

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2018) 42: 1970 – 1977 © TÜBİTAK doi:10.3906/mat-1710-59

Research Article

On the rank of transformation semigroup $T_{(n,m)}$

Kemal TOKER^{1,*}, Hayrullah AYIK²

¹Department of Mathematics, Faculty of Science, Harran University, Şanlıurfa, Turkey ²Department of Mathematics, Faculty of Science, Çukurova University, Adana, Turkey

Received: 16.10.2017	•	Accepted/Published Online: 09.05.2018	•	Final Version: 24.07.2018
-----------------------------	---	---------------------------------------	---	----------------------------------

Abstract: Let T_n and S_n be the full transformation semigroup and the symmetric group on $X_n = \{1, \ldots, n\}$, respectively. For $n, m \in \mathbb{Z}^+$ with $m \leq n-1$ let

$$T_{(n,m)} = \{ \alpha \in T_n : X_m \alpha = X_m \}$$

In this paper we research generating sets and the rank of $T_{(n,m)}$. In particular, we prove that

$$\operatorname{rank}\left(T_{(n,m)}\right) = \begin{cases} 2 & \text{if } (n,m) = (2,1) \text{ or } (3,2) \\ 3 & \text{if } (n,m) = (3,1) \text{ or } 4 \le n \text{ and } m = n-1 \\ 4 & \text{if } 4 \le n \text{ and } 1 \le m \le n-2. \end{cases}$$

for $1 \leq m \leq n-1$.

Key words: Transformations, permutations, restricted image, generating set, rank

1. Introduction

Let T(X) be the full transformation semigroup on the set X. For a nonempty subset Y of X Symons introduced and studied the subsemigroup $T(X,Y) = \{\alpha \in T(X) : X\alpha \subseteq Y\}$ of T(X) in [8]. In [6] Sanwong and Sommanee proved that the largest regular subsemigroup of T(X,Y) is $F(X,Y) = \{\alpha \in T(X,Y) : X\alpha \subseteq Y\alpha\}$, and, moreover, they researched the rank of F(X,Y) in [7]. For a nonempty subset Y of a finite set X let

$$T_{(X,Y)} = \{ \alpha \in T(X) : Y\alpha = Y \}.$$

It is clear that $T_{(X,Y)}$ is a subsemigroup of T(X). In this paper we research the generating sets and the rank of $T_{(X,Y)}$. When X is finite, we take $X = X_n = \{1, \ldots, n\}$ and write T_n instead of $T(X_n)$. Let P_n and S_n be the partial transformation semigroup and the symmetric group on X_n , respectively. For $n, m \in \mathbb{Z}^+$ with $m \leq n-1$ let Y be any subset of X_n with |Y| = m. If we denote $T_{(X_n, X_m)}$ by $T_{(n,m)}$, that is

$$T_{(n,m)} = \{ \alpha \in T_n : X_m \alpha = X_m \},\$$

then it is clear that $T_{(X_n,Y)}$ and $T_{(n,m)}$ are isomorphic. Thus, it is enough to consider the subsemigroup $T_{(n,m)}$ of T_n for $1 \le m \le n-1$. Observe that if we denote the restriction of any $\alpha \in T_{(n,m)}$ into X_m by $\alpha_{|m} = \alpha_{|X_m}$, then $\alpha_{|m}$ is a permutation of X_m , that is $\alpha_{|m} \in S_m$.

^{*}Correspondence: ktoker@harran.edu.tr

²⁰¹⁰ AMS Mathematics Subject Classification: 20M20

TOKER/Turk J Math

Let S be any semigroup, and let A be any nonempty subset of S. Then the subsemigroup generated by A that is the smallest subsemigroup of S containing A is denoted by $\langle A \rangle$. If there exists a finite subset A of a semigroup S with $\langle A \rangle = S$, then S is called a finitely generated semigroup. The rank of a finitely generated semigroup S is defined by

$$\operatorname{rank}(S) = \min\{ |A| : \langle A \rangle = S \}.$$

The defect, kernel, fix, and shift of $\alpha \in T_n$ are defined by

defect
$$(\alpha) = n - |\operatorname{im} (\alpha)|$$
, $\operatorname{ker}(\alpha) = \{(x, y) \in X_n \times X_n : x\alpha = y\alpha\},$
fix $(\alpha) = \{x \in X_n : x\alpha = x\}$, and $\operatorname{shift}(\alpha) = \{x \in X_n : x\alpha \neq x\}.$

For any $\alpha, \beta \in T_n$ it is well known that $\ker(\alpha) \subseteq \ker(\alpha\beta)$ and $\operatorname{im}(\alpha\beta) \subseteq \operatorname{im}(\beta)$. Let $\alpha \in T_n$, if for unique $i \in X_n$, $i\alpha = j$ and $k\alpha = k$ for all $k \neq i$, and then we use the notation

$$\alpha = \binom{i}{j}$$

(and so α is an idempotent of defect 1). For $n \ge 3$, it is well known that rank $(S_n) = 2$ and rank $(T_n) = 3$. Moreover,

$$S_n = \langle (1 \ 2), (1 \ 2 \ \cdots \ n) \rangle \text{ and}$$
$$T_n = \langle (1 \ 2), (1 \ 2 \ \cdots \ n), \begin{pmatrix} 1 \\ 2 \end{pmatrix} \rangle,$$

where (1 2) and (1 2 \cdots n) are the transposition and the *n*-cycle as defined in general, respectively. Let $\operatorname{Sing}_n = T_n \setminus S_n$; it is called singular mappings. Gomes and Howie proved that $\operatorname{rank}(\operatorname{Sing}_n) = \frac{n(n-1)}{2}$ [3]. Necessary and sufficient conditions have been found for any set for transformations of defect 1 in Sing_n to be a (minimal) generating set for Sing_n [1]. For $1 \leq r \leq n$, let $K_{n,r} = \{\alpha \in T_n : |\operatorname{im}(\alpha)| \leq r\}$. Howie and McFadden proved that $\operatorname{rank}(K_{n,r}) = S(n,r)$ for $2 \leq r \leq n-1$ where S(n,r) is the second kind of Stirling number [5]. Let $P_{n,r} = \{\alpha \in P_n : |\operatorname{im}(\alpha)| \leq r\}$; Garba proved that $\operatorname{rank}(P_{n,r}) = S(n+1,r+1)$ for $2 \leq r \leq n-1$ in [2]. In this paper generating sets and the rank of $T_{(n,m)}$ have been established. We use the same notations as in Howie's book [4].

2. Generating sets

For any $\alpha \in T_{(n,m)}$, if we define $\beta_{\alpha}, \gamma_{\alpha}, \lambda_{\alpha} \in T_n$ as follows:

$$i\beta_{\alpha} = \begin{cases} i\alpha & i \leq m \\ i & i > m \end{cases},$$

$$i\gamma_{\alpha} = \begin{cases} i\alpha & i > m \text{ and } i\alpha \in X_{m} \\ i & \text{other} \end{cases},$$

$$i\lambda_{\alpha} = \begin{cases} i\alpha & i\alpha > m \\ i & i\alpha \leq m \end{cases},$$
(1)

1971

then it is clear that $\beta_{\alpha}, \gamma_{\alpha}, \lambda_{\alpha} \in T_{(n,m)}$. For $1 \leq i \leq m$ it follows from the fact $i\beta_{\alpha} = i\alpha \in X_m$ that $(i\beta_{\alpha})\gamma_{\alpha} = i\alpha$, and so

$$i(\beta_{\alpha}\gamma_{\alpha}\lambda_{\alpha}) = (i\beta_{\alpha})\lambda_{\alpha} = (i\alpha)\lambda_{\alpha} = i\alpha,$$

since $(i\alpha)\alpha \leq m$. For $m+1 \leq i \leq n$ we have $i\beta_{\alpha} = i$. If $i\alpha \in X_m$, then $(i\alpha)\alpha \in X_m$ and $i\gamma_{\alpha} = i\alpha$, and so

$$i(\beta_{\alpha}\gamma_{\alpha}\lambda_{\alpha}) = (i\gamma_{\alpha})\lambda_{\alpha} = (i\alpha)\lambda_{\alpha} = i\alpha.$$

If $i\alpha \notin X_m$, then $i\gamma_{\alpha} = i$ and $i\lambda_{\alpha} = i\alpha$. Since $i\beta_{\alpha} = i$, it follows that

$$i(\beta_{\alpha}\gamma_{\alpha}\lambda_{\alpha}) = (i\gamma_{\alpha})\lambda_{\alpha} = i\lambda_{\alpha} = i\alpha.$$

Therefore, we have the equality $\alpha = \beta_{\alpha} \gamma_{\alpha} \lambda_{\alpha}$.

For an example, if

then it follows from the definitions that

 $\lambda_{\alpha} = \left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 6 & 6 & 7 & 7 \end{array}\right), \text{ and that } \alpha = \beta_{\alpha} \gamma_{\alpha} \lambda_{\alpha}.$

For any $\alpha \in T_{(n,m)}$, it is clear from the definitions that

$$X_n \setminus X_m \subseteq \operatorname{fix}(\beta_{\alpha}), \quad X_m \subseteq \operatorname{fix}(\gamma_{\alpha}), \quad \text{and} \quad X_m \subseteq \operatorname{fix}(\lambda_{\alpha})$$

Moreover, for any $i \in X_n \setminus X_m$, we have $i\lambda_{\alpha} \in X_n \setminus X_m$ and either $i \in \text{fix}(\gamma_{\alpha})$ or $i\gamma_{\alpha} \in X_m$. If we define the following sets,

$$U(n,m) = \{\beta_{\alpha} : \alpha \in T_{(n,m)}\}, \qquad V(n,m) = \{\gamma_{\alpha} : \alpha \in T_{(n,m)}\}, \text{ and}$$
$$W(n,m) = \{\lambda_{\alpha} : \alpha \in T_{(n,m)}\},$$

then it is clear that U(n,m), V(n,m), and W(n,m) are subsemigroups of $T_{(n,m)}$. Moreover,

$$U(n,m) \cong S_m$$
 and $W(n,m) \cong T_{n-m}$.

For every $\alpha \in T_{(n,m)}$, since $\gamma_{\alpha}^2 = \gamma_{\alpha}$, V(n,m) consists of only idempotents.

Since $T_{(n,1)} \cong P_{n-1}$ and $T_{(n,n)} \cong S_n$, we only consider the case $2 \le m \le n-1$. Now we state and prove the following proposition.

Proposition 1 For $2 \le m \le n-2$, if

$$A_m = \{(1 \ 2), (1 \ 2 \ \cdots \ m), (m+1 \ m+2), (m+1 \ m+2 \ \cdots \ n), \binom{m+1}{m+2}, \binom{m+1}{1}\},\$$

then, for all $1 \leq i \leq m$ and for all $m + 1 \leq k \leq n$, we have

$$\binom{k}{i} \in \langle A_m \rangle.$$

Proof First of all recall that $(1 \ i) \in \langle (1 \ 2), (1 \ 2 \ \cdots \ m) \rangle \cong S_m$ for every $2 \le i \le m$, and similarly, $(m+1 \ k) \in \langle (m+1 \ m+2), (m+1 \ m+2 \ \cdots \ n) \rangle \cong S_{n-m}$ for every $m+2 \le k \le n$. Since

$$\binom{k}{1} = (m+1 \ k) \binom{m+1}{1} (m+1 \ k)$$

for every $m + 2 \le k \le n$, it follows that $\binom{k}{1} \in \langle A_m \rangle$ for all $m + 1 \le k \le n$. Therefore, for all $2 \le i \le m$ and for all $m + 1 \le k \le n$,

$$\binom{k}{i} = (1 \ i) \binom{k}{1} (1 \ i) \in \langle A_m \rangle,$$

as required.

Lemma 2 For $2 \le m \le n - 2$,

$$A_m = \{(1 \ 2), (1 \ 2 \ \cdots \ m), (m+1 \ m+2), (m+1 \ m+2 \ \cdots \ n), \binom{m+1}{m+2}, \binom{m+1}{1}\}$$

is a generating set of $T_{(n,m)}$. Moreover,

$$A_{n-1} = \{(1 \ 2), (1 \ 2 \ \cdots \ n-1), \binom{n}{1}\}$$

is a generating set of $T_{(n,n-1)}$.

Proof For $2 \le m \le n-2$, let $\alpha \in T_{(n,m)}$. Suppose that β_{α} , γ_{α} , and λ_{α} are defined as in Equation (1) so that $\alpha = \beta_{\alpha} \gamma_{\alpha} \lambda_{\alpha}$. First of all it is clear that

$$\beta_{\alpha} \in \langle (1 \ 2), (1 \ 2 \ \cdots \ m) \rangle \cong S_m$$

and that

$$\lambda_{\alpha} \in \langle (m+1 \ m+2), (m+1 \ m+2 \ \cdots \ n), \binom{m+1}{m+2} \rangle \cong T_{n-m}$$

Since $\alpha = \beta_{\alpha} \gamma_{\alpha} \lambda_{\alpha}$, it is enough to show that $\gamma_{\alpha} \in \langle A_m \rangle$.

Suppose that $S = \text{shift}(\gamma_{\alpha}) = \{x_1, \ldots, x_r\} \neq \emptyset$ (otherwise $\alpha = \beta_{\alpha}\lambda_{\alpha}$, and so there is nothing to show). Since $S \subseteq (X_n \setminus X_m)$ and $S\gamma_{\alpha} \subseteq X_m$, it follows that, for each $1 \leq i \leq r$, there exists $y_i \in X_m$ such that $x_i\gamma_{\alpha} = y_i$. Then it is clear that

$$\gamma_{\alpha} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \cdots \begin{pmatrix} x_r \\ y_r \end{pmatrix}$$

Thus, it follows from Proposition 1 that $\gamma_{\alpha} \in \langle A_m \rangle$. Therefore, $T_{(n,m)} = \langle A_m \rangle$ for $2 \leq m \leq n-2$.

If $\alpha \in T_{(n,n-1)}$, then it is clear that λ_{α} is the identity of T_n , and moreover, γ_{α} is either the identity or an idempotent $\gamma_{\alpha} = \binom{n}{i}$ for any $1 \leq i \leq n-1$. In other words either $\alpha = \beta_{\alpha}$ or $\alpha = \beta_{\alpha}\binom{n}{i}$ for any $1 \leq i \leq n-1$. Now since

$$\binom{n}{i} = (1 \ i) \binom{n}{1} (1 \ i) \in \langle A_{n-1} \rangle$$

for all $2 \le i \le n-1$, it follows that $T_{(n,n-1)} = \langle A_{n-1} \rangle$.

3. Rank of $T_{(n,m)}$

For $2 \le m \le n-1$, let

$$G(n,m) = \{ \alpha \in T_{(n,m)} : (X_n \setminus X_m) \alpha = X_n \setminus X_m \} = T_{(n,m)} \cap S_n \text{ and}$$
$$H(n,m) = \{ \alpha \in T_{(n,m)} : (X_n \setminus X_m) \alpha \subseteq X_n \setminus X_m \}.$$

It is clear that both G(n,m) and H(n,m) are subsemigroups of $T_{(n,m)}$,

$$G(n,m) \le H(n,m)$$
 and $G(n,m) \cong S_m \times S_{n-m}$ (for $2 \le m \le n-2$).

Moreover, it is also clear that $G(n, n-1) = H(n, n-1) \cong S_{n-1}$. Thus, it follows that

$$G(n,m) = \langle (1\ 2), (1\ 2\ \cdots\ m), (m+1\ m+2), (m+1\ m+2\ \cdots\ n) \rangle$$
(2)

for all $2 \le m \le n-2$. Since $(2 \ 3 \ \cdots \ m)(1 \ 2) = (1 \ 2 \ \cdots \ m)$ for all $3 \le m \le n-1$, we also have that $S_n = \langle (1 \ 2), (2 \ 3 \ \cdots \ n) \rangle$, and so

$$G(n,m) = \langle (1 \ 2), (2 \ 3 \ \cdots \ m), (m+1 \ m+2), (m+1 \ m+2 \ \cdots \ n) \rangle$$
(3)

$$= \langle (1 2), (1 2 \cdots m), (m+1 m+2), (m+2 m+3 \cdots n) \rangle$$
(4)

$$= \langle (1 \ 2), (2 \ 3 \ \cdots \ m), (m+1 \ m+2), (m+2 \ m+3 \ \cdots \ n) \rangle.$$
(5)

Lemma 3 For $1 \le m \le n - 1$,

$$\operatorname{rank} (G(n,m)) = \begin{cases} 1 & \text{if } (n,m) = (2,1), \ (3,1) \ or \ (3,2) \\ 2 & \text{otherwise.} \end{cases}$$

Proof Since $G(n, n-1) \cong G(n, 1) \cong S_{n-1}$, it follows that rank (G(n, 1)) = 1 for n = 2, 3, rank (G(3, 2)) = 1, and that rank (G(n, 1)) = rank (G(n, n-1)) = 2 for $n \ge 4$.

First notice that if $(n, m) \notin \{(2, 1), (3, 1), (3, 2)\}$, then G(n, m) is not a cyclic group, and so rank $(G(n, m)) \ge 2$. If m = 2 and n = 4, then $G(4, 2) \cong S_2 \times S_2$ (the Klein-4 group), and so rank (G(4, 2)) = 2 $(G(4, 2) = \langle (1 \ 2), (3 \ 4) \rangle$).

Before we consider the other cases, we consider the following cycles in S_n :

$$\begin{array}{rcl} \alpha_1 &=& (1\ 2), & \alpha_2 &=& (m+1\ m+2), \\ \beta_1 &=& (1\ 2\ \cdots \ m), & \beta_2 &=& (m+1\ m+2\ \cdots \ n), \\ \gamma_1 &=& (2\ 3\ \cdots \ m), & \gamma_2 &=& (m+2\ m+3\ \cdots \ n), \end{array}$$

and moreover, the permutations S_n :

$$\delta = \alpha_1 \beta_2, \quad \eta = \alpha_1 \gamma_2, \quad \varepsilon = \alpha_2 \beta_1, \quad \text{and} \quad \zeta = \alpha_2 \gamma_1.$$

Suppose that m = 2 and $n \ge 5$. If n - 2 is an odd number, then since

$$\delta^{n-2} = \alpha_1$$
 and $\delta^{n-1} = \beta_2$

it follows from Eq. (2) that $G(n,2) = \langle \delta, \alpha_2 \rangle$. If n-2 is an even number, then since

$$\eta^{n-3} = \alpha_1$$
 and $\eta^{n-2} = \gamma_2$,

1974

it follows from Eq. (4) that $G(n,2) = \langle \alpha_2, \eta \rangle$.

Suppose that n - m = 2 and $m \ge 3$. If m is an odd number, then since

$$\varepsilon^m = \alpha_2$$
 and $\varepsilon^{m+1} = \beta_1$

it follows from Eq. (2) that $G(n,m) = \langle \alpha_1, \varepsilon \rangle$. If m is an even number, then since

$$\zeta^{m-1} = \alpha_2$$
 and $\zeta^m = \gamma_1$,

it follows from Eq. (3) that $G(n,m) = \langle \alpha_1, \zeta \rangle$.

Finally, suppose that $m \ge 3$ and $n - m \ge 3$. If both m and n - m are odd numbers, then since

$$\delta^{n-m} = \alpha_1, \quad \delta^{n-m+1} = \beta_2, \quad \varepsilon^m = \alpha_2, \quad \text{and} \quad \varepsilon^{m+1} = \beta_1,$$

it follows from Eq. (2) that $G(n,m) = \langle \delta, \varepsilon \rangle$. If m is an even number and if n - m is an odd number, then since

$$\delta^{n-m} = \alpha_1, \quad \delta^{n-m+1} = \beta_2, \quad \zeta^{m-1} = \alpha_2, \quad \text{and} \quad \zeta^m = \gamma_1,$$

it follows from Eq. (3) that $G(n,m) = \langle \delta, \zeta \rangle$. If m is an odd number and if n-m is an even number, then since

$$\eta^{n-m-1} = \alpha_1, \quad \eta^{n-m} = \gamma_2, \quad \varepsilon^m = \alpha_2, \quad \text{and} \quad \varepsilon^{m+1} = \beta_1$$

it follows from Eq. (4) that $G(n,m) = \langle \varepsilon, \eta \rangle$. If both m and n-m are even numbers, then since

$$\eta^{n-m-1} = \alpha_1, \quad \eta^{n-m} = \gamma_2, \quad \zeta^{m-1} = \alpha_2, \quad \text{and} \quad \zeta^m = \gamma_1$$

it follows from Eq. (5) that $G(n,m) = \langle \zeta, \eta \rangle$.

Therefore, in the above theorem, we have found the rank of the direct product of two symmetric groups.

Lemma 4 (i) $T_{(n,m)} \setminus G(n,m)$ is an ideal of $T_{(n,m)}$ for $1 \le m \le n-1$.

(ii) $H(n,m) \setminus G(n,m)$ is an ideal of H(n,m) for $1 \le m \le n-2$.

(iii) $T_{(n,m)} \setminus H(n,m)$ is a subsemigroup of $T_{(n,m)}$ for $1 \le m \le n-1$.

Proof (i) Let $\alpha \in T_{(n,m)}$ and $\beta \in T_{(n,m)} \setminus G(n,m)$. First notice that $|\operatorname{im}(\beta)| \leq n-1$ and that all elements in G(n,m) are permutations. Since $\operatorname{im}(\alpha\beta) \subseteq \operatorname{im}(\beta)$, it follows that $|\operatorname{im}(\alpha\beta)| \leq |\operatorname{im}(\beta)| \leq n-1$. Since $\ker(\beta\alpha) \supseteq \ker(\beta)$, it follows that $|\operatorname{im}(\beta\alpha)| \leq |\operatorname{im}(\beta)| \leq n-1$. Therefore, both $\alpha\beta$ and $\beta\alpha$ are elements of $T_{(n,m)} \setminus G(n,m)$, as required.

(ii) Similar to the proof of (i).

(iii) Let $\alpha, \beta \in T_{(n,m)} \setminus H(n,m)$. Then there exists at least one i such that $m+1 \leq i \leq n$ and $i\alpha \in X_m$. Thus, we have $i(\alpha\beta) = (i\alpha)\beta \in X_m$, and so $\alpha\beta \in T_{(n,m)} \setminus H(n,m)$, as required.

Proposition 5 Let $\alpha \in G(n,m)$ and $\beta \in T_{(n,m)} \setminus H(n,m)$. Then both $\alpha\beta$ and $\beta\alpha$ are elements of $T_{(n,m)} \setminus H(n,m)$.

 \Box

Proof Let $\alpha \in G(n,m)$ and $\beta \in T_{(n,m)} \setminus H(n,m)$. Similarly, there exists at least one *i* such that $m+1 \leq i \leq n$ and $i(\beta\alpha) = (i\beta)\alpha \in X_m$. Moreover, for the same *i*, there exists only one *j* such that $m+1 \leq j \leq n$ and $j\alpha = i$. Therefore, $j(\alpha\beta) = i\beta \in X_m$, as required.

Thus, for every generating set A of $T_{(n,m)}$, it follows from Lemma 4 (i) that $A \cap G(n,m)$ is a generating set of G(n,m) $(1 \le m \le n-1)$. Therefore, A must include at least 2 elements from G(n,m) when $(n,m) \notin \{(2,1), (3,1), (3,2)\}$ and at least 1 element from G(n,m) when $(n,m) \in \{(2,1), (3,1), (3,2)\}$. Similarly, for every generating set B of H(n,m), it follows from Lemma 4 (ii) that $B \cap G(n,m)$ is a generating set of G(n,m) $(1 \le m \le n-2)$.

Theorem 6 For $1 \le m \le n-1$,

$$\operatorname{rank}\left(T_{(n,m)}\right) = \begin{cases} 2 & \text{if } (n,m) = (2,1) \text{ or } (3,2) \\ 3 & \text{if } (n,m) = (3,1) \text{ or } 4 \le n \text{ and } m = n-1 \\ 4 & \text{if } 4 \le n \text{ and } 1 \le m \le n-2. \end{cases}$$

Proof For (n,m) = (2,1) since $T_{(2,1)} \cong P_1$ and rank $(P_1) = 2$, it follows that rank $(T_{(2,1)}) = 2$. For (n,m) = (3,2), since rank (G(3,2)) = 1, it follows from Lemma 4 (i) that rank $(T_{(3,2)}) \ge 2$. It is easy to show that $\{(1\ 2), \binom{3}{1}\}$ is a generating set of $T_{(3,2)}$, and so rank $(T_{(3,2)}) = 2$. For (n,m) = (3,1), since $T_{(3,1)} \cong P_2$, it follows from the well-known fact rank $(P_2) = 3$ that rank $(T_{(3,1)}) = 3$.

Suppose that $4 \le n$ and m = n - 1. Then it follows from Lemma 2 that $\{(1 \ 2), (1 \ 2 \ \cdots \ n - 1), \binom{n}{1}\}$ is a generating set of $T_{(n,n-1)}$. From Lemmas 3 and 4 (i) since we have rank $(T_{(n,n-1)}) \ge 3$, it follows that rank $(T_{(n,n-1)}) = 3$ for $4 \le n$ and m = n - 1.

Suppose that $4 \le n$ and $1 \le m \le n-2$. Let A be any generating set for $T_{(n,m)}$. From Lemmas 3 and 4 (i) notice that $|A \cap G(n,m)| \ge 2$. Since $G(n,m) \ne T_{(n,m)}$ we have rank $(T_{(n,m)}) \ge 3$.

Now we show that rank $(T_{(n,m)}) \ge 4$. Assume that rank $(T_{(n,m)}) = 3$. Then it follows from Lemma 4 (i) that there exists only one element α in $B = A \setminus G(n,m)$. If $\alpha \in H(n,m)$, then it follows from Lemma 4 (ii) that $\langle A \rangle$ must be a subsemigroup of H(n,m), which is a contradiction since $H(n,m) \neq T_{(n,m)}$. If $\alpha \in T_{(n,m)} \setminus H(n,m)$, then similarly it follows from Proposition 5 that

$$\langle A \rangle$$
 is a subsemigroup of $\left(G(n,m) \cup \left(T_{(n,m)} \setminus H(n,m) \right) \right) \neq T_{(n,m)},$

which is again a contradiction. Therefore, we must have rank $(T_{(n,m)}) \ge 4$. For $4 \le n$ and $1 \le m \le n-2$ the result follows from Lemmas 2, 3, and 4 (i) that rank $(T_{(n,m)}) = 4$, as required.

Note that for any generating set $\{\alpha, \beta\}$ of G(n, m), we have just proved that the set

$$\{\alpha, \beta, \binom{m+1}{m+2}, \binom{m+1}{1}\}$$

is a minimal generating set of $T_{(n,m)}$ for $4 \le n$ and $1 \le m \le n-2$. Also notice that $\binom{m+1}{m+2} \in H(n,m) \setminus G(n,m)$ and that $\binom{m+1}{1} \in T_{(n,m)} \setminus H(n,m)$. One can easily prove that if $\gamma \in H(n,m) \setminus G(n,m)$ and $\delta \in T_{(n,m)} \setminus H(n,m)$ are any two idempotents of the same defect 1, then $\{\alpha, \beta, \gamma, \delta\}$ is a minimal generating set of $T_{(n,m)}$ for $4 \le n$ and $1 \le m \le n-2$.

TOKER/Turk J Math

References

- Ayık G, Ayık H, Bugay L, Kelekci O. Generating sets of finite singular transformation semigroups. Semigroup Forum 2013; 86: 59-66.
- [2] Garba GU. Idempotents in partial transformation semigroups. Proc R Soc Edinb 1990; 116A: 81-96.
- [3] Gomes GMS, Howie JM. On the ranks of certain finite semigroups of transformations. Math Proc Camb Philos Soc 1987; 101: 395-403.
- [4] Howie JM. Fundamentals of Semigroup Theory. New York, NY, USA: Oxford University Press, 1995.
- [5] Howie JM, McFadden RB. Idempotent rank in finite full transformation semigroups. Proc R Soc Edinb Sect 1990; 114A: 161-167.
- [6] Sanwong J, Sommanee W. Regularity and Green's relations on a semigroup of transformations with restricted range. Int J Math Math Sci 2008; 2008: 794013.
- Sommanee W, Sanwong J. Rank and idempotent rank of finite full transformation semigroups with restricted range. Semigroup Forum 2013; 87: 230-242.
- [8] Symons JSV. Some results concerning a transformation semigroup. J Aust Math Soc 1975; 19A: 413-425.