Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2018) 42: 1970 - 1977
© TÜBİTAK
doi:10.3906/mat-1710-59

On the rank of transformation semigroup $T_{(n, m)}$

Kemal TOKER ${ }^{1, *}$ (D), Hayrullah AYIK ${ }^{2}$ (D)
${ }^{1}$ Department of Mathematics, Faculty of Science, Harran University, Şanlıurfa, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Science, Çukurova University, Adana, Turkey

Abstract: Let T_{n} and S_{n} be the full transformation semigroup and the symmetric group on $X_{n}=\{1, \ldots, n\}$, respectively. For $n, m \in \mathbb{Z}^{+}$with $m \leq n-1$ let

$$
T_{(n, m)}=\left\{\alpha \in T_{n}: X_{m} \alpha=X_{m}\right\}
$$

In this paper we research generating sets and the rank of $T_{(n, m)}$. In particular, we prove that

$$
\operatorname{rank}\left(T_{(n, m)}\right)= \begin{cases}2 & \text { if }(n, m)=(2,1) \text { or }(3,2) \\ 3 & \text { if }(n, m)=(3,1) \text { or } 4 \leq n \text { and } m=n-1 \\ 4 & \text { if } 4 \leq n \text { and } 1 \leq m \leq n-2\end{cases}
$$

for $1 \leq m \leq n-1$.
Key words: Transformations, permutations, restricted image, generating set, rank

1. Introduction

Let $T(X)$ be the full transformation semigroup on the set X. For a nonempty subset Y of X Symons introduced and studied the subsemigroup $T(X, Y)=\{\alpha \in T(X): X \alpha \subseteq Y\}$ of $T(X)$ in [8]. In [6] Sanwong and Sommanee proved that the largest regular subsemigroup of $T(X, Y)$ is $F(X, Y)=\{\alpha \in T(X, Y): X \alpha \subseteq Y \alpha\}$, and, moreover, they researched the rank of $F(X, Y)$ in [7]. For a nonempty subset Y of a finite set X let

$$
T_{(X, Y)}=\{\alpha \in T(X): Y \alpha=Y\}
$$

It is clear that $T_{(X, Y)}$ is a subsemigroup of $T(X)$. In this paper we research the generating sets and the rank of $T_{(X, Y)}$. When X is finite, we take $X=X_{n}=\{1, \ldots, n\}$ and write T_{n} instead of $T\left(X_{n}\right)$. Let P_{n} and S_{n} be the partial transformation semigroup and the symmetric group on X_{n}, respectively. For $n, m \in \mathbb{Z}^{+}$with $m \leq n-1$ let Y be any subset of X_{n} with $|Y|=m$. If we denote $T_{\left(X_{n}, X_{m}\right)}$ by $T_{(n, m)}$, that is

$$
T_{(n, m)}=\left\{\alpha \in T_{n}: X_{m} \alpha=X_{m}\right\}
$$

then it is clear that $T_{\left(X_{n}, Y\right)}$ and $T_{(n, m)}$ are isomorphic. Thus, it is enough to consider the subsemigroup $T_{(n, m)}$ of T_{n} for $1 \leq m \leq n-1$. Observe that if we denote the restriction of any $\alpha \in T_{(n, m)}$ into X_{m} by $\alpha_{\mid m}=\alpha_{\mid X_{m}}$, then $\alpha_{\mid m}$ is a permutation of X_{m}, that is $\alpha_{\mid m} \in S_{m}$.

[^0]Let S be any semigroup, and let A be any nonempty subset of S. Then the subsemigroup generated by A that is the smallest subsemigroup of S containing A is denoted by $\langle A\rangle$. If there exists a finite subset A of a semigroup S with $\langle A\rangle=S$, then S is called a finitely generated semigroup. The rank of a finitely generated semigroup S is defined by

$$
\operatorname{rank}(S)=\min \{|A|:\langle A\rangle=S\}
$$

The defect, kernel, fix, and shift of $\alpha \in T_{n}$ are defined by

$$
\begin{array}{ll}
\operatorname{defect}(\alpha)=n-|\operatorname{im}(\alpha)|, & \operatorname{ker}(\alpha)=\left\{(x, y) \in X_{n} \times X_{n}: x \alpha=y \alpha\right\}, \\
\text { fix }(\alpha)=\left\{x \in X_{n}: x \alpha=x\right\}, \quad \text { and } & \operatorname{shift}(\alpha)=\left\{x \in X_{n}: x \alpha \neq x\right\}
\end{array}
$$

For any $\alpha, \beta \in T_{n}$ it is well known that $\operatorname{ker}(\alpha) \subseteq \operatorname{ker}(\alpha \beta)$ and $\operatorname{im}(\alpha \beta) \subseteq \operatorname{im}(\beta)$. Let $\alpha \in T_{n}$, if for unique $i \in X_{n}, i \alpha=j$ and $k \alpha=k$ for all $k \neq i$, and then we use the notation

$$
\alpha=\binom{i}{j}
$$

(and so α is an idempotent of defect 1). For $n \geq 3$, it is well known that $\operatorname{rank}\left(S_{n}\right)=2$ and $\operatorname{rank}\left(T_{n}\right)=3$. Moreover,

$$
\begin{aligned}
S_{n} & =\left\langle\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & \cdots & n
\end{array}\right)\right\rangle \text { and } \\
T_{n} & =\left\langle\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & \cdots & n
\end{array}\right),\binom{1}{2}\right\rangle
\end{aligned}
$$

where (12) and (12lll $\left.\begin{array}{ll}1 & 2\end{array}\right)$ are the transposition and the n-cycle as defined in general, respectively. Let $\operatorname{Sing}_{n}=T_{n} \backslash S_{n}$; it is called singular mappings. Gomes and Howie proved that rank $\left(\operatorname{Sing}_{n}\right)=\frac{n(n-1)}{2}[3]$. Necessary and sufficient conditions have been found for any set for transformations of defect 1 in Sing_{n} to be a (minimal) generating set for Sing_{n} [1]. For $1 \leq r \leq n$, let $K_{n, r}=\left\{\alpha \in T_{n}:|\operatorname{im}(\alpha)| \leq r\right\}$. Howie and McFadden proved that $\operatorname{rank}\left(K_{n, r}\right)=S(n, r)$ for $2 \leq r \leq n-1$ where $S(n, r)$ is the second kind of Stirling number [5]. Let $P_{n, r}=\left\{\alpha \in P_{n}:|\operatorname{im}(\alpha)| \leq r\right\}$; Garba proved that $\operatorname{rank}\left(P_{n, r}\right)=S(n+1, r+1)$ for $2 \leq r \leq n-1$ in [2]. In this paper generating sets and the rank of $T_{(n, m)}$ have been established. We use the same notations as in Howie's book [4].

2. Generating sets

For any $\alpha \in T_{(n, m)}$, if we define $\beta_{\alpha}, \gamma_{\alpha}, \lambda_{\alpha} \in T_{n}$ as follows:

$$
\begin{align*}
i \beta_{\alpha} & =\left\{\begin{array}{cc}
i \alpha & i \leq m \\
i & i>m
\end{array}\right. \\
i \gamma_{\alpha} & =\left\{\begin{array}{cl}
i \alpha & i>m \text { and } i \alpha \in X_{m} \\
i & \text { other }
\end{array}\right. \tag{1}\\
i \lambda_{\alpha} & =\left\{\begin{array}{cc}
i \alpha & i \alpha>m \\
i & i \alpha \leq m
\end{array}\right.
\end{align*}
$$

TOKER/Turk J Math

then it is clear that $\beta_{\alpha}, \gamma_{\alpha}, \lambda_{\alpha} \in T_{(n, m)}$. For $1 \leq i \leq m$ it follows from the fact $i \beta_{\alpha}=i \alpha \in X_{m}$ that $\left(i \beta_{\alpha}\right) \gamma_{\alpha}=i \alpha$, and so

$$
i\left(\beta_{\alpha} \gamma_{\alpha} \lambda_{\alpha}\right)=\left(i \beta_{\alpha}\right) \lambda_{\alpha}=(i \alpha) \lambda_{\alpha}=i \alpha
$$

since $(i \alpha) \alpha \leq m$. For $m+1 \leq i \leq n$ we have $i \beta_{\alpha}=i$. If $i \alpha \in X_{m}$, then $(i \alpha) \alpha \in X_{m}$ and $i \gamma_{\alpha}=i \alpha$, and so

$$
i\left(\beta_{\alpha} \gamma_{\alpha} \lambda_{\alpha}\right)=\left(i \gamma_{\alpha}\right) \lambda_{\alpha}=(i \alpha) \lambda_{\alpha}=i \alpha
$$

If $i \alpha \notin X_{m}$, then $i \gamma_{\alpha}=i$ and $i \lambda_{\alpha}=i \alpha$. Since $i \beta_{\alpha}=i$, it follows that

$$
i\left(\beta_{\alpha} \gamma_{\alpha} \lambda_{\alpha}\right)=\left(i \gamma_{\alpha}\right) \lambda_{\alpha}=i \lambda_{\alpha}=i \alpha
$$

Therefore, we have the equality $\alpha=\beta_{\alpha} \gamma_{\alpha} \lambda_{\alpha}$.
For an example, if

$$
\alpha=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 4 & 1 & 3 & 6 & 1 & 3 & 7
\end{array}\right) \in T_{(8,4)}
$$

then it follows from the definitions that

$$
\beta_{\alpha}=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 4 & 1 & 3 & 5 & 6 & 7 & 8
\end{array}\right), \quad \gamma_{\alpha}=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 2 & 3 & 4 & 5 & 1 & 3 & 8
\end{array}\right)
$$

$\lambda_{\alpha}=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 6 & 6 & 7 & 7\end{array}\right)$, and that $\alpha=\beta_{\alpha} \gamma_{\alpha} \lambda_{\alpha}$.
For any $\alpha \in T_{(n, m)}$, it is clear from the definitions that

$$
X_{n} \backslash X_{m} \subseteq \operatorname{fix}\left(\beta_{\alpha}\right), \quad X_{m} \subseteq \operatorname{fix}\left(\gamma_{\alpha}\right), \quad \text { and } \quad X_{m} \subseteq \operatorname{fix}\left(\lambda_{\alpha}\right)
$$

Moreover, for any $i \in X_{n} \backslash X_{m}$, we have $i \lambda_{\alpha} \in X_{n} \backslash X_{m}$ and either $i \in$ fix $\left(\gamma_{\alpha}\right)$ or $i \gamma_{\alpha} \in X_{m}$. If we define the following sets,

$$
\begin{aligned}
U(n, m) & =\left\{\beta_{\alpha}: \alpha \in T_{(n, m)}\right\}, \quad V(n, m)=\left\{\gamma_{\alpha}: \alpha \in T_{(n, m)}\right\}, \quad \text { and } \\
W(n, m) & =\left\{\lambda_{\alpha}: \alpha \in T_{(n, m)}\right\}
\end{aligned}
$$

then it is clear that $U(n, m), V(n, m)$, and $W(n, m)$ are subsemigroups of $T_{(n, m)}$. Moreover,

$$
U(n, m) \cong S_{m} \text { and } W(n, m) \cong T_{n-m}
$$

For every $\alpha \in T_{(n, m)}$, since $\gamma_{\alpha}^{2}=\gamma_{\alpha}, V(n, m)$ consists of only idempotents.
Since $T_{(n, 1)} \cong P_{n-1}$ and $T_{(n, n)} \cong S_{n}$, we only consider the case $2 \leq m \leq n-1$. Now we state and prove the following proposition.

Proposition 1 For $2 \leq m \leq n-2$, if

$$
A_{m}=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & \cdots
\end{array}\right),(m+1 m+2),(m+1 m+2 \cdots n),\binom{m+1}{m+2},\binom{m+1}{1}\right\}
$$

then, for all $1 \leq i \leq m$ and for all $m+1 \leq k \leq n$, we have

$$
\binom{k}{i} \in\left\langle A_{m}\right\rangle
$$

Proof First of all recall that $\left(\begin{array}{ll}1 & i\end{array}\right) \in\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{lll}1 & 2 & \cdots\end{array}\right)\right\rangle \cong S_{m}$ for every $2 \leq i \leq m$, and similarly, $(m+1 k) \in\langle(m+1 m+2),(m+1 m+2 \cdots n)\rangle \cong S_{n-m}$ for every $m+2 \leq k \leq n$. Since

$$
\binom{k}{1}=(m+1 k)\binom{m+1}{1}(m+1 k)
$$

for every $m+2 \leq k \leq n$, it follows that $\binom{k}{1} \in\left\langle A_{m}\right\rangle$ for all $m+1 \leq k \leq n$. Therefore, for all $2 \leq i \leq m$ and for all $m+1 \leq k \leq n$,

$$
\binom{k}{i}=\left(\begin{array}{ll}
1 & i
\end{array}\right)\binom{k}{1}\left(\begin{array}{ll}
1 & i
\end{array}\right) \in\left\langle A_{m}\right\rangle
$$

as required.

Lemma 2 For $2 \leq m \leq n-2$,

$$
A_{m}=\left\{\left(\begin{array}{llll}
1 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & \cdots
\end{array}\right),(m+1 m+2),(m+1 m+2 \cdots n),\binom{m+1}{m+2},\binom{m+1}{1}\right\}
$$

is a generating set of $T_{(n, m)}$. Moreover,

$$
A_{n-1}=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & \cdots & n-1
\end{array}\right),\binom{n}{1}\right\}
$$

is a generating set of $T_{(n, n-1)}$.
Proof For $2 \leq m \leq n-2$, let $\alpha \in T_{(n, m)}$. Suppose that $\beta_{\alpha}, \gamma_{\alpha}$, and λ_{α} are defined as in Equation (1) so that $\alpha=\beta_{\alpha} \gamma_{\alpha} \lambda_{\alpha}$. First of all it is clear that

$$
\beta_{\alpha} \in\left\langle(12),\left(\begin{array}{ll}
1 & 2 \cdots m)\rangle \cong S_{m} \text {. } n d
\end{array}\right.\right.
$$

and that

$$
\lambda_{\alpha} \in\left\langle(m+1 m+2),(m+1 m+2 \cdots n),\binom{m+1}{m+2}\right\rangle \cong T_{n-m}
$$

Since $\alpha=\beta_{\alpha} \gamma_{\alpha} \lambda_{\alpha}$, it is enough to show that $\gamma_{\alpha} \in\left\langle A_{m}\right\rangle$.
Suppose that $S=\operatorname{shift}\left(\gamma_{\alpha}\right)=\left\{x_{1}, \ldots, x_{r}\right\} \neq \emptyset$ (otherwise $\alpha=\beta_{\alpha} \lambda_{\alpha}$, and so there is nothing to show). Since $S \subseteq\left(X_{n} \backslash X_{m}\right)$ and $S \gamma_{\alpha} \subseteq X_{m}$, it follows that, for each $1 \leq i \leq r$, there exists $y_{i} \in X_{m}$ such that $x_{i} \gamma_{\alpha}=y_{i}$. Then it is clear that

$$
\gamma_{\alpha}=\binom{x_{1}}{y_{1}}\binom{x_{2}}{y_{2}} \cdots\binom{x_{r}}{y_{r}}
$$

Thus, it follows from Proposition 1 that $\gamma_{\alpha} \in\left\langle A_{m}\right\rangle$. Therefore, $T_{(n, m)}=\left\langle A_{m}\right\rangle$ for $2 \leq m \leq n-2$.
If $\alpha \in T_{(n, n-1)}$, then it is clear that λ_{α} is the identity of T_{n}, and moreover, γ_{α} is either the identity or an idempotent $\gamma_{\alpha}=\binom{n}{i}$ for any $1 \leq i \leq n-1$. In other words either $\alpha=\beta_{\alpha}$ or $\alpha=\beta_{\alpha}\binom{n}{i}$ for any $1 \leq i \leq n-1$. Now since

$$
\binom{n}{i}=\left(\begin{array}{ll}
1 & i
\end{array}\right)\binom{n}{1}(1 \quad i) \in\left\langle A_{n-1}\right\rangle
$$

for all $2 \leq i \leq n-1$, it follows that $T_{(n, n-1)}=\left\langle A_{n-1}\right\rangle$.

TOKER/Turk J Math

3. Rank of $T_{(n, m)}$

For $2 \leq m \leq n-1$, let

$$
\begin{aligned}
G(n, m) & =\left\{\alpha \in T_{(n, m)}:\left(X_{n} \backslash X_{m}\right) \alpha=X_{n} \backslash X_{m}\right\}=T_{(n, m)} \cap S_{n} \text { and } \\
H(n, m) & =\left\{\alpha \in T_{(n, m)}:\left(X_{n} \backslash X_{m}\right) \alpha \subseteq X_{n} \backslash X_{m}\right\}
\end{aligned}
$$

It is clear that both $G(n, m)$ and $H(n, m)$ are subsemigroups of $T_{(n, m)}$,

$$
G(n, m) \leq H(n, m) \text { and } G(n, m) \cong S_{m} \times S_{n-m} \quad(\text { for } 2 \leq m \leq n-2)
$$

Moreover, it is also clear that $G(n, n-1)=H(n, n-1) \cong S_{n-1}$. Thus, it follows that

$$
\begin{equation*}
G(n, m)=\langle(12),(12 \cdots m),(m+1 m+2),(m+1 m+2 \cdots n)\rangle \tag{2}
\end{equation*}
$$

for all $2 \leq m \leq n-2$. Since $(23 \cdots m)(12)=(12 \cdots m)$ for all $3 \leq m \leq n-1$, we also have that $S_{n}=\left\langle(12),\left(\begin{array}{ll}2 & \cdots\end{array}\right)\right\rangle$, and so

$$
\begin{align*}
G(n, m) & =\left\langle(12),\left(\begin{array}{ll}
2 & \cdots m
\end{array}\right),(m+1 m+2),(m+1 m+2 \cdots n)\right\rangle \tag{3}\\
& =\left\langle(12),\left(\begin{array}{ll}
1 & \cdots \cdots m),(m+1 m+2),(m+2 m+3 \cdots n)\rangle \\
& =\left\langle(12),\left(\begin{array}{ll}
2 & 3
\end{array}\right),(m+1 m+2),(m+2 m+3 \cdots n)\right\rangle
\end{array} . \begin{array}{l}
m
\end{array}\right),(m)\right. \tag{4}
\end{align*}
$$

Lemma 3 For $1 \leq m \leq n-1$,

$$
\operatorname{rank}(G(n, m))= \begin{cases}1 & \text { if }(n, m)=(2,1),(3,1) \text { or }(3,2) \\ 2 & \text { otherwise }\end{cases}
$$

Proof Since $G(n, n-1) \cong G(n, 1) \cong S_{n-1}$, it follows that $\operatorname{rank}(G(n, 1))=1$ for $n=2,3, \operatorname{rank}(G(3,2))=1$, and that $\operatorname{rank}(G(n, 1))=\operatorname{rank}(G(n, n-1))=2$ for $n \geq 4$.

First notice that if $(n, m) \notin\{(2,1),(3,1),(3,2)\}$, then $G(n, m)$ is not a cyclic group, and so rank $(G(n, m)) \geq$ 2. If $m=2$ and $n=4$, then $G(4,2) \cong S_{2} \times S_{2} \quad$ (the Klein- 4 group), and so $\operatorname{rank}(G(4,2))=2$ $(G(4,2)=\langle(12),(34)\rangle)$.

Before we consider the other cases, we consider the following cycles in S_{n} :

$$
\begin{aligned}
& \alpha_{1}=(12), \quad \alpha_{2}=(m+1 m+2), \\
& \beta_{1}=(12 \cdots m), \quad \beta_{2}=(m+1 m+2 \cdots n) \text {, } \\
& \gamma_{1}=(23 \cdots m), \quad \gamma_{2}=(m+2 m+3 \cdots n),
\end{aligned}
$$

and moreover, the permutations S_{n} :

$$
\delta=\alpha_{1} \beta_{2}, \quad \eta=\alpha_{1} \gamma_{2}, \quad \varepsilon=\alpha_{2} \beta_{1}, \quad \text { and } \quad \zeta=\alpha_{2} \gamma_{1}
$$

Suppose that $m=2$ and $n \geq 5$. If $n-2$ is an odd number, then since

$$
\delta^{n-2}=\alpha_{1} \quad \text { and } \quad \delta^{n-1}=\beta_{2}
$$

it follows from Eq. (2) that $G(n, 2)=\left\langle\delta, \alpha_{2}\right\rangle$. If $n-2$ is an even number, then since

$$
\eta^{n-3}=\alpha_{1} \quad \text { and } \quad \eta^{n-2}=\gamma_{2}
$$

TOKER/Turk J Math

it follows from Eq. (4) that $G(n, 2)=\left\langle\alpha_{2}, \eta\right\rangle$.
Suppose that $n-m=2$ and $m \geq 3$. If m is an odd number, then since

$$
\varepsilon^{m}=\alpha_{2} \quad \text { and } \quad \varepsilon^{m+1}=\beta_{1}
$$

it follows from Eq. (2) that $G(n, m)=\left\langle\alpha_{1}, \varepsilon\right\rangle$. If m is an even number, then since

$$
\zeta^{m-1}=\alpha_{2} \quad \text { and } \quad \zeta^{m}=\gamma_{1}
$$

it follows from Eq. (3) that $G(n, m)=\left\langle\alpha_{1}, \zeta\right\rangle$.
Finally, suppose that $m \geq 3$ and $n-m \geq 3$. If both m and $n-m$ are odd numbers, then since

$$
\delta^{n-m}=\alpha_{1}, \quad \delta^{n-m+1}=\beta_{2}, \quad \varepsilon^{m}=\alpha_{2}, \quad \text { and } \quad \varepsilon^{m+1}=\beta_{1}
$$

it follows from Eq. (2) that $G(n, m)=\langle\delta, \varepsilon\rangle$. If m is an even number and if $n-m$ is an odd number, then since

$$
\delta^{n-m}=\alpha_{1}, \quad \delta^{n-m+1}=\beta_{2}, \quad \zeta^{m-1}=\alpha_{2}, \quad \text { and } \quad \zeta^{m}=\gamma_{1}
$$

it follows from Eq. (3) that $G(n, m)=\langle\delta, \zeta\rangle$. If m is an odd number and if $n-m$ is an even number, then since

$$
\eta^{n-m-1}=\alpha_{1}, \quad \eta^{n-m}=\gamma_{2}, \quad \varepsilon^{m}=\alpha_{2}, \quad \text { and } \quad \varepsilon^{m+1}=\beta_{1}
$$

it follows from Eq. (4) that $G(n, m)=\langle\varepsilon, \eta\rangle$. If both m and $n-m$ are even numbers, then since

$$
\eta^{n-m-1}=\alpha_{1}, \quad \eta^{n-m}=\gamma_{2}, \quad \zeta^{m-1}=\alpha_{2}, \quad \text { and } \quad \zeta^{m}=\gamma_{1}
$$

it follows from Eq. (5) that $G(n, m)=\langle\zeta, \eta\rangle$.
Therefore, in the above theorem, we have found the rank of the direct product of two symmetric groups.
Lemma 4 (i) $T_{(n, m)} \backslash G(n, m)$ is an ideal of $T_{(n, m)}$ for $1 \leq m \leq n-1$.
(ii) $H(n, m) \backslash G(n, m)$ is an ideal of $H(n, m)$ for $1 \leq m \leq n-2$.
(iii) $T_{(n, m)} \backslash H(n, m)$ is a subsemigroup of $T_{(n, m)}$ for $1 \leq m \leq n-1$.

Proof (i) Let $\alpha \in T_{(n, m)}$ and $\beta \in T_{(n, m)} \backslash G(n, m)$. First notice that $|\operatorname{im}(\beta)| \leq n-1$ and that all elements in $G(n, m)$ are permutations. Since $\operatorname{im}(\alpha \beta) \subseteq \operatorname{im}(\beta)$, it follows that $|\operatorname{im}(\alpha \beta)| \leq|\operatorname{im}(\beta)| \leq n-1$. Since $\operatorname{ker}(\beta \alpha) \supseteq \operatorname{ker}(\beta)$, it follows that $|\operatorname{im}(\beta \alpha)| \leq|\operatorname{im}(\beta)| \leq n-1$. Therefore, both $\alpha \beta$ and $\beta \alpha$ are elements of $T_{(n, m)} \backslash G(n, m)$, as required.
(ii) Similar to the proof of (i).
(iii) Let $\alpha, \beta \in T_{(n, m)} \backslash H(n, m)$. Then there exists at least one i such that $m+1 \leq i \leq n$ and $i \alpha \in X_{m}$. Thus, we have $i(\alpha \beta)=(i \alpha) \beta \in X_{m}$, and so $\alpha \beta \in T_{(n, m)} \backslash H(n, m)$, as required.

Proposition 5 Let $\alpha \in G(n, m)$ and $\beta \in T_{(n, m)} \backslash H(n, m)$. Then both $\alpha \beta$ and $\beta \alpha$ are elements of $T_{(n, m)} \backslash H(n, m)$.

TOKER/Turk J Math

Proof Let $\alpha \in G(n, m)$ and $\beta \in T_{(n, m)} \backslash H(n, m)$. Similarly, there exists at least one i such that $m+1 \leq i \leq n$ and $i(\beta \alpha)=(i \beta) \alpha \in X_{m}$. Moreover, for the same i, there exists only one j such that $m+1 \leq j \leq n$ and $j \alpha=i$. Therefore, $j(\alpha \beta)=i \beta \in X_{m}$, as required.

Thus, for every generating set A of $T_{(n, m)}$, it follows from Lemma 4 (i) that $A \cap G(n, m)$ is a generating set of $G(n, m)(1 \leq m \leq n-1)$. Therefore, A must include at least 2 elements from $G(n, m)$ when $(n, m) \notin\{(2,1),(3,1),(3,2)\}$ and at least 1 element from $G(n, m)$ when $(n, m) \in\{(2,1),(3,1),(3,2)\}$. Similarly, for every generating set B of $H(n, m)$, it follows from Lemma 4 (ii) that $B \cap G(n, m)$ is a generating set of $G(n, m)(1 \leq m \leq n-2)$.

Theorem 6 For $1 \leq m \leq n-1$,

$$
\operatorname{rank}\left(T_{(n, m)}\right)= \begin{cases}2 & \text { if }(n, m)=(2,1) \text { or }(3,2) \\ 3 & \text { if }(n, m)=(3,1) \text { or } 4 \leq n \text { and } m=n-1 \\ 4 & \text { if } 4 \leq n \text { and } 1 \leq m \leq n-2\end{cases}
$$

Proof For $(n, m)=(2,1)$ since $T_{(2,1)} \cong P_{1}$ and $\operatorname{rank}\left(P_{1}\right)=2$, it follows that $\operatorname{rank}\left(T_{(2,1)}\right)=2$. For $(n, m)=(3,2)$, since $\operatorname{rank}(G(3,2))=1$, it follows from Lemma 4 (i) that rank $\left(T_{(3,2)}\right) \geq 2$. It is easy to show that $\left\{\left(\begin{array}{ll}1 & 2\end{array}\right),\binom{3}{1}\right\}$ is a generating set of $T_{(3,2)}$, and so $\operatorname{rank}\left(T_{(3,2)}\right)=2$. For $(n, m)=(3,1)$, since $T_{(3,1)} \cong P_{2}$, it follows from the well-known fact $\operatorname{rank}\left(P_{2}\right)=3$ that $\operatorname{rank}\left(T_{(3,1)}\right)=3$.

Suppose that $4 \leq n$ and $m=n-1$. Then it follows from Lemma 2 that $\left\{\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array} \cdots n-1\right),\binom{n}{1}\right\}$ is a generating set of $T_{(n, n-1)}$. From Lemmas 3 and 4 (i) since we have $\operatorname{rank}\left(T_{(n, n-1)}\right) \geq 3$, it follows that $\operatorname{rank}\left(T_{(n, n-1)}\right)=3$ for $4 \leq n$ and $m=n-1$.

Suppose that $4 \leq n$ and $1 \leq m \leq n-2$. Let A be any generating set for $T_{(n, m)}$. From Lemmas 3 and 4 (i) notice that $|A \cap G(n, m)| \geq 2$. Since $G(n, m) \neq T_{(n, m)}$ we have $\operatorname{rank}\left(T_{(n, m)}\right) \geq 3$.

Now we show that $\operatorname{rank}\left(T_{(n, m)}\right) \geq 4$. Assume that $\operatorname{rank}\left(T_{(n, m)}\right)=3$. Then it follows from Lemma 4 (i) that there exists only one element α in $B=A \backslash G(n, m)$. If $\alpha \in H(n, m)$, then it follows from Lemma 4 (ii) that $\langle A\rangle$ must be a subsemigroup of $H(n, m)$, which is a contradiction since $H(n, m) \neq T_{(n, m)}$. If $\alpha \in T_{(n, m)} \backslash H(n, m)$, then similarly it follows from Proposition 5 that

$$
\langle A\rangle \text { is a subsemigroup of }\left(G(n, m) \cup\left(T_{(n, m)} \backslash H(n, m)\right)\right) \neq T_{(n, m)}
$$

which is again a contradiction. Therefore, we must have $\operatorname{rank}\left(T_{(n, m)}\right) \geq 4$. For $4 \leq n$ and $1 \leq m \leq n-2$ the result follows from Lemmas 2, 3, and 4 (i) that $\operatorname{rank}\left(T_{(n, m)}\right)=4$, as required.

Note that for any generating set $\{\alpha, \beta\}$ of $G(n, m)$, we have just proved that the set

$$
\left\{\alpha, \beta,\binom{m+1}{m+2},\binom{m+1}{1}\right\}
$$

is a minimal generating set of $T_{(n, m)}$ for $4 \leq n$ and $1 \leq m \leq n-2$. Also notice that $\binom{m+1}{m+2} \in H(n, m) \backslash G(n, m)$ and that $\binom{m+1}{1} \in T_{(n, m)} \backslash H(n, m)$. One can easily prove that if $\gamma \in H(n, m) \backslash G(n, m)$ and $\delta \in T_{(n, m)} \backslash H(n, m)$ are any two idempotents of the same defect 1 , then $\{\alpha, \beta, \gamma, \delta\}$ is a minimal generating set of $T_{(n, m)}$ for $4 \leq n$ and $1 \leq m \leq n-2$.

References

[1] Ayık G, Ayık H, Bugay L, Kelekci O. Generating sets of finite singular transformation semigroups. Semigroup Forum 2013; 86: 59-66.
[2] Garba GU. Idempotents in partial transformation semigroups. Proc R Soc Edinb 1990; 116A: 81-96.
[3] Gomes GMS, Howie JM. On the ranks of certain finite semigroups of transformations. Math Proc Camb Philos Soc 1987; 101: 395-403.
[4] Howie JM. Fundamentals of Semigroup Theory. New York, NY, USA: Oxford University Press, 1995.
[5] Howie JM, McFadden RB. Idempotent rank in finite full transformation semigroups. Proc R Soc Edinb Sect 1990; 114A: 161-167.
[6] Sanwong J, Sommanee W. Regularity and Green's relations on a semigroup of transformations with restricted range. Int J Math Math Sci 2008; 2008: 794013.
[7] Sommanee W, Sanwong J. Rank and idempotent rank of finite full transformation semigroups with restricted range. Semigroup Forum 2013; 87: 230-242.
[8] Symons JSV. Some results concerning a transformation semigroup. J Aust Math Soc 1975; 19A: 413-425.

[^0]: *Correspondence: ktoker@harran.edu.tr
 2010 AMS Mathematics Subject Classification: 20M20

