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Abstract: Let m be a positive integer. We show that the exponential Diophantine equation (18m2+1)x+(7m2−1)y =

(5m)z has only the positive integer solution (x, y, z) = (1, 1, 2) except for m ≡ 23, 47, 63, 87 (mod 120) . For m ̸≡ 0

(mod 5) we use some elementary methods and linear forms in two logarithms. For m ≡ 0 (mod 5) we apply a result for
linear forms in p -adic logarithms.
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1. Introduction
Let a, b, c be relatively prime fixed positive integers greater than one. The exponential Diophantine equation

ax + by = cz (1)

in positive integers x, y, z has been studied by a number of authors. Although it is known that the number of
solutions (x, y, z) of the equation (1) is finite [9], some conjectures are still completely unproved related to the
question of whether or not there exist any other solution (x, y, z) of the equation (1) whenever (x0, y0, z0) is a
solution. One of them is a conjecture on Pythagorean triples, i.e. positive integers a, b, c satisfying a2+b2 = c2.

In 1956, Sierpinski proved that (x, y, z) = (2, 2, 2) is the only positive integer solution of equation 3x +4y = 5z

[13]. The same year, Jeśmanowicz conjectured that if a, b, c are Pythagorean triples the equation has only the
positive integer solution (x, y, z) = (2, 2, 2) [5]. There exist many positive results for Jeśmanowicz’s conjecture;
see for example [8, 11, 12, 17]. A similar conjecture is proposed by Terai that states that if a, b, c, p, q, r are fixed
positive integers satisfying ap + bq = cr with a, b, c, p, q, r ≥ 2 and gcd(a, b) = 1 then equation (1) has only the
positive integer solution (x, y, z) = (p, q, r) except for a handful of triples (a, b, c) [14, 15]. Exceptional cases
are listed explicitly in [19]. Although this conjecture is proved to be true in many special cases, for example
[3, 4, 10, 16, 18, 20], it remains an unsolved problem. In this paper we consider the exponential Diophantine
equation

(18m2 + 1)x + (7m2 − 1)y = (5m)z (2)

where m is a positive integer, and we prove the following.
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Theorem 1 Let m be a positive integer with m ̸≡ 23, 47, 63, 87 (mod 120) . Then equation (2) has only the
positive integer solution (x, y, z) = (1, 1, 2) .

The proof of the above theorem consists of the following main steps. At first we use some elementary
methods such as congruences and properties of the Jacobi symbol to reduce the solution to the case y = 1 when
m ̸≡ 0 (mod 5) , and then apply a lower bound for linear forms in two logarithms due to Laurent [7]. For the
case m ≡ 0 (mod 5) , we use a result on linear forms in p -adic logarithm due to Bugeaud [2].

2. Preliminaries
For any nonzero algebraic numbers α of degree d over Q , the absolute logarithmic height of α is defined by
the formula

h(α) =
1

d

(
log|a0|+

d∑
i=1

log max{1, |α(i)|}

)
,

where a0 is the leading coefficient of the minimal polynomial of α over Z , and the α(i)s are the conjugates of
α.

Let α1, α2 be two real algebraic numbers with |α1| , |α2| ≥ 1 and b1 , b2 be positive integers. Consider
the linear form

Λ = b2 logα2 − b1 logα1.

Put D = [Q(α1, α2) : Q] . We set

b
′
=

b1
D logA2

+
b2

D logA1
,

where A1 and A2 are real numbers greater than 1 such that

logAi ≥ max{h(αi),
|logαi|

D
,
1

D
} (i = 1, 2).

The following proposition is a particular version of [7, Corollary 2] by choosing m = 10 and C2 = 25.2 from
Table 1 [7, page 328].

Proposition 2 [7, Corollary 2] Let Λ, αi, D,Ai , and b′ be as above with αi > 1 for i ∈ 1, 2. Suppose that α1

and α2 are multiplicatively independent. Then

log|Λ| ≥ −25.2D4

(
max{log b′ + 0.38,

10

D
, 1}
)2

logA1 logA2.

Next we cite a result from [2]. Here we just use a special case y1 = y2 = 1 of [2, Theorem 2]. Before stating it,
we recall some notations. Let p be an odd prime and vp denote the p -adic valuation normalized by vp(p) = 1.

Let a1, a2 be two nonzero integers and g denote the smallest positive integer such that

vp(a
g
1 − 1) > 0, vp(a

g
2 − 1) > 0.

Assume that there exists a real number E such that

vp(a
g
1 − 1) ≥ E >

1

p− 1
.
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The following theorem gives an explicit upper bound for the p -adic valuation of

Λ = ab11 − ab22 ,

where b1 and b2 are positive integers.

Proposition 3 [2, Theorem 2] Let A1 > 1, A2 > 1 be real numbers such that

logAi ≥ max{log|ai|, E log p}, i = 1, 2

and put

b′ =
b1

logA2
+

b2
logA1

.

If a1 and a2 are multiplicatively independent then we have the upper estimates

vp (Λ) ≤
36.1g

E3 (log p)4
(max{log b′ + log (E log p) + 0.4, 6E log p, 5})2 logA1 logA2.

3. Proof of Theorem 1
The proof of the theorem follows in a series of lemmas.

Lemma 4 If m = 1 or m = 2 then equation (2) has only the positive integer solution (x, y, z) = (1, 1, 2).

Proof If m = 1 then we have the following equation:

19x + 6y = 5z.

Taking this equation modulo 5 implies that (−1)x + 1 ≡ 0 (mod 5), and so x is odd. Taking the equation
modulo 4 implies that 3 + 2y ≡ 1 (mod 4), and so y = 1. Then the equation

5z − 19x = 6

has only the positive integer solution z = 2 , x = 1 [1, Theorem 1.5]. For m = 2 the equation

73x + 27y = 10z

has only the positive integer solution (x, y, z) = (1, 1, 2) since the congruence 1+3y ≡ 2z (mod 8) implies that
z = 1 or z = 2. 2

Lemma 5 If (x, y, z) is a positive integer solution of equation (2) then y is odd.

Proof By Lemma 4 we may assume that m ≥ 3. Thus taking (2) modulo m implies that 1 + (−1)y ≡ 0

(mod m) and hence y is odd. 2

Lemma 6 If m is even then equation (2) has only the positive integer solution (x, y, z) = (1, 1, 2).
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Proof Clearly (x, y, z) = (1, 1, 2) is the only positive integer solution of (2) for z ≤ 2. Assume that z ≥ 3.

By taking (2) modulo m3 implies that

1 + 18m2x− 1 + 7m2y ≡ 0 (mod m3),

and so
18x+ 7y ≡ 0 (mod m),

which is a contradiction, since m is even and y is odd by Lemma 5. Hence for z ≥ 3 , equation (2) has no
positive integer solution when m is even. 2

3.1. The case 5 ̸ |m

Lemma 7 Let (x, y, z) be a positive integer solution of equation (2). If m ̸≡ 0 (mod 5) then x is odd.

Proof By Lemma 6 we may consider only the case m is odd, and so m ≡ ±1,±3 (mod 10). If m ≡ ±1

(mod 10) then taking equation (2) modulo 10 implies that

(−1)x + 6 ≡ 5 (mod 10),

and so x is odd. If m ≡ ±3 (mod 10) then again taking equation (2) modulo 10 implies that

3x + 2y ≡ 5 (mod 10).

Since y is odd by Lemma 5, we have either 2y ≡ 2 (mod 10) or 2y ≡ 8 (mod 10) , which implies that x is odd.
2

Lemma 8 Let (x, y, z) be a positive integer solution of equation (2). If m ̸≡ 0 (mod 5) then y = 1 except for
m ≡ 23, 47, 63, 87 (mod 120).

Proof By Lemma 4 and Lemma 6 we consider only the case m > 2 is odd. Moreover, from Lemma 5 and
Lemma 7 we know that both x and y are odd. Thus(

7m2 − 1

18m2 + 1

)
=

(
25m2

18m2 + 1

)
= 1

and (
5m

18m2 + 1

)
=

(
5

18m2 + 1

)(
m

18m2 + 1

)

=

(
18m2 + 1

5

)(
18m2 + 1

m

)
(−1)

m−1
2 =

(
18m2 + 1

5

)
(−1)

m−1
2 ,

where
(∗
∗
)

denotes the Jacobi symbol. If m ≡ ±1 (mod 5) and m ≡ 3 (mod 4) then
(

5m
18m2+1

)
= −1 , since(

18m2+1
5

)
=
(
4
5

)
= 1 , and similarly if m ≡ ±2 (mod 5) and m ≡ 1 (mod 4) then

(
5m

18m2+1

)
= −1 , since(

18m2+1
5

)
=
(
3
5

)
= −1. Hence for m ≡ 11, 13, 17, 19 (mod 20) we see that z is even. Now assume that y ≥ 3.
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For these values of m , taking equation (2) modulo 8 we get 3x ≡ 1 (mod 8) , which implies that x is even, a
contradiction. Hence y = 1 for m ≡ 11, 13, 17, 19 (mod 20). If m ≡ 1, 9 (mod 20) then m2 ≡ 1 (mod 20) and

(−1)x + 6y ≡ 5 (mod 20)

from (2). If y ̸= 1 then (−1)x+16 ≡ 5 (mod 20), which is impossible. Thus y = 1 for m ≡ 1, 9 (mod 20). For
the case m ≡ 3, 7 (mod 20), first we take the equation (2) modulo 20 and get 3x + 2y ≡ 15z (mod 20). From
this z is odd since both x and y are odd and y > 1. If m ≡ 3, 27 (mod 40) then from (2) we get the equation
3x + 22y ≡ 15z ≡ 15 (mod 40) which has not a solution when y > 1. So y = 1 when m ≡ 3, 27 (mod 40). If
m ≡ 7, 103 (mod 120) then m2 ≡ 49 (mod 120) and so from (2) we have that

43x + 102y ≡ 35z (mod 120).

One can see that this congruence also has no solution in positive integers when x, y and z are odd, since y ≥ 3.

Therefore, we conclude that y = 1 for m ≡ 7, 103 (mod 120). 2

Lemma 9 Let (x, y, z) be a positive integer solution of equation (2). If y = 1 then x < 2521 log 5m.

Proof We consider the equation

(18m2 + 1)x + (7m2 − 1) = (5m)z. (3)

If x = 1 then clearly z = 2 . Assume that x ≥ 2. Then z > 2 from (2). For simplicity we set the following
notation a = 18m2 + 1 , b = 7m2 − 1 , c = 5m and consider the linear form of two logarithms

Λ = z log c− x log a.

Since

0 < Λ < eΛ − 1 =
cz

ax
− 1 =

b

ax
, (4)

we get
logΛ < log b− x log a. (5)

From Proposition 2, we write

logΛ ≥ −25.2D4 (max{log b′ + 0.38, 10})2 log a log c, (6)

where
b′ =

x

log c +
z

log a.

Note that ax+1− cz = aax− cz = a(cz− b)− cz = (a−1)cz−ab > 18m2 ·25m2− (18m2+1)(7m2−1) > 0 , since
z > 2. Thus x+1

log c > z
log a and therefore b′ < 2x+1

log c . Write M = x
log c , and so b′ < 2M + 1

log c . Now combining

(5) and (6) we get

x log a < log b+ 25.2

(
max{log(2M +

1

log c ) + 0.38, 10}
)2

log a log c.
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Since log b
log a log c < 1 and log c = log 5m > 2 for m ≥ 3 we may write

M < 1 + 25.2 (max{log(2M + 0.5) + 0.38, 10})2 .

If log(2M + 0.5) + 0.38 > 10 then M ≥ 7532 . However, the inequality M < 1 + 25.2 (log(2M + 0.5) + 0.38)
2

gives M ≤ 1867. Thus max{log(2M + 0.5) + 0.38, 10} = 10 implies M < 2521 and hence x < 2521 log c. 2

For possible solution (x, y, z) of the exponential Diophantine equation
(
am2 + 1

)x
+
(
bm2 − 1

)y
= (cm)z

we can find an upper and lower bound for z depending on max{x, y} and m.

Lemma 10 Let a, b, c and m > 1 be positive integers such that a + b = c2 and (x, y, z) be a positive integer
solution of the exponential Diophantine equation (am2 + 1)x + (bm2 − 1)y = (cm)z. If max{x, y} = x then

(
2−

log( c2a )
log(cm)

)
x < z ≤ 2x,

and if max{x, y} = y then 2−
log
(

c2m2

bm2−1

)
log(cm)

 y < z ≤ 2y.

In particular, if M = max{x, y} > 1 then


2−

log

 c2

min{a,b−
1

m2
}


log(cm)


M < z < 2M.

Proof z ≤ 2M follows from the fact that

(cm)z = (am2 + 1)x + (bm2 − 1)y ≤ (c2m2 − bm2 + 1)M + (bm2 − 1)M ≤ (cm)2M .

If M = x then

(cm)

2−
log( c2a )
log(cm)

x

= (am2)x < (am2 + 1)x + (bm2 − 1)y = (cm)z.

Similarly, if M = y then

(cm)

2−
log
(

c2m2

bm2−1

)
log(cm)

y

= (bm2 − 1)y < (am2 + 1)x + (bm2 − 1)y = (cm)z.

2
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Lemma 11 Let (x, y, z) be a positive integer solution of equation (2). If y = 1 then the only positive integer
solution of (2) is (x, y, z) = (1, 1, 2).

Proof Clearly z = 2 if x = 1 and the result follows from Lemma 4 for m ≤ 2. Assume that x ≥ 2 and
m ≥ 3. From Lemma 10 we have the inequality

1.87x <

(
2−

log( 2518 )
log(15)

)
x < z < 2x.

Thus (3) has no solution in positive integer for z ≤ 6. Assume that z > 6. We consider (3) modulo m4 and
modulo m6. First taking equation (3) modulo m4 , we have that 18m2x+ 7m2 ≡ 0 (mod m4). In other words
18x+ 7 ≡ 0 (mod m2). So there exist a positive integer t such that

x =
tm2 − 7

18
(7)

Taking equation (3) modulo m6 , we obtain

18x+ 182m2x(x− 1)

2
+ 7 ≡ 0 (mod m4).

Combining this and (7), we see that 2t + 175 ≡ 0 (mod m2). Therefore, there exists a positive integer s such
that

t =
sm2 − 175

2
. (8)

Therefore, from (7), (8), x is of the form

x =
sm4 − 175m2 − 14

36
. (9)

Hence by Lemma 9 we have the inequality

m4 − 175m2 − 14 < 36 · 2521 log 5m

which implies that m ≤ 27. Now with the same notation as in Lemma 9, from (4) we have that

z

x
− log a

log c <
b

xax log c ,

and hence
∣∣∣∣ log a
log c − z

x

∣∣∣∣ < b

xax log c . Since ax log c
b >

18m2x

7m2
> 2x , we have the inequality

∣∣∣∣ log a
log c − z

x

∣∣∣∣ < 1

2x2
,

which means that z

x
is a convergent of the simple continued fraction expansion of log a

log c . Let z

x
=

pk
qk

, where

pk
qk

is the k− th convergent of the simple continued fraction expansion of log a
log c . Here qk ≤ x , since (pk, qk) = 1
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and therefore we have an upper bound for qk as qk < 2521 log 5m from Lemma 9. Since any such convergent
pk
qk

satisfies the inequality

1

qk (qk + qk+1)
<

∣∣∣∣ log a
log c − pk

qk

∣∣∣∣ ,
by taking qk+1 = ak+1qk + qk−1 we obtain

1

q2k (ak+1 + 2)
<

∣∣∣∣ log a
log c − pk

qk

∣∣∣∣ < b

xax log c <
b

qkaqk log c

where ak is the k− th partial quotient of the simple continued fraction expansion of log a
log c ; see for example [6,

Page 36]. Thus qk and ak+1 satisfy the inequality

ak+1 + 2 >
aqk log c

bqk
. (10)

As a final step of the proof we checked that with a short computer program in Maple there do not exist any

convergent pk
qk

of log a
log c satisfying (10) when qk < 2521 log 5m in the range 1 ≤ m ≤ 27 and it took not more

than a few seconds. This completes the proof. 2

3.2. The case 5 | m

For the case m ≡ 0 (mod 5) we have a result from [4] that gives an upper bound for m.

Proposition 12 [4, Theorem 1.1] Let a, b, c,m be positive integers such that a + b = c2, 2 | a, 2 ̸ |c, m > 1.

If c | m and m > 36c3logc, then (am2 + 1)x + (bm2 − 1)y = (cm)z has only the solution (x, y, z) = (1, 1, 2).

From the above proposition, we may assume that m ≤ 7242 when m ≡ 0 (mod 5). Therefore, what we need is
a restriction on x, y , and z. In what follows we will obtain such an upper bound for x, y and z.

Lemma 13 Let (x, y, z) be a positive integer solution of equation (2). Suppose that m ≡ 0 (mod 5). Then the
only positive integer solution of (2) is (x, y, z) = (1, 1, 2).

Proof Clearly (1, 1, 2) is the only solution of (2) for M = max{x, y} = 1. Suppose that M > 1. From Lemma
10 for m ≥ 5 we have that

1.55M <

(
2−

log( 256 )

log(25)

)
M < z < 2M.

From this we deduce that z ≥ 5. Since y is odd from Lemma 7 we set a1 = 18m2 + 1 , a2 = 1− 7m2 , b1 = x ,
b2 = y , and

Λ = ab11 − ab22
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Thus if we choose p = 5 , then g = 1 satisfies the condition mentioned before Proposition 3 and therefore we
can take E = 2 . Now we apply Proposition 3 and we get

2z ≤ 36.1

8 (log 5)4
(max{log b′ + log (2 log 5) + 0.4, 12 log 5, 5})2 log (18m2 + 1) log (7m2 − 1). (11)

Here
b′ =

x

log (7m2 − 1)
+

y

log (18m2 + 1)
.

Since z ≥ 5, taking (2) modulo m4 we have 18x + 7y ≡ 0 (mod m2). Then M ≥ m2

25 . Since z ≥(
2−

log( 256 )

log(5m)

)
M by Lemma 10 and b′ ≤ M

log 2m we have that

2

(
2−

log( 256 )

log(5m)

)
M ≤ 36.1

8 (log 5)4
(

max{log( M

log 2m ) + log (2 log 5) + 0.4, 12 log 5}
)2

log (18m2 + 1) log (7m2 − 1). (12)

Let

h = max{log ( M

log 2m ) + log (2 log 5) + 0.4, 12 log 5}.

Suppose h = log( M
log 2m )+ log (2 log 5)+0.4 ≥ 12 log 5. Then the inequality log(M) ≥ 12 log 5− log (2 log 5)−0.4

implies that M > 50841461. On the other hand, from (12) we have that

2M ≤ (0.68) (logM + 1.57)
2 log (18 · 72422 + 1) log (7 · 72422 − 1),

which implies that M < 17889 , a contradiction. Hence h = 12 log 5 and therefore from (12) we have the
inequality

2m2

25

(
2−

log( 256 )

log(5m)

)
≤ 251 log (18m2 + 1) log (7m2 − 1).

This implies that m ≤ 636 . Hence M <
251 log (18m2 + 1) log (7m2 − 1)

2

(
2−

log( 256 )

log(5m)

) and therefore all x, y, z are bounded.

We wrote a program in Maple. It took a few hours to run the program and we found no positive integer
solutions (m,x, y, z) of (2) under consideration. Hence there is no positive integer solution of (2) other than
(x, y, z) = (1, 1, 2) when 5 | m. 2

Proof [Proof of Theorem 1] The result follows from Lemma 8 and Lemma 11 if m ̸≡ 0 (mod 5) and from
Lemma 13 if m ≡ 0 (mod 5). 2
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