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Abstract: The main purpose of this paper is to study the complete and horizontal lifts of vector and tensor fields of
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1. Introduction
Let M be an n−dimensional differentiable manifold of class C∞ and F ∗M its coframe bundle. The differential
geometry of the cotangent bundle has been studied by many authors (see, for example, [2, 3, 9–11]).

When a field of global coframes is given on M , its defines a cross-section σ : M → F ∗M in the coframe
bundle. In this paper, we study the behavior on this cross-section of lifts of tensor fields from M to F ∗M .

In 2 we briefly describe the definitions and results that are needed later, after which the complete and
horizontal lifts of affinor fields (tensor fields of type (1, 1)) are constructed in 3. In 4 and 5 we consider, respec-
tively, the complete and horizontal lifts of the vector and affinor fields along the n−dimensional submanifold
σ(M) of F ∗M defined by cross-section σ . In 6 we study the particular case of an almost complex structure on
σ(M) .

All results in this paper can be closely compared with those of the corresponding theory for cross-sections
in the cotangent bundle [12]. A similar approach was applied in [1], when studying lifts on cross-sections of the
bundle of frames by means of the tangent bundle.

2. Preliminaries
Manifolds, tensor fields, and linear connections under consideration are all assumed to be differentiable and of
class C∞ . Indices i, j, k, ..., α, β, γ, ... have range in {1, 2, ..., n} and indices A,B,C, ... run from 1 to n+ n2 .
We put hα = α · n+ h . Summation over repeated indices is always implied. Entries of matrices are written as
Ai

j , Aij or Aij , and in all cases i is the row index while j is the column index.
Let M be an n−dimensional differentiable manifold of class C∞ . Coordinate systems in M are denoted

by (U, xi) , where U is the coordinate neighborhood and xi are the coordinate functions. We denote the Lie
derivative by LX , and by ℑr

s(M) the set of all differentiable tensor fields of type (r, s) on M .
∗Correspondence: asalimov@hotmail.com
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Let T ∗
xM be the cotangent space at a point x ∈ M, (Xα) = (X1, ..., Xn) a coframe at x and F ∗M the

coframe bundle over M , that is, the set of all coframes at all points of M (see [4]). Let π : F ∗M → M be the
canonical projection of F ∗M onto M . For the coordinate system (U, xi) in M we put F ∗U = π−1(U) . A
coframe (Xα) at x can be expressed uniquely in the form Xα = Xα

i (dx
i)x . The induced coordinate system in

F ∗U is
{
F ∗U, (xi, Xα

i )
}

. We shall denote ∂
∂xi by ∂i and ∂

∂Xα
i

by ∂iα . The matrix (Xα
i ) is nonsingular and

its inverse will be written as (Xi
α) . We denote by ∇ the linear connection on M with components Γk

ij .

Let V be a vector field on M , and let V i be its components in U . Then the complete lift CV and
horizontal lift HV of V to F ∗M are given by (see [4])

CV = V i∂i −Xα
j (∂iV

j)∂iα , (2.1)

HV = V i∂i +Xα
j Γ

j
kiV

k∂iα , (2.2)

respectively.

3. Lifts of affinor fields to the coframe bundle

Let φ be an affinor field on M and let φj
i be its local components in U.

The following Theorem 1 holds.

Theorem 1 If we put {
φ̃i
j = φi

j , φ̃i
jβ

= 0,

φ̃iα
j = Xα

k (∂jφ
k
i − ∂iφ

k
j ), φ̃iα

jβ
= δαβφ

j
i ,

(3.1)

then we get an affinor field φ̃on F ∗M whose components are φ̃I
J with respect to the coordinate system{

F ∗U, (xi, Xα
i )
}

, where δαβ is the Kronecker delta.

Proof We shall show that under the coordinate transformation

{
xi′ = xi′(x1, ..., xn),
Xα

i′ = Ai
i′X

α
i

(3.2)

on F ∗U
∩
F ∗U ′ , the equation

φ̃I′

J′ = AI′

I AJ
J′ φ̃I

J (3.3)

holds good, where Ai
i′ = ∂xi

∂xi′ are elements of the Jacobian matrix of the inverse transformation

xi = xi(x1′ , ..., xn′
), and AI′

I are elements of the Jacobian matrix of the transformation (3.2), i.e.

(AI′

I ) =

(
Ai′

i 0

Xα
j ∂iA

j
i′ Ai

i′δ
α
β

)
. (3.4)

On the other hand, the Jacobian matrix (AJ
J′) of the inverse transformation has the structure

(AJ
J′) =

(
Aj

j′ 0

Xα
k′∂j′A

k′

j Aj′

j δ
α
β

)
. (3.5)
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In the case where I ′ = i′, J ′ = j′ , we can easily verify that the right-hand side of (3.3) reduces to

Ai′

I A
J
j′ φ̃

I
J = Ai′

i A
j
j′ φ̃

i
j +Ai′

iγA
j
j′ φ̃

iγ
j +Ai′

i A
jλ
j′ φ̃

i
jλ

+Ai′

iγA
jλ
j′ φ̃

iγ
jλ

= Ai′

i A
j
j′φ

i
j = φi′

j′ = φ̃i′

j′ .

In the case where I ′ = i′, J ′ = j′β or I ′ = i′α, J
′ = j′β , it follows that (3.3) holds good by the same manner as

before. In the case where I ′ = i′α, J
′ = j′ , the left-hand side of (3.3) reduces to

φ̃
i′α
j′ = Xα

k′(∂j′φ
k′

i′ − ∂i′φ
k′

j′ ),

which is the sum of the following six terms a1, a2, ..., a6 :

a1 = Xα
k′(∂j′A

k′

m)Ai
i′φ

m
i , a2 = Xα

k′Ak′

m(∂j′A
i
i′)φ

m
i ,

a3 = Xα
k′Ak′

mAi
i′(∂j′φ

m
i ), a4 = −Xα

k′(∂i′A
k′

m)Aj
j′φ

m
j ,

a5 = −Xα
k′Ak′

m(∂i′A
j
j′)φ

m
j , a6 = −Xα

k′Ak′

mAj
j′(∂i′φ

m
j ).

On the other hand, the right-hand side of (3.3) can be written as

A
i′α
I AJ

j′ φ̃
I
J = A

i′α
i Aj

j′ φ̃
i
j +A

i′α
iγ
Aj

j′ φ̃
iγ
j +A

i′α
i Ajλ

j′ φ̃
i
jλ

+A
i′α
iγ
Ajλ

j′ φ̃
iγ
jλ
.

The last expression is the sum of the following four terms b1, ..., b4 :

b1 = Xα
k (∂iA

k
i′)A

j
j′φ

i
j , b2 = Xα

k A
i
i′A

j
j′(∂jφ

k
i ),

b3 = −Xα
k A

i
i′A

j
j′(∂iφ

k
j ), b4 = Xα

k′Ai
i′(∂j′A

k′

j )φj
i .

After some calculations we get the following relations:

a1 = b4, a3 = b2, a4 = b1, a2 + a5 = 0, a6 = b3. (3.6)

Hence, by virtue of (3.6), we see that (3.3) holds good. Consequently, φ̃ is an affinor field on F ∗M . An affinor
field φ̃ is called a complete lift of φ to F ∗M . 2

Theorem 2 If we put {
φ̄i
j = φi

j , φ̄i
jβ

= 0,

φ̄iα
j = Xα

k (φ
m
j Γk

mi − φm
i Γk

jm), φ̄iα
jβ

= δαβφ
j
i ,

(3.7)

then we get an affinor field φ̄ on F ∗M whose components are φ̄I
J with respect to the coordinate system{

F ∗U, (xi, Xα
i )
}

.

Proof We shall show that under the coordinate transformation (3.2) the equation

φ̄I′

J′ = AI′

I AJ
J′ φ̄I

J (3.8)
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holds good.
In the case I ′ = i′, J ′ = j′, we can easily verify that the right-hand side of (3.8) reduces to

Ai′

I A
J
j′ φ̄

I
J = Ai′

i A
j
j′ φ̄

i
j +Ai′

iγA
j
j′ φ̄

iγ
j +Ai′

i A
jλ
j′ φ̄

i
jλ

+Ai′

iγA
jλ
j′ φ̄

iγ
jλ

= Ai′

i A
j
j′φ

i
j = φi′

j′ = φ̄i′

j′ .

In the cases I ′ = i′, J ′ = j′β and I ′ = i′α, J
′ = j′β , it follows that (3.8) holds good by the same manner as

before. In the case where I ′ = i′α, J
′ = j′ , the left-hand side of (3.8) reduces to

φ⃗
i′α
j′ = Xα

k′(φm′

j′′ Γ
k′

m′i′ − φm′

i′ Γk′

j′m′),

which is the sum of the following four terms c1, ..., c4 :

c1 = Xα
k′φm′

j′ A
k′

k Am
m′Ai

i′Γ
k
mi, c2 = Xα

k′φm′

j′ A
k′

k (∂m′Ak
i′),

c3 = −Xα
k′φm′

i′ Ak′

k Am
m′A

j
j′Γ

k
jm, c4 = −Xα

k′φm′

i′ Ak′

k (∂j′A
k
m′).

On the other hand, the right-hand side of (3.8) can be written as

A
i′α
I AJ

j′ φ̄
I
J = A

i′α
i Aj

j′ φ̄
i
j +A

i′α
iγ
Aj

j′ φ̄
iγ
j +A

i′α
i Ajλ

j′ φ̄
i
jλ

+A
i′α
iγ
Ajλ

j′ φ̄
iγ
jλ
.

The last expression is the sum of the following four terms d1, ..., d4 :

d1 = Xα
k (∂iA

k
i′)A

j
j′φ

i
j , d2 = Xα

k A
i
i′A

j
j′φ

m
j Γk

mi,

d3 = −Xα
k A

i
i′A

j
j′φ

m
i Γk

jm, d4 = Xα
k′Ai

i′(∂j′A
k′

j )φj
i .

After some calculations we get the following relations:

c1 = d2, c2 = d1, c3 = d3, c4 = d4. (3.9)

Hence, by virtue of (3.9), we see that (3.8) holds good. It means that φ̄ is an affinor field on F ∗M . An affinor
field φ̄ is called a horizontal lift of φ to F ∗M . 2

4. Lifts of vector fields on cross-sections
Let σ be a cross-section of the coframe bundle F ∗M , that is σ : M → F ∗M a mapping of class C∞ such
that π ◦ σ = IdM . Then σ defines a field of global coframes on M , that is, at each point x ∈ M,σ(x)

= (σ1(x), ..., σn(x)) is a linear coframe at x. If we put σ = (σ1, ..., σn) then each σα is a covector field globally
defined on M . Assume that σα has local components σα

h (x) with respect to a coordinate system (U, xi) in
M , that is σα = σα

h (x)dx
h in U . Then σ(M) , which will be called a cross-section determined by σ , is the

n−dimensional submanifold of F ∗M locally expressed in F ∗U by{
xh = xh,
Xα

h = σα
h (x).

(4.1)
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Thus tangent vectors BH
i = ∂ix

H to the cross-section σ(M) have components

BH
i =

(
∂xH

∂xi

)
=

(
δhi

∂iσ
α
h

)
. (4.2)

On the other hand, the fiber being represented by{
xh = const,
Xα

h = Xα
h ,

(4.3)

the tangent vectors CH
iβ

= ∂iβx
H to the fiber have components

CH
iβ

= CiβH =

(
0

δihδ
α
β

)
. (4.4)

The vectors BH
i and CH

iβ
, being linearly independent, form a frame EH

I = (BH
i , CH

iβ
) along the cross-section

σ(M) . We call this the frame (B,C) along the cross-section. The coframe ẼJ
H = (B̃j

H , C̃
jγ
H ) corresponding to

this frame is given by
B̃j

H = (δjh, 0), C̃
jγ
H = (−∂hσ

γ
j , δ

h
j δ

γ
α). (4.5)

Let V be a vector field on M and CV its complete lift to F ∗M , which is locally given by (2.1):

CV = CV h∂h + CV hα∂hα
= V h∂h −Xα

j (∂hV
j)∂hα

. (4.6)

On the other hand, the complete lift CV has the following decomposition with respect to the (B,C) -frame
along the cross-section σ(M) :

CV = Ṽ iBi + Ṽ iβCiβ . (4.7)

Thus, from (4.6) and (4.7) we have

CV h∂h + CV hα∂hα = Ṽ iBi + Ṽ iβCiβ = Ṽ iBh
i ∂h + Ṽ iBhα

i ∂hα

+Ṽ iβCh
iβ
∂h + Ṽ iβChα

iβ
∂hα

=
(
Ṽ iBh

i + Ṽ iβC h
iβ

)
∂h (4.8)

+
(
Ṽ iBhα

i + Ṽ iβC hα
iβ

)
∂hα

.

By using (4.2) and (4.4), from (4.8) we obtain:

CV h = Ṽ iBh
i + Ṽ iβCh

iβ
= Ṽ iδhi = Ṽ h,

CV hα = −σα
j ∂hV

j = Ṽ i∂iσ
α
h + Ṽ iβChα

iβ
= V i∂iσ

α
h + Ṽ iβδihδ

α
β .

Thus the complete lift CV of a vector field V in M to F ∗M , having components (2.1) with respect to the
natural frame, has components (

V h

−LV σ
α
h

)
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with respect to the frame (B,C) along the cross-section σ(M) .
This means that

CV = V hBA
h − (LV σ

α
h )C

A
hα

.

From here follows

Theorem 3 The complete lift CV of a vector field V in M to F ∗M is tangent to the cross-section σ(M)

determined by σ = (σ1, ..., σn) if and only if the Lie derivative of each σα with respect to V vanishes, i.e.
LV σ

α = 0, 1 ≤ α ≤ n.

By analogy, the horizontal lift HV of a vector field V in M to F ∗M , having components (2.2) with respect to
the natural frame, has components (

V h

−∇V σ
α
h

)
with respect to the frame (B,C) along the cross-section σ(M) , where ∇V is a covariant derivative along a
vector field V in an affine connection ∇. Therefore

HV = V hBA
h − (∇V σ

α
h )C

A
hα

,

from which follows

Theorem 4 The horizontal lift HV of a vector field V in M to F ∗M is tangent to the cross-section
σ(M)determined by σ = (σ1, ..., σn) if and only if the covariant derivative of each σα with respect to V

vanishes, i.e. ∇V σ
α = 0, 1 ≤ α ≤ n.

5. Lifts of affinor fields on cross-sections
Let φ be an affinor field on M and Cφ its complete lift to F ∗M , which is locally given by (3.1) with respect
to the natural frame, i.e.

Cφ =

(
φh
i 0

Xα
k (∂iφ

k
h − ∂hφ

k
i ) φi

hδ
α
β

)
. (5.1)

If C φ̃I
J are components of the complete lift Cφ with respect to the (B,C) -frame along the cross-section σ(M) ,

then we have
CφJ

I = C φ̃A
HEJ

AẼ
H
I . (5.2)

By using (4.2), (4.4), (4.5), and (5.1) we have

1)Cφj
i = φj

i =
C φ̃a

hδ
j
aδ

h
i + C φ̃a

hα
δja(−∂iσ

α
h ) = C φ̃j

i −
C φ̃j

hα
(∂iσ

α
h ), (5.3)

2)Cφj
iβ

= 0 = C φ̃a
hα

Ej
aẼ

hα
iβ

= C φ̃a
hα

δjaδ
i
hδ

α
β ,

from which it follows that
C φ̃a

hα
= 0. (5.4)

Using (5.4), from (5.3) we get
C φ̃a

h = φa
h.
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3) Cφ
jγ
iβ

= φi
jδ

γ
β = C φ̃aτ

hα
E

jγ
aτ Ẽ

hα
iβ

= C φ̃aτ

hα
δaj δ

γ
τ δ

i
hδ

α
β , consequently

C φ̃aτ

hα
= φh

aδ
τ
α.

4)Cφ
jγ
i = σγ

k∂iφ
k
j − σγ

k∂jφ
k
i = C φ̃a

hE
jγ
a Ẽh

i + C φ̃aτ

h Ejγ
aτ
Ẽh

i + C φ̃aτ

hα
Ejγ

aτ
Ẽhα

i

= φa
h∂aσ

γ
j δ

h
i + C φ̃aτ

h δaj δ
γ
τ δ

h
i + φh

aδ
τ
αδ

a
j δ

γ
τ (−∂iσ

α
h )

or
C φ̃aσ

h δaj δ
γ
σδ

h
i = σγ

k∂iφ
k
j − σγ

k∂jφ
k
i − φk

i ∂kσ
γ
j + φh

j ∂iσ
γ
h,

from which we obtain

C φ̃aτ

h = στ
k∂hφ

k
a − στ

k∂aφ
k
h − φk

h∂kσ
τ
a + φk

a∂hσ
τ
k = −(φk

h∂kσ
τ
a

−φk
a∂hσ

τ
k − στ

k∂hφ
k
a + στ

k∂aφ
k
h) = −(Φφσ

τ )ha,

where Φφσ
τ is the Tachibana operator applied to στ (see [7]).

Thus we have

Theorem 5 The complete lift Cφ having components (5.1) with respect to the natural frame has the nonzero
components

C φ̃a
h = φa

h,
C φ̃aτ

h = −(Φφσ
τ )ha ,

!φ̃aτ

hα
= φh

aδ
τ
α

with respect to the frame (B,C ) along the cross-section σ(M) .

Now we assume that Hφ is the horizontal lift of the affinor field φ to F ∗M , given by (3.7) with respect to the
natural frame, i.e.

Hφ =

(
φh
i 0

Xα
k (φ

m
i Γk

mh − φm
h Γk

im) φi
hδ

α
β

)
. (5.5)

On the other hand, the horizontal lift Hφ has the following decomposition with respect to the (B,C) -frame
along the cross-section σ(M) :

HφJ
I = H φ̃A

HEJ
AẼ

H
I . (5.6)

Using (3.7), (3.2), (3.4), and (5.5) we find

1)Hφj
i = φj

i =
H φ̃a

hδ
j
aδ

h
i + H φ̃a

hα
δja(−∂iσ

α
h ) =

H φ̃j
i −

H φ̃j
hα

(∂iσ
α
h ). (5.7)

2) Hφj
iβ

= 0 = H φ̃a
hα

Ej
aẼ

hα
iβ

= H φ̃a
hα

δjaδ
i
hδ

α
β , consequently

H φ̃a
hα

= 0. (5.8)

Based on equality (5.8), from (5.7) we get
H φ̃a

h = φa
h.

3)Hφ
jγ
iβ

= φi
jδ

γ
β = H φ̃aτ

hα
Ejγ

aτ
Ẽhα

iβ
= H φ̃aτ

hα
δaj δ

γ
τ δ

i
hδ

α
β ,
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from which it follows that
H φ̃aτ

hα
= φh

aδ
τ
α.

4)Hφ
jγ
i = σγ

kφ
m
i Γk

mj − σγ
kφ

m
j Γk

mi =
H φ̃a

hE
jγ
a Ẽh

i + H φ̃aτ

h Ejγ
aτ
Ẽh

i

+H φ̃aτ

hα
Ejγ

aτ
Ẽhα

i = φa
h∂aσ

γ
j δ

h
i + H φ̃aτ

h δaj δ
γ
τ δ

h
i + φh

aδ
τ
αδ

a
j δ

γ
τ (−∂iσ

α
h )

or
H φ̃aτ

h δaj δ
γ
τ δ

h
i = σγ

kφ
m
i Γk

mj − σγ
kφ

m
j Γk

mi − φk
i ∂kσ

γ
j + φh

j ∂iσ
γ
h,

from which we obtain
H φ̃aτ

h = στ
kφ

m
h Γk

ma − στ
kφ

m
a Γk

mh − φk
h∂kσ

τ
a + φk

a∂hσ
τ
k

= −φk
h(∂kσ

τ
a − Γm

kaσ
τ
m) + φk

a(∂hσ
τ
k − Γm

khσ
τ
m) = −φk

h∇kσ
τ
a + φk

a∇hσ
τ
k

= −(φk
h∇kσ

τ
a − φk

a∇hσ
τ
k) = −(Φ̃φσ

τ )ha,

where Φ̃φσ
τ is the Vishnevskii operator applied to στ (see [7]).

Thus we have

Theorem 6 The horizontal lift Hφ having the nonzero components (5.5) with respect to the natural frame has
the nonzero components

H φ̃a
h = φa

h,
H φ̃aτ

h = −(Φ̃φσ
τ )ha ,

H φ̃aτ

hα
= φh

aδ
τ
α

with respect to the frame (B,C ) along the cross-section σ(M) .

6. Complete lift of almost complex structure on cross-sections

Suppose that the manifold M has an almost complex structure F . Its mean that F 2 = −I . We have

Theorem 7 Let M be a differentiable manifold with an almost complex structure F . Then the complete
lift CF of F to F ∗M is an almost complex structure if and only if Xβ

kQ(F, F )kij = 0, where Q(F, F )− the
Nijenhuis–Shirokov tensor of F (see [5]).

Proof From (5.1) we have

1)CFH
i

CF j
H = CFh

i
CF j

h + CF
hγ

i
CF j

hγ
= Fh

i F
j
h = − δji = −CIji ,

2)CFH
iα

CF j
H = CFh

iα
CF j

h + CF
hγ

iα
CF j

hγ
= 0 = −CIjiα ,

3)CFH
iα

CF
jβ
H = CFh

iα
CF

jβ
h + CF

hγ

iα
CF

jβ
hγ

= F i
hδ

γ
αF

h
j δ

β
γ = −δijδ

β
α =

= −CI
jβ
iα
, (6.1)

4)CFH
i

CF
jβ
H = CFh

i
CF

jβ
h + CF

hγ

i
CF

jβ
hγ

= Fh
i X

β
k (∂hF

k
j − ∂jF

k
h )

+Xγ
k (∂iF

k
h − ∂hF

k
i )F

h
j δ

β
γ = Xβ

k (F
h
i ∂hF

k
j − Fh

i ∂jF
k
h + Fh

j ∂iF
k
h
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−Fh
j ∂hF

k
i ) = Xβ

k (∂i(F
h
j F

k
h )− ∂j(F

h
i F

k
h )) +Xβ

k (F
h
i ∂hF

k
j

−Fh
j ∂hF

k
i − F k

h ∂iF
h
j + F k

h ∂jF
h
i ) = −CI

jβ
i +Xβ

kQ(F, F )kij .

From (6.1) we obtain
(CF )2 = C(F 2) + γ(X ◦Q(F, F )), (6.2)

where

γ(X ◦Q(F, F )) =

(
0 0

Xβ
kQ(F, F )kij 0

)
.

Equation (6.2) completes the proof of Theorem 7. 2

The complete lift CF having the components (5.1) with respect to the natural frame has the components

(
Fh
i 0

σα
k (∂iF

k
h − ∂hF

k
i )− F k

i ∂kσ
α
h + F k

h ∂kσ
α
i F i

hδ
α
β

)
(6.3)

with respect to the frame (B,C ) along the cross-section σ(M) determined by σ = (σ1, ..., σn) .
It is well known that for an arbitrary almost analytic 1-form (or almost analytic covector field) σ on a
differentiable manifold M with an almost complex structure F , we have the relation

σ ◦NF = 0

(see [8]), where NF is the Nijenhuis tensor for F ([6, p. 38]).
Now by using (6.3) along the cross-section σ(M) determined by σ = (σ1, ..., σn) on M , similarly to (6.1) we
obtain

(CF )2 = C(F 2) + γ(σβ ◦NF ), (6.4)

where

γ(σβ ◦Nφ) =

(
0 0

σβ
kN

k
ij 0

)
.

Thus from (6.4) we have

Theorem 8 Let M be a differentiable manifold with an almost complex structure F. Then the complete lift
CF ∈ ℑ1

1(F
∗M) of F , which is restricted to the cross-section σ(M) determined by an almost analytic covector

field σ1, ..., σn on M , is an almost complex structure.
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