w_{k}\right)^{k-3}\left(D+2 D\left(1-w_{k}\right)\right)+D \frac{\left(C w_{k-1}\right)^{k-1}}{C w_{k}}\left(1-w_{k-1}\right) \\
& \leq\left(C w_{k}\right)^{k-3}\left(D+2 D\left(1-w_{k}\right)\right)+D \frac{\left(C w_{k}\right)^{k-1}}{C w_{k}}\left(1-w_{k-1}\right) \\
& \leq\left(C w_{k}\right)^{k-3}\left(D+2 D\left(1-w_{k}\right)+D\left(1-w_{k-1}\right)\right) \leq D+2 D\left(1-w_{k}\right)+D\left(1-w_{k-1}\right)
\end{aligned}
$$

NOCKOWSKA-ROSIAK/Turk J Math

By induction for $i=3, \ldots, k-k_{0}+1$,

$$
\begin{aligned}
& \left|x_{k-i}^{k}\right| \leq D\left(C w_{k}\right)^{k-i-1}\left(1+2\left(1-w_{k}\right)+\sum_{j=k-i+1}^{k-1}\left(1-w_{j}\right)\right) \\
& \leq 2 D+D \sum_{i=0}^{\infty}\left(1-w_{i}\right)
\end{aligned}
$$

Moreover,

$$
\left|x_{k_{0}-2}^{k}\right| \leq \frac{1}{C w_{0}}\left(2 D+D \sum_{i=0}^{\infty}\left(1-w_{i}\right)+\sum_{s=k_{0}-1}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left(\left|a_{t}\right| P+\left|b_{t}\right|\right)\right)
$$

and by induction

$$
\left|x_{0}^{k}\right| \leq \frac{1}{C w_{0}}\left(2 D+D \sum_{i=0}^{\infty}\left(1-w_{i}\right)+\sum_{j=1}^{k_{0}-1} \sum_{s=j}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left(\left|a_{t}\right| P+\left|b_{t}\right|\right)\right)
$$

Hence, for $n \in \mathbb{N}_{\tau}, k \geq k_{0}$,

$$
\left|x_{n}^{k}\right| \leq \frac{1}{C w_{0}}\left(2 D+D \sum_{i=0}^{\infty}\left(1-w_{i}\right)+\sum_{j=1}^{k_{0}-1} \sum_{s=j}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left(\left|a_{t}\right| P+\left|b_{t}\right|\right)\right)
$$

This means that the sequence $\left(x^{k}\right)_{k \geq k_{0}}$ is bounded in l_{0}^{∞}. Since $\left(l_{0}^{1}\right)^{\star}=l_{0}^{\infty}$, then from Theorem 4, the BanachAlaoglu theorem, we get that there exists $\left(x^{k_{l}}\right)_{l \in \mathbb{N}} \subset\left(x^{k}\right)_{k \geq k_{0}}$, which is convergent on its coordinates. This means that there exists $\bar{x}=\left(\bar{x}_{n}\right)_{n \in \mathbb{N}_{0}} \in l_{0}^{\infty}$ such that

$$
\lim _{l \rightarrow \infty} x_{n}^{k_{l}}=\bar{x}_{n}, \text { for } n \in \mathbb{N}_{0}
$$

and

$$
\begin{equation*}
\left|\bar{x}_{n}\right| \leq \frac{1}{C w_{0}}\left(2 D+D \sum_{i=0}^{\infty}\left(1-w_{i}\right)+\sum_{j=1}^{k_{0}-1} \sum_{s=j}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left(\left|a_{t}\right| P+\left|b_{t}\right|\right)\right) \tag{6}
\end{equation*}
$$

for $n \in \mathbb{N}_{0}$. To get our results we pass with $l \rightarrow \infty$ in

$$
\begin{equation*}
x_{n}^{k_{l}}+w_{k_{l}} q_{n} x_{n-\tau}^{k_{l}}=\sum_{s=n}^{\infty} \frac{1}{r_{s}} \sum_{t=s}^{\infty}\left(a_{t} f\left(x_{t-\sigma}^{k_{l}}\right)+b_{t}\right), \text { for } n \geq \tau \tag{7}
\end{equation*}
$$

It is easy to see that for $n \geq \tau$ we have

$$
\lim _{l \rightarrow \infty}\left(x_{n}^{k_{l}}+w^{k_{l}} q_{n} x_{n-\tau}^{k_{l}}\right)=\bar{x}_{n}+q_{n} \bar{x}_{n-\tau}
$$

From Lebesgue's dominated convergence theorem and the continuity of f we get

$$
\begin{aligned}
& \lim _{l \rightarrow \infty}\left(\sum_{s=n}^{\infty} \frac{1}{r_{s}} \sum_{t=s}^{\infty}\left(a_{t} f\left(x_{t-\sigma}^{k_{l}}\right)+b_{t}\right)\right)=\sum_{s=n}^{\infty} \frac{1}{r_{s}} \sum_{t=s}^{\infty}\left(a_{t}\left(\lim _{l \rightarrow \infty} f\left(x_{t-\sigma}^{k_{l}}\right)\right)+b_{t}\right)= \\
& \sum_{s=n}^{\infty} \frac{1}{r_{s}} \sum_{t=s}^{\infty}\left(a_{t} f\left(\bar{x}_{t-\sigma}\right)+b_{t}\right) .
\end{aligned}
$$

From (7) we get that

$$
\bar{x}_{n}+q_{n} \bar{x}_{n-\tau}=\sum_{s=n}^{\infty} \frac{1}{r_{s}} \sum_{t=s}^{\infty}\left(a_{t} f\left(\bar{x}_{t-\sigma}\right)+b_{t}\right)
$$

for $n \geq \tau$. Applying operator Δ to both sides of the above equation and multiplying by r_{n} and applying operator Δ a second time we get

$$
\Delta\left(r_{n} \Delta\left(\bar{x}_{n}+q_{n} \bar{x}_{n-\tau}\right)\right)=a_{n} f\left(\bar{x}_{n-\sigma}\right)+b_{n}, \text { for } n \geq \tau
$$

From (6) we get that $\left(\bar{x}_{n}\right)_{n \in \mathbb{N}_{0}}$ is the bounded full solution to (1).
Now we present an example of an equation that can be considered by our method.
Example 1 The following problem,

$$
\begin{equation*}
\Delta\left((-1)^{n} \Delta\left(x_{n}+\left(1-\frac{1}{2^{n}}\right) x_{n-3}\right)\right)=\frac{3}{4} \frac{1}{2^{n}}\left(x_{n-1}\right)^{6}, n \geq 3 \tag{8}
\end{equation*}
$$

with $\tau=3, \sigma=1, r_{n}=(-1)^{n}, q_{n}=1-\frac{1}{2^{n}}, a_{n}=\frac{3}{4} \frac{1}{2^{n}}, b_{n}=0, n \geq 1$, and $f(x)=x^{6}$ fulfills the assumptions of Theorem 6. We have to check only $\left(H_{s b}\right)$. For $C=9 / 10$ and $w_{k}=1-(5 / 8)^{k}, k \geq 1$ and any $D>0$ (with $P=D^{6}$), we get the existence k_{0} such that for any $k \geq k_{0}$

$$
3 D^{5}\left(\frac{8}{9}\right)^{k}<\left(1-\left(\frac{5}{8}\right)^{k}\right)^{k}
$$

Thus, for any $k \geq k_{0}$,

$$
D^{6} \sum_{s=k}^{\infty} \sum_{t=s}^{\infty}\left|a_{t}\right|=D^{6} \sum_{s=k}^{\infty} \sum_{t=s}^{\infty} \frac{3}{4} \frac{1}{2^{t}}=3 D^{6} \frac{1}{2^{k}}<D\left(\frac{9}{10}\right)^{k}\left(1-\left(\frac{5}{8}\right)^{k}\right)^{k}\left(\frac{5}{8}\right)^{k}
$$

It is easy to see that $x_{n}=(-1)^{n}$ is the bounded solution to (8).
Using the same technique, we get the following result.
Theorem 7 Assume that:
$\left(H_{0}\right) \quad \tau, \sigma \in \mathbb{N}_{0}, \tau>\sigma$;
$\left(H_{f}\right) f$ is a continuous function;
$\left(H_{s b}\right)$ there exist $D>0, k_{0} \in \mathbb{N}$ and decreasing sequence $\left(w_{k}\right)_{k \in \mathbb{N}} \subset(1, \infty)$ with $\sum_{k=0}^{\infty}\left(w_{k}-1\right)<\infty$ such that

$$
\sum_{s=k}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left(\left|a_{t}\right| P+\left|b_{t}\right|\right) \leq D\left(w_{k}-1\right) w_{k}^{-k}, \text { for } k \geq k_{0}
$$

where $\max _{|x| \leq D}|f(x)| \leq P$;
$\left(H_{q=1}^{1}\right) q_{n}>1, n \in \mathbb{N}_{0}, \lim _{n \rightarrow \infty} q_{n}=1$.
Then there exists a bounded full solution to (1).

Remark 1 We obtain analogous theorems if we change the assumption $\left(H_{q=1}\right)$ or $\left(H_{q=1}^{1}\right)$ to one of the following assumptions:
$\left(H_{q=-1}\right) \quad q_{n} \in(-1,0), n \in \mathbb{N}_{0}, \quad \lim _{n \rightarrow \infty} q_{n}=-1, \sup _{n \in \mathbb{N}_{0}} q_{n}>0$.
$\left(H_{q=-1}^{1}\right) \quad q_{n}<-1, n \in \mathbb{N}_{0}, \quad \lim _{n \rightarrow \infty} q_{n}=-1$.

4. The existence of l^{p}-solution

To get a better characterization of solutions to (1), we formulate sufficient conditions for the existence of an l^{p} solution to (1).

In this section, we also assume $\tau \in \mathbb{N}_{0}, \sigma \in \mathbb{Z}, a, b, q: \mathbb{N}_{0} \rightarrow \mathbb{R}, r: \mathbb{N}_{0} \rightarrow \mathbb{R} \backslash\{0\}$, and $f: \mathbb{R} \rightarrow \mathbb{R}$.
Theorem 8 Assume that:
$\left(H_{p}\right) \quad p \geq 1 ;$
$\left(H_{f}\right) f$ is a continuous function;
$\left(H_{s p}\right) \quad \sum_{n=0}^{\infty}\left(\sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|a_{t}\right|\right)^{p}<+\infty, \quad \sum_{n=0}^{\infty}\left(\sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|b_{t}\right|\right)^{p}<+\infty ;$
$\left(H_{q p}\right) \sup _{n \in \mathbb{N}_{0}}\left|q_{n}\right|=q^{\star} \in\left(0,2^{1-p}\right)$.
Then equation (1) possesses an l^{p}-solution.
Proof From the continuity of f on $[-1,1]$ we get the existence of $W>0$ such that

$$
|f(x)| \leq W, \text { for } x \in[-1,1]
$$

The assumption $\left(H_{s p}\right)$ implies there exists $n_{0}>\beta:=\max \{\tau, \sigma\}$ such that

$$
\begin{equation*}
4^{p-1}\left[W^{p} \sum_{n=n_{0}}^{\infty}\left(\sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|a_{t}\right|\right)^{p}+\sum_{n=n_{0}}^{\infty}\left(\sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|b_{t}\right|\right)^{p}\right]<1-2^{p-1} q^{\star} \tag{9}
\end{equation*}
$$

We consider the Banach space l_{0}^{p} and its subset

$$
A_{n_{0}}=\left\{x=\left(x_{n}\right)_{n \in \mathbb{N}_{0}} \in l_{0}^{p}: x_{0}=\ldots=x_{n_{0}+\beta-1}=0,\|x\|_{l^{p}} \leq 1\right\}
$$

Observe that $A_{n_{0}}$ is a nonempty, bounded, convex, and closed subset of l_{0}^{p}.
Define two mappings $T_{1}, T_{2}: l_{0}^{p} \rightarrow l_{0}^{p}$ as follows:

$$
\begin{gathered}
\left(T_{1} x\right)_{n}= \begin{cases}0, & \text { for } 0 \leq n<n_{0}+\beta \\
-q_{n} x_{n-\tau}, & \text { for } n \geq n_{0}+\beta,\end{cases} \\
\left(T_{2} x\right)_{n}= \begin{cases}0, & \text { for } 0 \leq n<n_{0}+\beta \\
\sum_{s=n}^{\infty} \frac{1}{r_{s}} \sum_{t=s}^{\infty}\left(a_{t} f\left(x_{t-\sigma}\right)+b_{t}\right), & \text { for } n \geq n_{0}+\beta .\end{cases}
\end{gathered}
$$

NOCKOWSKA-ROSIAK/Turk J Math

Now we prove the assumptions of Theorem 3 on Krasnoselskii's fixed point.
First, we show that $T_{1} x+T_{2} y \in A_{n_{0}}$ for $x, y \in A_{n_{0}}$. Let $x, y \in A_{n_{0}}$, for $n<n_{0}+\beta\left(T_{1} x+T_{2} y\right)_{n}=0$. Using twice the classical inequality

$$
(x+y)^{p} \leq 2^{p-1}\left(x^{p}+y^{p}\right) \text { for } x, y \geq 0, p \geq 1
$$

for $n \geq n_{0}+\beta$ we get

$$
\begin{aligned}
& \left|\left(T_{1} x+T_{2} y\right)_{n}\right|^{p} \leq 2^{p-1}\left[\left(q^{\star}\right)^{p}\left|x_{n-\tau}\right|^{p}+\left(\sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left(\left|a_{t}\right| W+\left|b_{t}\right|\right)\right)^{p}\right] \\
& \leq 2^{p-1}\left[q^{\star}\left|x_{n-\tau}\right|^{p}+2^{p-1}\left(W^{p}\left(\sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|a_{t}\right|\right)^{p}+\left(\sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|b_{t}\right|\right)^{p}\right)\right] \\
& \leq 2^{p-1} q^{\star}\left|x_{n-\tau}\right|^{p}+4^{p-1}\left[W^{p}\left(\sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|a_{t}\right|\right)^{p}+\left(\sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|b_{t}\right|\right)^{p}\right]
\end{aligned}
$$

By (9) we obtain that

$$
\begin{aligned}
& \left\|T_{1} x+T_{2} y\right\|_{l^{p}}^{p} \leq\left. 2^{p-1} q^{\star}| | x\right|_{l^{p}} ^{p}+4^{p-1}\left[W^{p} \sum_{n=n_{0}+\beta}^{\infty}\left(\sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|a_{t}\right|\right)^{p}\right. \\
& \left.+\sum_{n=n_{0}+\beta}^{\infty}\left(\sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|b_{t}\right|\right)^{p}\right] \leq 1
\end{aligned}
$$

It is easy to see that

$$
\left\|T_{1} x-T_{1} y\right\|_{l^{p}} \leq q^{\star} \mid\|x-y\|_{l^{p}}, \text { for } x, y \in A_{n_{0}}
$$

so T_{1} is a contraction.
Now we prove the continuity of T_{2}. Let $x \in A_{n_{0}}, \varepsilon>0$. The continuity of f implies that f is a uniformly continuous function on $[-1,1]$, which means there exists $\delta>0$ such that

$$
|f(u)-f(v)|<\left(\frac{\varepsilon}{\left(1+\sum_{n=0}^{\infty}\left(\sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|a_{t}\right|\right)^{p}\right)}\right)^{1 / p}, \text { for }|u-v|<\delta, u, v \in[-1,1]
$$

Hence, for $y \in A_{n_{0}}$ and $n \geq n_{0}+\beta$,

$$
\begin{aligned}
& \left|\left(T_{2} x-T_{2} y\right)_{n}\right|^{p} \leq\left(\sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|a_{t}\right|\left|f\left(x_{t-\sigma}\right)-f\left(y_{t-\sigma}\right)\right|\right)^{p} \\
& \leq\left(\sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|a_{t}\right|\right)^{p} \frac{\varepsilon}{\left(1+\sum_{n=0}^{\infty}\left(\sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|a_{t}\right|\right)^{p}\right)}
\end{aligned}
$$

Hence, we get that

$$
\left\|T_{2} x-T_{2} y\right\|_{l_{p}}<\varepsilon, \text { for }\|x-y\|_{l_{p}}<\delta, y \in A_{n_{0}}
$$

which proves the continuity of T_{2} on $A_{n_{0}}$. In an analogous way we get for $x \in A_{n_{0}}$ and $n \geq n_{0}+\beta$

$$
\left|\left(T_{2} x\right)_{n}\right|^{p} \leq 2^{p-1}\left[W^{p}\left(\sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|a_{t}\right|\right)^{p}+\left(\sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|b_{t}\right|\right)^{p}\right]
$$

and hence by $\left(H_{s p}\right)$

$$
\begin{aligned}
& \lim _{l \rightarrow \infty} \sup _{x \in A_{n_{0}}} \sum_{n=l}^{\infty}\left|\left(T_{2} x\right)_{n}\right|^{p} \leq \\
& \lim _{l \rightarrow \infty} \sum_{n=l}^{\infty} 2^{p-1}\left[W^{p}\left(\sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|a_{t}\right|\right)^{p}+\left(\sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|b_{t}\right|\right)^{p}\right]=0
\end{aligned}
$$

which means that $T_{2}\left(A_{n_{0}}\right)$ is a relatively compact subset of l^{p}.
From Theorem 3 we get that there exists $x=\left(x_{n}\right)_{n \in \mathbb{N}_{1}}$, the fixed point of $T_{1}+T_{2}$ on $A_{n_{0}}$. Applying operator Δ to both sides of the above equation and multiplying by r_{n} and applying operator Δ a second time for $n \geq n_{0}+2 \beta$ we get that $x=\left(x_{n}\right)_{n \in \mathbb{N}_{n_{0}+\beta}}$ is the $l_{n_{0}+\beta}^{p}$-solution to (1).

Remark 2 It is worth mentioning that for $p=1$ assumption $\left(H_{s b}\right)$ implies assumption $\left(H_{s p}\right)$.
Now we present an example of an equation for which our method can be applied.
Example 2 Let us consider the following problem:

$$
\begin{equation*}
\Delta\left((-1)^{n} \Delta\left(x_{n}+q_{n} x_{n-3}\right)\right)=2^{-n} f\left(x_{n-1}\right)+\frac{1}{n(n+1)(n+2)(n+3)}, n \geq 3 \tag{10}
\end{equation*}
$$

with $\tau=3, \sigma=1, r_{n}=(-1)^{n}, a_{n}=2^{-n}, b_{n}=\frac{1}{n(n+1)(n+2)(n+3)}, n \geq 1$, and any $\left(q_{n}\right)$, $\sup \left|q_{n}\right|<1$, $f \in C^{0}(\mathbb{R})$. Note

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|a_{t}\right|=8 \\
& \sum_{n=0}^{\infty} \sum_{s=n}^{\infty} \frac{1}{\left|r_{s}\right|} \sum_{t=s}^{\infty}\left|b_{t}\right|=\sum_{n=0}^{\infty} \sum_{s=n}^{\infty} \sum_{t=s}^{\infty} \frac{1}{t(t+1)(t+2)(t+3)} \\
& =\sum_{n=0}^{\infty} \sum_{s=n}^{\infty} \frac{1}{4 s(s+1)(s+2)}=\sum_{n=0}^{\infty} \frac{1}{12 n(n+1)}<\infty
\end{aligned}
$$

which means that assumptions of Theorem 6 are fulfilled with $p=1$. Hence, (10) has an l^{1}-solution. It is obvious that this l^{1}-solution is an l^{p}-solution for any $p>1$.

Corollary 3 If in Theorem 8 we additionally assume
$\left(H_{0}^{\prime}\right) \quad \tau, \sigma \in \mathbb{N}_{0}, \tau>\sigma$ and $q_{n} \neq 0, \quad n \in \mathbb{N}_{0}$,
then equation (1) possesses a full l^{p}-solution.

NOCKOWSKA-ROSIAK/Turk J Math

References

[1] Agarwal RP. Difference Equations and Inequalities. 2nd ed. New York, NY, USA: Marcel Dekker, 2000.
[2] Agarwal RP, Grace SR, O'Regan D. Nonoscillatory solutions for discrete equations. Comput Math Appl 2003; 45: 1297-1302.
[3] Costara C, Popa D. Exercises in Functional Analysis. Dordrecht, the Netherlands: Kluwer Academic Press, 2003.
[4] Cheng SS. Existence of nonoscillatory solutions of a second-order linear neutral difference equation. Appl Math Lett 1999; 12: 71-78.
[5] Cheng SS, Patula WT. An existence theorem for a nonlinear difference equation. Nonlinear Anal 1993; 20: 12971302.
[6] Dos̆lý O, Graef J, Jaros̆ J. Forced oscillation of second order linear and half-linear difference equations. P Am Math Soc 2002; 131: 2859-2867.
[7] Elaydi SN. An Introduction to Difference Equations. 3rd ed. Undergraduate Texts in Mathematics. New York, NY, USA: Springer, 2005.
[8] Ey K, Pötzsche C. Asymptotic behavior of recursions via fixed point theory. J Math Anal Appl 2008; 337: 1125-1141.
[9] Galewski M, Jankowski R, Nockowska-Rosiak M, Schmeidel E. On the existence of bounded solutions for nonlinear second order neutral difference equations. Electron J Qual Theory Differ Equ 2014; 72: 1-12.
[10] Gou Z, Liu M. Existence of non-oscillatory solutions for a higher-order nonlinear neutral difference equation. Electron J Diff Equ, 2010; 146: 1-7.
[11] Jankowski R, Schmeidel E. Almost oscillation criteria for second order neutral difference equation with quasidifferences. Int J Difference Equ 2014; 9: 77-86.
[12] Jinfa C. Existence of a nonoscillatory solution of a second-order linear neutral difference equation. Appl Math Lett 2007; 20: 892-899.
[13] Lalli BS, Grace SR. Oscillation theorems for second order neutral difference equations. Appl Math Comput 1994; 62: 47-60.
[14] Lalli BS, Zhang BG. On existence of positive solutions and bounded oscillations for neutral difference equations. J Math Anal Appl 1992; 166: 272-287.
[15] Liu Z, Xu Y, Kang SM. Global solvability for second order nonlinear neutral delay difference equation. Comput Math Appl 2009; 57: 587-595.
[16] Liu Z, Zhao L, Kang SM, Ume JS. Existence of uncountably many bounded positive solutions for second order nonlinear neutral delay difference equations. Comput Math Appl 2011; 61: 2535-2545.
[17] Luo JW, Bainov DD. Oscillatory and asymptotic behavior of second-order neutral difference equations with maxima. J Comput Appl Math 2001; 131: 333-341.
[18] Meng Q, Yan J. Bounded oscillation for second-order nonlinear neutral difference equations in critical and noncritical states. J Comput Appl 2009; 57: 587-595.
[19] Migda J. Approximate solutions of difference equations. Electron J Qual Theory Differ Equ 2014; 13: 1-26.
[20] Migda J, Migda M. Asymptotic properties of solutions of second order neutral difference equations. Nonlinear Anal 2005; 63: 789-799.
[21] Petropoulou E, Siafarikas P. Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane. II. Comput Math Appl 2001; 42: 427-452.
[22] Petropoulou E, Siafarikas P. A functional-analytic method for the study of difference equations. Adv Difference Equ 2004; 3: 237-248.
[23] Petropoulou E, Siafarikas P. Existence of complex l_{2} solutions of linear delay systems of difference equations. J Differ Equations Appl 2006; 11: 49-62.
[24] Pötzsche C. A functional-analytical approach to the asymptotic of recursions. P Am Math Soc 2009; 137: 3297-3307.
[25] Rudin W. Functional Analysis. 2nd ed. New York, NY, USA: McGraw-Hill Inc., 1991.
[26] Saker SH. New oscillation criteria for second-order nonlinear neutral delay difference equations. Appl Math Comput 2003; 142: 99-111.
[27] Saker SH. Oscillation theorems of nonlinear difference equations of second order. Georgian Math J 2003; 10: 343-352.
[28] Saker SH. Oscillation of second-order perturbed nonlinear difference equations. Appl Math Comput 2003 144: 305-324.
[29] Schmeidel E. An application of measures of noncompactness in the investigation of boundedness of solutions of second order neutral difference equations. Adv Difference Equ 2013; 2013: 91.
[30] Schmeidel E, Zbaszyniak Z. An application of Darbo's fixed point theorem in the investigation of periodicity of solutions of difference equations. Comput Math Appl 2012; 64: 2185-2191.
[31] Thandapani E, Kavitha N, Pinelas S. Oscillation criteria for second-order nonlinear neutral difference equations of mixed type. Adv Difference Equ 2012; 2012: 4.
[32] Zeidler E. Nonlinear Functional Analysis and Its Applications I. Fixed-Point Theorems. New York, NY, USA: Springer-Verlag, 1986.

[^0]: *Correspondence: magdalena.nockowska@p.lodz.pl
 2010 AMS Mathematics Subject Classification: 39A10, 39A22

