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Abstract: We study plane algebraic curves defined over a field k of arbitrary characteristic that are ramified coverings
of the projective line P1(k) branched over a given configuration of distinct points by their ramification type specified
by a partition of d the degree of the covering. We enumerate them by using the combinatorics of partitions and its
connection to the representation theory of the symmetric group.

Key words: Algebraic curve, covering, symmetric group

1. Introduction
In the present paper we study the connection between plane curves and coverings of the projective line defined
over a field k of arbitrary characteristic and their relations with the combinatorics of Hurwitz numbers. In
particular, we study curves of the form

yd = (x− a1)
m1 . . . (x− ar)

mr , (1)

for given d, r and mi , integer numbers. It is easy to see that these curves correspond to coverings of P1 with
Galois group the cyclic group Zd of order d acting by multiplication with a d−root of unity on the coordinate
y and with ramification at the points ai . The data defining such a covering are encoded by a partition of
length d . If d, r , and mi are coprime numbers, the corresponding field extension k(x) ↪→ k(x, y) is a Kummer
extension of the rational function field k(x) .

The Galois group of the plane curve Cf with the affine model defined by equation (1) is the Galois group
of the polynomial

f(x) = (x− a1)
m1 · · · (x− ar)

mr ,

that is, the automorphism group Aut (k(Rf )/k)) , where Rf denotes the set of branched points of the associated
covering map π : Cf → P1 .

The Galois group of the curve Cf is a quotient of the automorphism group Aut(Cf ) of the curve and if
it contains a cyclic subgroup Zp , where p is a prime number, such that the quotient curve Cf/Zp has genus
0, then the curve is called a cyclic p−gonal curve. If in addition Zp is normal in Aut(Cf ) , then Cf is called
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a normal cyclic p−gonal curve. In this case, the reduced automorphism group Aut(Cf ) := Aut(Cf )/Zp is
isomorphic to a finite subgroup of PGL2(k) .

We study curves with Galois group Sn and their invariant fields under the action of finite subgroups of
Sn . In particular, we consider the locus of curves X with reduced automorphism group isomorphic to one of
the ternary groups Z2 × Z2, A4, A5, S4 or the dihedral group Dn .

In order to relate the moduli space of cyclic covers Rg,n [3], with the moduli of curves Mg , we consider
first the variety Cd,m parameterizing the curves Cf,d , that is, the parameter space of coefficients of the equations
of the form (1). This is a Zariski open set in Ak corresponding to the complement V (D) , where D is a suitable
discriminant and itself an algebraic variety with coordinate ring k[x1, . . . , xd]D . All the curves corresponding
to points in Cd,m have the same genus g . The moduli space Hg,d of pairs (Cf,d, π : C → P1) is a Hurwitz
space.

The main contribution of the paper is Theorem 3.10, which realizes any cyclic covering of P1 over a field
k of characteristic p ≥ 0 as a plane curve of genus g and degree d defined by its ramification type above ∞
specified by the data of a partition of d .

In section 4, we study the enumerative problem of counting degree d coverings of P1 by distinguishing
on the number of ramification points. The enumeration of coverings of the complex projective line with profile
µ over ∞ and simple ramification over a fixed set of finite points is done by direct calculation in the Gromov–
Witten theory of P1 . These numbers are known as Hurwitz numbers and arise as intersections in Mg,n(P1) . In
Proposition 4.1 algebraic curves satisfying certain geometrical conditions are realized as cyclic coverings with
profile over 0 and ∞ described by two partitions of d . The combinatorial enumeration of cyclic covers of P1

in Proposition 4.4 is done by counting conjugacy classes of permutations in the symmetric group. Finally, in
proposition 4.6 the number of d−sheeted covers of P1 is expressed in terms of weighted cardinality of the
moduli space of curves Mg,n .

Conventions
For d a positive integer, let α = (α1, . . . , αm) be a partition of d into m parts with α1 ≥ α2 ≥ . . . ≥ αk .We
set l(α) = m for the length of α , that is the number of cycles in α , and li for the length of αi . The notation
(a1, . . . , ak) stands for a permutation in Sd that sends ai to ai+1 . For us, scheme means separated scheme of
finite type over an algebraically closed field k . A curve is an integral scheme of dimension 1, proper over k .

We write PGL(2, k) = GL(2, k)/k∗ , and elements of PGL(2, k) will be represented by equivalence classes

of matrices
(
a b
c d

)
.

We will denote the greatest common divisor of two integers a and b as (a, b) .

2. Polynomial invariants under the action of a finite group
Let k be an algebraically closed field of characteristic p ≥ 0 . Let V be a finite dimensional k -vector space
equipped with a linear action, that is, G acts via a representation G → GL(V ) . Fix a basis z1, . . . , zn for V ;
in particular z1, . . . , zn can be thought as formal variables of degree one and the polynomial algebra over k on
V is the polynomial ring k[V ] = k[z1, . . . , zn] .

The action of G induces a natural action on the polynomial ring k[V ] ∼= Sym(V ∗) . The coordinate ring of
invariant polynomials k[V ]G is finitely generated as an algebra, for some homogeneous polynomials called G− in-
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variants. The locus V (f1, . . . , fr) defined by the invariant polynomials is an algebraic variety X with coordinate
ring k[z1, . . . , zn]

G . The affine scheme Spec(k[V ]G) is an affine geometric invariant theory GIT quotient and
is denoted by X//G . Moreover, as k[V ]G is a graded ring, (k[V ]G) one obtains a projective GIT quotient
by taking the functor Proj. The function field of X is defined as the quotient field k(z1, . . . , zn)/(f1 . . . , fr) ,
where k(z1, . . . , zn) is the function field of the projective space Pn(k) , and (f1, . . . , fr) is the ideal generated
by the polynomials f1, . . . , fr .

When G has a polynomial ring of invariants, we define the Jacobian determinant J = J(f1, . . . , fn) =

det( ∂ fi
∂ zj

) . This polynomial is nonzero and well defined up to a nonzero element of C depending on the choice

of basic invariants of a basis {zj} of V ∗ .
When does G have a polynomial ring of invariants? Serre showed that in arbitrary characteristic every

finite subgroup of GL(V ) with a polynomial ring of invariants must be generated by reflections (see [14]). The
converse may fail when the characteristic of the field divides the order of G .

The ring of polynomials in n variables with complex coefficients admits a natural action of the orthogonal
group SO(n) . We can also study the action of finite subgroups G of SO(n) and give generators for the spaces
C[x0, . . . , xn]Gj of homogeneous G− invariant polynomials of degree j . We can even compute their dimension
by considering the Poincaré series

p(t) :=

∞∑
j=0

dim C[x0, . . . , xn]Gj · tj .

It can be written as

p(t) =
1

|G|
∑ ng

det(g − 1 · t)
,

where the sum runs over all the conjugacy classes of G and ng denotes the number of their elements.
We define the polynomials f(x) = xn + a1x

n−1 + · · ·+ an , with ai ∈ Q , and f(x, t) = f(x)− t . Then, if
f is a separable polynomial, the Galois group of f(x, t) over k(t) is a regular extension with Galois group Sn .

Example 1 Let G = Sn acting on Q(x1, . . . , xn) . Observe that Q(x1 . . . , xn) is the function field of an
(n−1)−dimensional projective space Pn−1(Q) over Q . Suppose that z1, . . . , zn are the roots of f in a splitting
field of f over Q . Each coefficient ai of xi in f is symmetric in z1, . . . , zn ; thus by the theorem on symmetric
functions, we can write ai as a symmetric polynomial in z1, . . . , zn with rational coefficients. On the other
side, for a permutation σ ∈ Sn , set Eσ = x1z(σ(1)) + · · ·+ xnz(σ(n)) in Q(x1 . . . , xn) and f(x) =

∏
σ(x−Eσ) ,

where σ runs through all permutations in Sn .

Theorem 2.1 (Serre) The field E of Sn− invariants is Q(t1, . . . , tn) , where ti is the ith symmetric polynomial
in x1, . . . , xn , and Q(x1 . . . , xn) has Galois group Sn over E : it is the splitting field of the polynomial

f(x) = xn − t1x
n−1 + t2x

n−2 + · · ·+ (−1)ntn.

In particular, if we consider f(x, y) as a polynomial in Fq[x, y] and we apply Theorem 2.1 to the ith

elementary symmetric polynomial in the n symbols x, xq, x2q, . . . , xqn−1 , we get that the field of Sn− invariants
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is an extension Fqn of Fq . Moreover, due to a result given by Ling et al. [10], if f ∈ Fq[x] and β ∈ Fs
q , then

f(β) = 0 if and only if f(βqi) = 0 of all 0 ≤ i ≤ s− 1 . In particular, this result is very useful when we consider
cyclic coverings of the projective line defined over finite fields.

Example 2 Dihedral invariants. A dihedral group is the group of symmetries of a regular polygon, including
both rotations and reflections. The Dihedral group Ds is generated by a rotation τ of order s , and a reflection
σ of order 2, such that στσ = τ−1 . In geometric terms, in the mirror a rotation looks like an inverse rotation.
The action of the Dihedral group Ds on C(x1, . . . , xs) is given by

τ : xj 7→ ϵixj , for i = 1, . . . , [
s

2
],

σ : xi 7→ xs−i, for i = 0, . . . , [
s

2
],

where ϵ is an s primitive root of unity.
If s = 1 , then the above actions are trivial. If s = 2 , then τ(x1) = −x1 , τ1(x2) = x2, τ2 = Id , and the

action is not dihedral but cyclic on the first factor.
We need to find the invariant polynomials in the coordinates (x1, . . . , xs) by the action of the Dihedral

group. Let s > 2 and then the elements

ui(x1, . . . , xs) := xs−i
1 xi + xs−i

s−1xs−i,

us−i(x1, . . . , xs) := xi1xs−i + xis−1xi,

for 1 ≤ i ≤ s, are invariant polynomials under the action of the group Ds defined above. The elements ui are
called the dihedral invariants of Ds .

3. Cyclic coverings of P1 with prescribed ramification

Let k(x) be the function field of the projective line and consider a finite Galois extension E of k(x) with
group G which is regular, i.e. k̄ ∩ E = k . Moreover, given a set S = {a1, . . . , an} ⊆ A1(k) ⊆ P1(k) , there is
a correspondence between isomorphism classes of Galois extensions of k(x) with Galois group G and branch
points contained in S.

Lemma 3.1 Let G = Gal(E/k(x)) be the Galois group of the extension. The inclusion k(x) ↪→ E corresponds
to a (branched) Galois covering C → P1 defined over k with Galois group G .

Proof Geometrically, E can be viewed as the function field k(C) of a smooth projective curve C that is
absolutely irreducible over k , i.e. y satisfies an algebraic equation over k[x, t]

{(x, t) ∈ k2| f(x, t) = 0},

where f(x, t) =
∑m

i=1

∑n
j=1 x

iyj =
∑n

j=1 aj(x)y
j = 0 is an irreducible polynomial in x and y . We assume

that not all aij vanish and that an(x) = 1 (which can be arranged by a change of variables). Thus n is the
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degree of the polynomial in y . Since k is algebraically closed, at a generic point x there are n roots y(k) ,
k = 1, . . . , n which implies that the algebraic curve defines an n−sheeted ramified covering of the x−plane
given by projecting over the x -axis. If the number of distinct roots y(k) is lower than the degree n , this means
there are roots that occur with multiplicity greater than or equal to 2. 2

Conjecture 3.2 Every finite group G occurs as the Galois group of such a covering.

Let X be a smooth curve and f : X → P1 a branched cover, and the ramification index at the branch point
y ∈ P1 is the absolute value of the local degree of the map f at the point y . Analytically, the map looks locally
like y → ym, m > 1 .

The total ramification above a point of P1 is the sum of the ramification numbers of the branch loci
mapping to that point. For any map f from a nodal curve to a nonsingular curve, the ramification number
defines a divisor on the target: ∑

L

rLf(L),

where L runs through the branch loci and rL is the ramification index. The monodromy mi of the branch
point bi is the permutation of L obtained by applying analytic continuation on L following a path from x0

to bi going around bi counter-clockwise and returning to x0 . The order of the branch points is chosen in such
a way that the complex numbers bi have increasing arguments. The monodromy group G is the permutation
group generated by the mi .

Definition 3.3 Given a covering π : C → P1 of degree d , the profile of π over a point q ∈ P1 is the partition
η of d obtained by the multiplicities of π−1(q) . If one of the multiplicities is different from 1, we say that q
is a branched point. If η is the partition (1d) with all its parts equal to the integer 1, we say that the covering
simply ramifies at the point q . The data of the partition determines the ramification type of the covering at this
point.

Definition 3.4 Two ramified coverings (Cf ;πf ) and (Cg;πg) are called topologically equivalent in the Zariski
topology if there exists a homeomorphism h : Cf → Cg making the following diagram commutative:

Cf
h //

πf

  A
AA

AA
AA

Cg

πg

~~}}
}}
}}
}

P1

In particular, the ramification points of the coverings coincide, as do the genera of the covering curves.

In the present paper we will concentrate in the case of cyclic Galois coverings. Namely, given a polynomial
f in k[x] of degree n with roots β1, . . . , βr repeated according to the multiplicity in the splitting field L of the
extension of f(x) over k , and a positive integer d , let Cf,d be the smooth projective curve over k with affine
model

yd = f(x). (2)

If the characteristic p of the field k is positive, in order to get a Galois extension, we will assume that p is
relative prime to d . We denote by ξd a primitive dth root in k . Consider the natural action (x, y) → (x, ξqy)

2022



BESANA and MARTINEZ/Turk J Math

of the dth roots of unity on Cf,d over k(ξq) . In particular, we have that the Galois group of the extension
Gal(k(Cf,d/k(x)) ∼= Zd is cyclic. It is a cyclic Galois covering of the projective line that ramifies exactly at the
places x = βi , and the corresponding ramification indices are defined by

ei =
d

(d, di)
,

with di ∈ Z the corresponding multiplicity of βi in f . There are ramification points with different ramification
behavior. The monodromy above ∞ defines the ramification type of the covering: it is determined by the
Galois group of the extension and it is specified by a partition α of d .

As all the cyclic groups of order d are isomorphic, we will refer to the additive cyclic group Zd generated
by the class of 1 modulo d or to the multiplicative group µd of roots of unity if we are interested in the
multiplicative structure.

By the Riemann–Hurwitz formula, it follows that the function field F has genus

g(F) = 1− d+
1

2

r∑
i=1

(d− (di, d)). (3)

We denote by Rf the set of roots of f in k . The function field of the curve is F = k(x, y) where y satisfies
the algebraic equation (2) over the algebra k[x] , that is, k(Cf ) = k(x, y) . Observe that Gal(F/k(x)) ⊆ Aut(F) .

We can consider the quotient surface C/G for any finite subgroup G of the automorphism group Aut(F)
of the curve Cf,d . As we have seen, C admits an automorphism τ of order d such that C/⟨τ⟩ is isomorphic to
P1 . The quotient surface is obtained via uniformizing a neighborhood of 0 by y → yd ; this means the surface
has at least an orbifold point of order d . The uniformization induces naturally an orbifold structure on the
hyperplane class bundle, such that the cyclic group Zd acts trivially on the corresponding bundle. The resulting
orbifold bundle is denoted by Ounif(1) .

Definition 3.5 The Galois group of the curve Cf,d is defined as the Galois group Gal(f(x)) of the polynomial
f(x) , that is, the automorphism group Aut(k(Rf/k)) .

Definition 3.6 The discriminant of the polynomial f is △ = δ2 , where

δ = Π1≤i<j≤n(βj − βi).

If f has a repeated root, then δ = 0 , and f is a separable polynomial if and only if δ ̸= 0 .

Remark 3.1 In general the problem is reduced to study configurations M0,n of points in the affine line as the
set of branch points for a ramified cover and in this way moduli of points lead naturally to moduli of positive
genus algebraic curves Mg . In particular any cover that is simply ramified corresponds to an unordered tuple
of n points in P1 .Thus, there is an isomorphism

Symn P1 ∼= (P1)n/Sn
∼= kn\VDn

,

where VDn is the zero set of the discriminant of the polynomial. Since the symmetric group Sn is generated by
3 elements, a reflection of order 2, a symmetry of order 3, and a rotation of order n , the variety parameterizing
Sn−covers is of dimension n− 3 .

2023



BESANA and MARTINEZ/Turk J Math

Remark 3.2 Alternatively Cf,d may be seen as an unramified Galois covering of a Riemann surface. To
describe the associated Riemann surface, one has to be able to identify the branching structure of the curve
at the branch points, that is, one has to specify which sheets of the covering are connected in which way at a
given branch point. This is equivalent to identifying the monodromy of the surface. Moreover, every Riemann
surface arises as a quotient of one of the simply connected domains H,C , and P1 by a discrete subgroup of
the group of its automorphisms. These discrete subgroups are the fundamental groups of the corresponding
underlying Riemann surface (see [1]). The cyclic coverings studied here have genus greater or equal to 2 and
are uniformized by the hyperbolic plane. Only rational curves have universal covering the projective line and
only elliptic curves have universal covering the complex plane.

Let F0 be the fixed field Fµd by the action of the cyclic group ξd . It is the rational function field F0 = Fµd

and Gal(F/F0) is the Galois group Gal(Cf/P1
k) of the curve Cf that is the Galois group of the polynomial

f(x) .
Let Gal(F/k(x)) = ⟨σ⟩ with σ a generator of the Galois group, if τ /∈ Gal(F/k(x)) , τ is said to be an

extra automorphism. There is an exact sequence:

1 → µd → G
π→ G0 → 1,

where G0 = Aut(F)/µd and G = Aut(F) . Moreover, if the extension splits then G0
∼= Gal(F/F0) and

Aut(F) ∼= µd × G0 . If ⟨σ⟩ is a normal subgroup of the whole automorphism group Aut (F)/⟨σ⟩ we can
consider the reduced group G = Aut (F)/⟨σ⟩ , which is a finite subgroup of Aut (P1

k) = PGL(2, k) . In [9],
some configuration spaces of Galois cyclic covers X → P1

k with cyclic Galois group Gal(X/P1
k) are constructed

generalizing the theory of hyperelliptic curves.
Let b = div(f(x))0 be the root divisor of the polynomial yd = f(x) in k(x) . The ramifications are

determined by the profile of the covering over the branch points. Any branch point is induced by a permutation
in Sd . In particular, if a point is simply ramified its monodromy is determined by a simple transposition. If
we vary a branch point of the curve C in P1 , we obtain a one-dimensional Hurwitz space parameterizing such
coverings. Each conjugacy class in Sd determines a divisor class in the Hurwitz space of all degree d and fixed
genus g connected coverings of P1 .

Definition 3.7 A ramification type is realizable if the Galois group Gal(F/F0) is a normal subgroup in the
whole automorphism group G = Aut(F) .

Observe that any normal finite subgroup G0 of Gal(F/F0) determines a ramification type.

Lemma 3.8 Any partition λ = (λ1, . . . , λm) of d into m parts corresponds to a degree d branched covering of
P1 with monodromy above ∞ given by λ , and r = d+m+ 2 (g − 1) other simple branch points and no other
branching.

Proof For each partition λ = (λ1 ≥ . . . ≥ λm) in P(d) , consider a configuration of points {p1, . . . , pm} on
the x−axis with coordinates

{(x1, 0), . . . , (xm, 0)} ⊆ k∗ × {0} ⊂ k∗ × k.

To this configuration of points there corresponds a unique polynomial

f(x) = (x− x1)
λ1 . . . (x− xm)λm ∈ k[x]
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that defines a covering of P1(k) . The divisor Dλ =
∑m

i=1 λipi corresponds to a ramification type defining the
profile of the covering at ∞ . Every permutation σ ∈ Sd defines an automorphism of the covering acting by
permuting the places corresponding to the points pi, i = 1, . . . ,m .

In particular, permutations in the same conjugacy class have the same cycle structure and thus give the
same ramification type. 2

Remark 3.3 Observe that if the base field k is of characteristic different from 0, then no configuration of
points in the affine line A1(k) as in Lemma 3.8 gives rise to a polynomial in k[x] .

Definition 3.9 A set of integers R mod n is said to be a set of roots if it is the set of roots of some polynomial,
that is, if it corresponds to Rf for some polynomial f ∈ Z[x] .

Let q = pn and consider the Galois extension Fq/Fp with Galois group the cyclic group of order n .
According to the Chinese remainder theorem, finding and counting sets of roots mod n reduces to compute
roots modulo a prime power (see [12]). Indeed there is a functorial correspondence between polynomials in Z[x]
modulo a prime and root sets.

On the other hand, the set of roots of a polynomial over Z coincides with the set of roots of a polynomial
over Q , that is, every rational root of a polynomial in Z is an integer.

Example 3 Consider the curve Cn,m with affine equation ym + xn = 1 defined over a finite field Fq of q
elements, where q is a power of a prime and n,m are integer numbers greater than or equal to 2.

We denote by Fn,m the function field k(x, y) of C(n,m) , where ym+xn = 1 . If m|q2−1 then the points
P0 = (α, 0) and P1 = (β, 0) with αm = 1 and βn = 1 are Fq2−rational points of the curve Cn,m and the
root divisors of the elements x, y ∈ k(x, y) are expressed as div(y)0 = mP0 and div(x)0 = nP1 . It is a cyclic
covering of P1(Fq2) of degree d , the greatest common divisor of n and m . The Galois group is generated by
two elements g1, g2 ∈ PSL(2, q2) of orders n and m respectively.

Theorem 3.10 Fix a genus g , a degree d , and a partition α = (α1, α2, . . . , αm) of d . There is a branched
covering Cα,d of P1 with r = d+m+2(g−1) , monodromy above ∞ defined by α , and no other specified simple
branched points. Moreover, any such covering is induced by the conjugacy class of a subgroup S of PGL(2, k) .
We recover any possible degree d , branched coverings of P1 by a genus g connected Riemann surface by realizing
any normal subgroup of the Galois group Gal(Cα,d/P1) .

Proof Any degree d irreducible cyclic covering Cd of the projective line, after a birational transformation,
corresponds to a cyclic extension k(x, z) of the rational function field k(x) of degree d , where z satisfies an
algebraic equation:

zd :=

m∏
i=1

(x− ρi)
αi , 0 < αi < d. (4)

If n ≡ 0 (d) , where n :=
∑r

i=1 di , then the place at ∞ does not ramify at the above extension. The only
places of k(x) that are ramified are the places Pi that correspond to the points x = ρi . If the curve ramifies
at ∞ , then αi ≥ 2 . If the multiplicity dj = 1 , then the point simply ramifies and the monodromy above the
point is induced by a simple transposition.
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If the covering ramifies only at 0 and there is no other branching, then Gal(k(Cd/k(x)) ∼= Zd . In this case there
is no ramification over ∞ (i.e. α = (1m)).
If Cd ramifies at ∞ , we recover all possible cases by projecting G/Zd into the known finite subgroups of
PGL(2, k) , which constitutes the automorphism group of the rational function field. If k is algebraically closed,
as we are only interested in enumerating all possible conjugacy classes that can appear and as the base field
k contains all roots of unity, it is enough to determine all finite subgroups of PSO(2) , the special projective
orthogonal group. By the classification theorem of finite simple groups of SO(3) , these are the ternary groups,
which are known to be Z2 × Z2 , Dm , A4 , A5 , and S4 . In addition we have all the finite cyclic subgroups of
order p prime, corresponding to elements in PGL(2, k) fixing just one point that we may assume is ∞ , and all
the p regular cyclic subgroups of PGL(2, k) corresponding to elements in PGL(2, k) fixing two points, say 0 and
∞ . If k is arbitrary of positive characteristic p > 0 , PGL(2, k) is contained in PGL(2, k) , where k denotes the
algebraic closure of k . In this case, we must include all the finite groups isomorphic to PSL(2,Fq) or PGL(2,Fq)

with q a prime power of p whenever the field k contains the finite group Fq , as well as the conjugacy classes
of elementary subgroups of order pmn with n ∈ N/pN or a semidirect product of an elementary abelian group
by a cyclic one. If χ + χ−1 ∈ k for some primitive n−root of unity χ , then PGL(2, k) contains all dihedral
groups D2n of order 2n . If q = ql1(l ∈ N) we consider the subfield subgroup PGL(2,Fq1) . 2

Example 4 We consider the roots of the polynomial x8−1 ∈ F5[x] in the splitting field F52 . The decomposition
into irreducible polynomials over F5[x] is (x−1)(x+1)(x−2)(x+2)(x2+1)(x2−2)(x2+2) . Now we consider the
field extensions F1 := F5[x]/(x

2 − 2) and F2 := F5[x]/(x
2 + 2) of F5 that are isomorphic to the field extension

F25 of F5 . Call α the root of x2−2 in the field extension F1 ; then 4·α is the other root of x2−2 , and 2·α , 3·α
the roots of x2 + 2 in F1 . If we consider the factorization of the polynomial x8 − 1 = (x2 − 1)(x2 + 1)(x4 + 1)

over F5[x] , we see that the point (α, 0) ∈ P(F2
q) with α4 = 4 is an F25−rational point of the affine curve

C : y2 = (x4 + 1) . The other rational places are (2, 0), (−2, 0) and the place (0, α) at ∞ . The Galois group
Gal(C/P1(F25))/ ∼= Z2 .

Corollary 3.11 All the coverings of P1 that ramify over 3 points are encoded by the partitions of 3 parts:
(2, 2, n), for some n ≥ 2 , (2, 3, 3) , (2, 3, 4) , and (2, 3, 5) induced by the groups generated by 2 of the 3
transpositions of S3 . There are

(
3
2

)
coverings of P1 that ramify over 3 fixed points.

Proof All the coverings of P1 that ramify over 3 points are induced by the two groups generated by 2 of the
3 transpositions of S3 , that is H1 = ⟨(12), (23)⟩ and the group H2 = ⟨(23), (13)⟩ . Thus the covering whose
ramification is given by the 3 permutations (12) , (23) , and (12)(23) in H1 = ⟨(23), (13)⟩ has two simple branch
points corresponding to the two transpositions and a branch point with multiplicity at least 3 corresponding to
the permutation of order 3, (132) and all its powers. These coverings have ramification type above ∞ defined
by the partition (2, 2, n) corresponding to the orders of the three orbifold points and the Galois group is the
dihedral group Dn . If we consider the group H2 = ⟨(23), (13)⟩ , we recover the other possible triangle groups
A4 , S4 , and A5 corresponding to the partitions (2,3,3), (2,3,4), and (2,3,5). 2

Definition 3.12 A complex algebraic curve C will be termed triangle curve if it admits a finite group of
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automorphisms G < Aut(C) so that C/G ∼= P1 and the natural projection

C → C/G,

ramifies over 3 values, say 0, 1, and ∞ . In particular, if the group is the dihedral group Dn then the curve is
called dihedral covering.

If the branching orders at these points are p, q , and r we will say that C/G is an orbifold of type (p, q, r) .
Due to a celebrated theorem by Belji [2], triangle curves are known to be defined over a number field. If the
number of orbifold points is at least 3, we have the following possibilities for the orders of the orbifold points:
(2, 2, n), for some n ≥ 2 , (2, 3, 3) , (2, 3, 4) , and (2, 3, 5) .

The corresponding fundamental group is the dihedral, tetrahedral, or icosahedral group, respectively, and
the universal covering is P1 . Any finitely generated discrete subgroup G of PSL(2,R) is the fundamental group
of an orbifold and hence it has a presentation of the form:

G = ⟨a1, b1, . . . , ag, bg, c1, . . . , ck| cn1
1 = cn2

2 = . . .

. . . = cnk

k = 1, [a1, b1][a2, b2] · · · [ag, bg]c1c2 . . . ck = 1⟩.

4. Enumerative geometry of coverings of P1

4.1. Coverings of P1 with specified ramification above 0 and ∞

In this section, we will assume that the ground field k is the field of complex numbers C . The problem
of enumerating branched coverings of P1 is reduced to the combinatorial problem of studying factorizations
σ = τ1 . . . τr into r transpositions for any d , σ , and r [13]. The case in which there is no ramification at ∞
corresponds to the partition α = (1d) . Hurwitz numbers enumerate nonsingular, genus g curves expressible
as d−sheeted coverings of P1 , with specified branching above one point, simple branching over other specified
points, and no other branching.

Let d and g ≥ 0 be integer numbers representing the degree and the genus of a covering of P1 , and let
λ and ρ be partitions of d prescribing the profiles of the covering over 0 and ∞ . Each covering corresponds
to a combinatorial object: a labeled graph with d vertices, d+ g − 1 edges, and without loops.

A connected labeled floor diagram D of degree d and genus g is a connected oriented graph G = (V,E)

on linearly ordered d− element vertex V , together with a weight function w : E → Z>0 such that the edge set
E consists of d + g − 1 edges, and each edge in E is directed from a vertex u to a vertex v > u , expressing
compatibility with linear ordering on V . The multiplicity µ(D) is the product of the squares of w(e) for every
edge e ∈ E , that is,

µ(D) =
∏
e∈E

(w(e))2.

Proposition 4.1 Given λ and ρ two partitions of d , the set of irreducible complex algebraic curves

• of degree d and genus g passing through a generic configuration of 2d− 1 + g + l(ρ) points in C2

• having tangency to the x−axis for a given collection Pλ of l(λ) points in C× {0} and other l(ρ) points
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coincides with the set of irreducible plane curves γ of given degree and genus realizable as d−sheeted coverings
of P1(C) with ramification type at 0 and ∞ described by the partitions λ and ρ and simple ramification over
the specified collection of points Pλ .

Proof As we showed in Lemma 3, given an irreducible plane algebraic curve, if we impose the curve to pass
through a generic point in the plane, we get a d−sheeted branched covering of P1(C) , by projecting onto the
x−axis. Furthermore, we can recover the y−coordinates by taking d−roots of the x−coordinate. If the curve
has a tangency to the x−axis at a generic point of affine coordinates (xi, 0) , the corresponding sheeted covering
is branched at this point with the same multiplicity. 2

Remark 4.2 The authors proved in [6] that the Gromov–Witten invariant Nd,g representing the number of
irreducible curves of degree d and genus g passing through a fixed generic configuration of 3d + g − 1 points
on P2 can be obtained by summing the product of corresponding multiplicities µ(D) · ν(D) over all labeled
floor diagrams D of degree d and genus g . The numbers Nd,g(λ, ρ) count irreducible plane curves γ of given
degree and genus realizable as d−sheeted coverings of P1 with ramification type at 0 and ∞ described by the
partitions µ and ν and simple ramification over other specified points. If λ and ρ are two partitions with
|λ|+ |ρ| = d , the number Nd,g(λ, ρ) can be obtained by summing the multiplicities µ(D)νλ,ρ(D) , where νλ,ρ(D)

is the multiplicity of a certain combinatorial decoration of a labelled floor diagram D .

4.2. Coverings of P1 with 4 or more branch points

Let p1 . . . , pr be points in P1 and (s1, . . . , sr) a set of r permutations defined up to conjugation in Sd such
that s1s2 · . . . sr = 1 . The cycle type defining each permutation si is encoded in a partition λi = (λi1, . . . , λ

i
m)

of d , defining the ramification profile over pi .

There are only finitely many coverings HP1

d (λ1, . . . , λr) of the projective line up to isomorphism by
smooth connected curves of specified degree and genus, and monodromy λi at pi . Each covering π has a
finite group of automorphisms Aut (π) . This number can be computed by operating in the group algebra
QSd = {

∑
σ∈Sd

λσσ, λσ ∈ Q} of Sd . Let P(d) denote the set of partitions of d indexing the irreducible
representations of Sd . The class algebra Zd ⊂ QSd is the center of the group algebra. Let cλ ∈ Zd be the
conjugacy class corresponding to the partition λ ; then

HP1

d (λ1, . . . , λr) =
1

d!

[
C(1d)

]∏
Cλi , (5)

where C(1d) stands for the coefficient of the identity class.
A labeled partition of d is a partition in which the terms are considered distinguished. For example,

there are
(
7
3

)
ways of splitting the labeled partition α = [17] into two labeled partitions β = [13] and [γ] = [14]

(γ = α\β ).
The Q−algebra structure of QSd is given by the unit u and the multiplication m : QSd ⊗QSd → QSd

defined by the formula: [λ]⊗ [µ] =
⊕

ρ k
ρ
λµ[ρ] , where [λ] is the representation associated to a partition λ and

kρλµ ∈ N are the structure constants of the product, which are known as Kronecker coefficients. If we look
at the group algebra QSd from a Hopf algebra perspective, an additive basis of QSd is indexed by partitions
{[λ]}λ∈P(d) . In particular there is an isomorphism with the Hopf algebra of Schur functions and with the Hopf
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algebra of irreducible representations of the general linear group GL(d,C) . Let us call by cηλµ the structure

constants for the coproduct △[η] =
∑
cηλ,µ[λ]⊗ [µ] and S the antipode, that is, S(σ) = σ−1 , ∀σ ∈ Sd . We see

in the next lemma that the coefficients cηλµ for the coproduct △[η] correspond to the structure constants of the
dual Hopf algebra (QSd)

∗ , which are known as Littlewood–Richardson coefficients.

Proposition 4.3 There is an isomorphism between the Hopf algebra of the symmetric group with the Hopf
algebra of Schur functions and with the Hopf algebra of representations of the linear group GL(d,C) .

Proof First, we need to see there is an isomorphism at the level of C−vector spaces. As the underlying
complex vector spaces of the respective C−algebras are finite dimensional and are indexed by partitions P(d)

of d , they are isomorphic as vector spaces. Secondly, we need to see there is an isomorphism at the level of Hopf
algebra structures. The matrix encoding the coproduct for the Hopf algebra of the symmetric group admits a
base change of invertible transformations to the coding for the coproduct of the commutative Hopf algebra of
symmetric functions, which is graded and self-dual under the Hall inner product ⟨., .⟩ ; see [15]. 2

Lemma 4.1 1. The structure constants cηλ,µ for the coproduct △ of the Hopf algebra QSd are the Littlewood–
Richardson coefficients.

2. The coefficients kρλµ of the product m of the group algebra QSd are the structure constants for the
coproduct of the dual Hopf algebra.

Proof In terms of irreducible representations of GL(d,C) , a partition η corresponds to a finite irreducible
representation that we denote as V (η) . Since GL(d,C) is reductive, any finite dimensional representation
decomposes into a direct sum of irreducible representations, and the structure constant cηλ,µ is the number of
times that a given irreducible representation V (η) appears in an irreducible decomposition of V (λ) ⊗ V (µ) .
This is known as the Littlewood–Richardson coefficient, since they were the first to give a combinatorial formula
encoding these numbers (see [7]).

(2) In terms of the Hopf algebra Λ of Schur functions, let sλ be the Schur function indexed by the
partition λ , we have sλ · sµ =

∑
ν k

ν
λµsν for the product, and we get the coefficients kηλµ as the structure

constants of the dual Hopf algebra Λ∗ . These are known as Kronecker coefficients (see [11, 15]). 2

To each partition λ = (λ1, . . . , λk) we associate a Young diagram consisting of a collection of boxes
ordered in consecutive rows, where the ith row has exactly λi boxes. The columns are indexed by another
partition µ , where µk = ♯ {µi = k} is the number of times the multiplicity corresponding to the integer k is
realized. For example, if we consider the partition λ = (5, 3, 3, 1) , its Young diagram is

The hook-length Hb at any box b is the number of boxes directly below it vertically or the number of boxes
directly to the right of it horizontally of b counting b once. If we represent the partitions λ, µ, η by the
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corresponding Young diagrams, the coefficient cηλ,µ represents the number of ways to fill the boxes η\λ , with
one integer in each box, so that the following conditions are satisfied:

• The entries in any row are weakly increasing from left to right.

• The entries in each column are strictly increasing from top to botton.

• The integer i occurs exactly µi times.

• For any p with 1 ≤ p <
∑
µi , and any i with 1 ≤ i < n , the number of times i occurs in the first p

boxes of the ordering is at least as large as the number of times that i+ 1 occurs in these first p boxes.

4.3. Connection with the moduli space of curves

Let k be an algebraically closed field of characteristic 0 and consider the action of the symmetric group Sn on
the ring of polynomials k[x1, . . . , xn] by

(s · f)(x1, . . . , xn) = f(xs(1), . . . , xs(n)), for s ∈ Sn, f ∈ k[x1, . . . , xn].

We can view this as the action of Sn on P(kn) arising from the representation of Sn on kn as permutation
matrices, with x = (x1, . . . , xn) ∈ kn .

If VSn
is the variety parametrizing curves with Galois group Sn then the subvariety of invariants by the

action of finite subgroups of Sn defines an stratification of the ambient variety VSn .
Fix m points q1 . . . , qm in P1 , where qi = (xi, 1) and a conjugacy class σ = (l1) . . . (lm) in Sn .

Consider the corresponding covering p : C → P1 with ramification type prescribed by the partition µ =

(l1, . . . , lm) ∈ P(d) with the integers li for i = 1, . . . ,m ordered by nondecreasing order. The preimage
p−1(∞) =

∑m
i=1 liqi defines a divisor on C . Let k(Cµ,d) be the function field of the curve C , and we have that

k(Cµ,d) ∼= k(a1, . . . , an) , where

yd =

m∏
i=1

(x− x1)
l1 . . . (x− xm)lm =

n∑
i=0

aix
i, (6)

and the coefficients a0, . . . an are symmetric polynomials of qi multiplied by (−1)s−i . The partition µ gives
information on the cycle structure of the permutation σ .

Proposition 4.4 Fix q1, . . . , qm points in P1 , and a divisor
∑m

i=1 liqi . Let γk = ♯{li = k} be the number of
times the multiplicity corresponding to the integer k is realized, and then for each degree d dividing n =

∑m
i=1 li ,

the number of branched coverings with the same monodromy type above ∞ defined by the partition µ , that is
the number of coverings defined by equation (6), coincides with the number

r!∏
b∈[λ]Hb

=
r!∏m

i=1 i
γiγi

.

Proof To each configuration of points (P1, q1, . . . , qm) and ramification divisor
∑m

i=1 liqi corresponds a cyclic
covering of type λ a partition of n that ramifies over

∑m
i=1 liqi and whose function field extension of the rational
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function field k(x) is given by equation yd =
∏m

i=1(x− xi)
li . Consider the hypersurface of equation

f(x, x1, . . . , xm) = xn + a1x
n−1 + · · ·+ an−1x− (x− x1)

l1 · · · (x− xm)lm ,

where aj = (−1)jσj(x1, . . . , xm) , and σj is the jth elementary symmetric function. Since σj(x1, . . . , xm)

is invariant under permutation of the roots (x1, . . . , xm) , any permutation of the set root gives the same
coefficient aj and leads to the same covering branched over the points (q1, . . . , qm) . In particular we may
assume that the integer partition λ is unordered. Thus the number of these branched coverings is the product
of hook-lengths over all boxes in the Young diagram of the partition λ , which is the number of permutations
Γ(r; γ1, . . . , γm) = r!

1γ1γ1!2γ2γ2!...mγmγm! of λ with exactly γi cycles of length i for each 1 ≤ i ≤ m . Here r is
the rank of the permutation λ , which is the largest part in the partition minus the number of parts and it is
the number uniquely representing the partition. 2

Remark 4.5 If we vary one of the branch points qi of the curve defined by (6), we obtain a one-dimensional
Hurwitz space parameterizing such coverings.

Lemma 4.2 The variety Vd,g,σ parameterizing coverings with ramification type corresponding to a conjugacy
class in σ ∈ Sd is a one-dimensional subvariety of the variety parameterizing degree d and genus g coverings
Vd,g of the projective line P1(k) .

Proof Consider the natural identification of σd with an element Aσ in GL(d, k) (respectively SL(d, k)), via a
linear representation. This element determines an automorphism of the function field given by multiplication of
the corresponding matrix representation Aσ in GL(d, k) with the vector field of coordinates (a1, . . . , am) . The
invariant field k(a1, . . . , am)σd is the quotient surface Cµ,d/G by the group G generated by the corresponding
element Aσ in GL(d, k) , and thus a one-dimensional scheme in Vd,g . 2

Corollary 4.3 The variety parameterizing degree d coverings of P1 with a unique branched point is a one-
dimensional subvariety of the variety Vd,g .

Proof The ramification type of such coverings is defined by a partition (l1, 1,
m−1︷︸︸︷. . . , 1) ∈ P(m) , where m is

the number of ramification points that can be computed with the Riemann–Hurwitz formula (3), and l1 ∈ Z is
the multiplicity corresponding to the branched point. Since a branch point is induced by a permutation in the
symmetric group Sd , the result follows. 2

Corollary 4.4 The variety parameterizing degree d dihedral coverings is a 2-dimensional subvariety of the
variety parametrizing degree d and genus g coverings and the function field of the parameter space is the
invariant field k(c1, . . . , cm)Dm ∼= k(u1, . . . , um) .

Proof Just observe that the dihedral group Dm is generated by two elements, a rotation τ and a reflection
σ . Via the identification of the triangle groups with the permutation cycles, we write the m dihedral group as
Dm = ⟨(13)(24), ((12)(34)(13)(24))m⟩ . Thus the fixed field

k(c1, . . . , cm)Dm ∼= k(u1, . . . um),
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where u1 . . . , um are the dihedral invariants defined in section 2, is the function field of the variety parameterizing
dihedral coverings. 2

Let Hg,µ be the Hurwitz number, that is, the number of genus g degree d coverings of P1 with profile µ
over ∞ and simple ramification over a fixed set of finite points. The Hurwitz numbers are naturally expressed
in terms of tautological intersections in the moduli space Mg,n of projective nonsingular curves of genus g

and n marked points, and its compactification Mg,n , whose points correspond to projective, connected, nodal
curves of arithmetic genus g , satisfying a stability condition (due to Deligne and Mumford), and with orbifold
singularities if regarded as ordinary coarse moduli spaces.

The intersection theory of Mg,n must be studied in the orbifold category or the category of Deligne–
Mumford stacks to correctly handle the automorphisms group of the pointed curves. For each marking i , there
exists a canonical line bundle Li . The fiber at the stable pointed curve (C, x1, . . . , xn) is the cotangent space
T ∗
C(xi) of C at xi . Li determines a Q−divisor on the coarse moduli space. Let ψi denote the first Chern class

of Li . Witten’s conjecture concerns the complete set of evaluations of intersections of the ψ classes:∫
Mg,n

ψk1
1 . . . ψkn

n . (7)

The symmetric group Sn acts naturally on Mg,n by permuting the markings. Since the ψ classes are
permuted by this Sn action, the integral is unchanged by a permutation of the exponents ki . A notation for
these intersections that exploits the Sn symmetry is given by

⟨τk1
. . . , τkn

⟩g =

∫
Mg,n

ψk1
1 . . . ψkn

n . (8)

Let the Hodge bundle
E →Mg,n

be the rank g vector bundle with fiber H0(C,wC) over the moduli point (C, p1 . . . , pn) . The λ classes are the
Chern classes of the Hodge bundle:

λi = ci(E) ∈ H2i(Mg,n,Q).

The ψ and λ classes are tautological classes on the moduli space of curves.
Let Hg

d be the number of such branched coverings that are connected; then the following formula due to
Ekedahl et al. [4] expresses Hurwitz numbers in terms of Hodge integrals (see [8]):

Hg
α =

r!

♯Aut(α)

m∏
i=1

ααi
i

αi

∫
Mg,m

1− λ1 + . . . ,±λg∏
(1− αiψi)

In the case where there is no ramification over ∞ (i.e. α = (1n)), Hurwitz numbers enumerate coverings
of the projective line by smooth connected curves of specified degree and genus, with specified branching above
one point, simple branching over other specified points, and no other branching.

Example 5 In the case of genus 0, the formula reads

H0
d =

(2d− 2)!

d!
dd−3.
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4.3.1. Connection with the moduli space of curves: counting coverings of P1 over finite fields

Let Mg,n(Fp) be the moduli space of stable curves of genus g with n marked points defined over the finite field
Fp of p elements. The moduli space of Hurwitz covers Hg(µ

1, . . . , µm) parameterizes morphisms, f : C → P1 ,
where C is a complete, connected, nonsingular curve with marked profiles µ1, . . . , µm over m ordered points of
the target (and no ramifications elsewhere), [5]. The moduli space M1,1 of elliptic curves can be realized over C
as the analytic space H/SL(2,Z) . The cardinality ♯M1,1(Fp) of the moduli space is the count of elliptic curves
over Fp up to Fp− isomorphism with weight factor 1

♯ AutFp (E) , and so ♯M1,1(Fp) = p . The next proposition

shows that the count of curves expressible as d−sheeted coverings of P1(Fp) coincides with the cardinality of
Mg,m(Fp) .

Proposition 4.6 The number of genus g curves expressible as d−sheeted coverings of P1 coincides with the
cardinality of Mg,m over Fp (up to Fp isomorphism), where g = (d−1)(m−2)

2 , weighted by the factor 1
♯ AutFp (C) .

Proof Let C be a complete, connected nonsingular curve with m marked points p1, . . . , pm . We obtain a
morphism f : C → P1 from the linear series attached to the divisor p1 + . . . + pm . The branched covering f

expresses C in the form yd =
∏m

i=1(x− pi)
li , with profile defined by the partition (l1, . . . , lm) of d , expressing

the monodromy above ∞ . By the Riemman–Hurwitz formula we can compute m , the number of different
branch points. Now the number of polynomials of degree n = d +m + 2 (g − 1) with m different roots is the
falling factorial polynomial (p)m+1 := p (p−1) (p−2) . . . (p−m) , divided by the order of the affine transformation
group of A1 = P1\∞ , that is, p2 − p . 2

Remark 4.7 Observe that (q)n =
∑n

k=0 s(n, q) q
k, where s(n, q) is the Stirling number of the first kind and

it counts the number of ways to partition a set of cardinality n into exactly k nonempty subsets. The Stirling

number of the second kind
[
n
m

]
counts the number of permutations of n elements with m disjoint cycles and

it satisfies the relation:

If q → 1,
∑n

k=0

[
n
k

]
= p(n) = number of partitions of n.

There is a formula for the generating series of p(n) :

∞∑
n=0

p(n)xn =

∞∏
k=1

(
1

1− xk

)
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