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Abstract: The aim is to show that from every example of a regular, intraregular, left (right) regular, left (right) quasireg-
ular, semisimple, left (right) simple, simple, or strongly simple ordered semigroup given by a table of multiplication and
an order, a corresponding example of regular, intraregular, left (right) regular, left (right) quasiregular, semisimple, left
(right) simple, simple, or strongly simple ordered hypersemigroup can be constructed having the same left (right) ideals,
bi-ideals, quasi-ideals, or interior ideals. On this occasion, some further related results have also been given.
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1. Introduction
A very important subject in the theory of ordered hypersemigroups is the determination of right (left) ideals,
bi-ideals, and quasi-ideals, which play an essential role in the investigation. This is because very often we
need counterexamples that clearly are impossible to make by hand and it is difficult to write such programs
as well. Examples of some types of ordered hypersemigroups (such as regular, intraregular, and completely
regular) are also very useful, and again it is difficult to write programs. To overcome this difficulty we use
examples that come from ordered semigroups for which we already have such programs. The examples of
ordered semigroups given by a table of multiplication and an order play an essential role in it. The paper in
[2; p. 104. l. 12-20] was on hypersemigroups (without order) and it has been proved in it that if (S, ·,≤)

is an ordered semigroup and endow it with the hyperoperation a ◦ b := {x ∈ S | x ≤ ab} , then (S, ◦) is a
hypersemigroup. Here we prove that this is not only a hypersemigroup but an ordered hypersemigroup as well.
It may be mentioned that if (S, ·,≤) is an ordered groupoid, then the hypergroupoid (S, ◦) with the same
order “≤” of S is an ordered hypergroupoid. Thus, from every ordered groupoid (ordered semigroup) (S, ·,≤)

given by a table of multiplication and an order, an ordered hypergroupoid (ordered hypersemigroup) (S, ◦,≤)

can be constructed. Moreover, a set A is a right (left) ideal or quasi-ideal of the ordered groupoid (S, ·,≤) if
and only if it is a right (left) ideal or quasi-ideal of the ordered hypergroupoid (S, ◦,≤) ; a set A is a bi-ideal
or interior ideal of the ordered semigroup (S, ·,≤) if and only if it is a bi-ideal or interior ideal of the ordered
hypersemigroup (S, ◦,≤) . In addition, if an ordered groupoid (S, ·,≤) is left (resp. right) simple, then the
ordered hypergroupoid (S, ◦,≤) is so. An ordered semigroup (S, ·,≤) is left (resp. right) simple or simple if

∗Correspondence: nkehayop@math.uoa.gr
2010 AMS Mathematics Subject Classification: 06F99, 06F05

2045

https://orcid.org/0000-0002-5372-5561


KEHAYOPULU/Turk J Math

and only if the ordered hypersemigroup (S, ◦,≤) is so. An ordered semigroup (S, ·,≤) is regular, intraregular,
left (right) regular, left (right) quasiregular, semisimple, simple, or strongly regular if and only if the ordered
hypersemigroup (S, ◦,≤) is, respectively, so. Hence, from every example of a regular, intraregular, left (right)
regular, left (right) quasiregular, semisimple, left (right) simple, simple, or strongly regular ordered semigroup
given by a table of multiplication and an order, a corresponding example of an ordered hypersemigroup can
be constructed having the same right (left) ideals, bi-ideals, quasi-ideals, and interior ideals. For the sake of
completeness, we will give some definitions already given in [20].

2. Prerequisites

A groupoid is a nonempty set S with a binary operation (called multiplication) “ ·” on S . An ordered groupoid
(po -groupoid) is a groupoid (S, ·) with an order relation “≤” on S such that a ≤ b implies ac ≤ bc and
ca ≤ cb for every c ∈ S . If the multiplication on S is associative, then (S, ·,≤) is called an ordered semigroup
(po -semigroup) [1]. For an ordered groupoid (S, ·,≤) and a subset A of S , we denote by (A] the subset of S

defined by (A] = {t ∈ S | t ≤ a for some a ∈ A} [6]. If (S, ·,≤) is an ordered groupoid, a nonempty subset A

of S is called a right (left) ideal of S [6] if (1) AS ⊆ A (resp. SA ⊆ A) and (2) if a ∈ A and S ∋ b ≤ a ,
then b ∈ A –condition (2) is equivalent to (A] = A ; it is called a quasi-ideal of S if (AS] ∩ (SA] ⊆ A and
(2) if a ∈ A and S ∋ b ≤ a , then b ∈ A [14]. A nonempty subset A of an ordered semigroup S is called a
bi-ideal of S if (1) ASA ⊆ A and (2) if a ∈ A and S ∋ b ≤ a , then b ∈ A [9]; an interior ideal of S if (1)
SAS ⊆ A and (2) if a ∈ A and S ∋ b ≤ a , then b ∈ A [17]. An ordered groupoid S is called right (resp. left)
simple if S is the only right (resp. left) ideal of S ; it is called simple if S is the only ideal of S . If S is an
ordered groupoid satisfying the relation (aS] = S for every a ∈ S or (AS] = S for every A ⊆ S , then S is
right simple; if (Sa] = S for every a ∈ S or (SA] = S for every A ⊆ S , then S is left simple. In particular,
if S is an ordered semigroup, then S is right (resp. left) simple if and only if (aS] = S for every a ∈ S or
(AS] = S for every A ⊆ S (resp. (Sa] = S for every a ∈ S or (SA] = S for every A ⊆ S ); it is simple if and
only if (SaS] = S for every a ∈ S , equivalently if (SAS] = S for every A ⊆ S [8]. If an ordered semigroup is
right simple or left simple, then it is simple. An ordered semigroup (S, ·,≤) is called regular [10] if for every
a ∈ S there exists x ∈ S such that a ≤ axa , that is if a ∈ (aSa] for every a ∈ S or A ⊆ (ASA] for every
A ⊆ S ; it is called left (resp. right) regular [7] if for every a ∈ S there exists x ∈ S such that a ≤ xa2 (resp.
a ≤ a2x) that is, if a ∈ (Sa2] for every a ∈ S or A ⊆ (SA2] for every A ⊆ S (resp. a ∈ (a2S] for every a ∈ S

or A ⊆ (A2S] for every A ⊆ S ); intraregular [11] if for every a ∈ S there exist x, y ∈ S such that a ≤ xa2y ,
equivalently a ∈ (Sa2S] for every a ∈ S or A ⊆ (SA2S] for every A ⊆ S . An ordered semigroup (S, ·,≤)

is called right quasiregular if for every a ∈ S there exist x, y ∈ S such that a ≤ axay , equivalently for every
a ∈ S we have a ∈ (aSaS] or A ⊆ (ASAS] for every A ⊆ S ; left quasiregular if for every a ∈ S there exist
x, y ∈ S such that a ≤ xaya , equivalently a ∈ (SaSa] for every a ∈ S or A ⊆ (SASA] for every A ⊆ S ; and
semisimple if for every a ∈ S , there exist x, y, z ∈ S such that a ≤ xayaz , that is a ∈ (SaSaS] for every a ∈ S

or A ⊆ (SASAS] for every A ⊆ S [18]. The right quasiregular and the left quasiregular ordered semigroups
are semisimple. If an ordered semigroup is right simple and left simple, then it is regular [23]. An ordered
semigroup (S, ·,≤) is called strongly regular [16] if for every a ∈ S there exists x ∈ S such that a ≤ axa and
ax = xa .

We denote by P∗(S) the set of nonempty subsets of S ; and the notation A ⪯ B , where A,B are subsets
of an ordered set (S,≤) means that for every a ∈ A there exists b ∈ B such that a ≤ b . An hypergroupoid is a
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nonempty set S with an “operation”
◦ : S × S → P∗(S) | (a, b) → a ◦ b

on S called hyperoperation (as it maps to each couple a, b of elements of S a nonempty subset a ◦ b of S ) and
an operation

∗ : P∗(S)× P∗(S) → P∗(S) | (A,B) → A ∗B
on P∗(S) (induced by the hyperoperation of S ) such that

A ∗B =
∪

(a,b)∈A×B

(a ◦ b) for every A,B ∈ P∗(S) .

A hypergroupoid is called hypersemigroup if {x} ∗ (y ◦ z) = (x ◦ y) ∗ {z} for every x, y, z ∈ S . If S is a
hypergroupoid then, for every x, y ∈ S , we clearly have {x} ∗ {y} = x ◦ y. As the operation “∗” depends on
the hyperoperation “◦”, for a hypergroupoid S we use the notation (S, ◦,≤) instead of (S, ◦, ∗,≤) .
The following two properties, though obvious, play an essential role in the investigation:

(1) If x ∈ A ∗B , then x ∈ a ◦ b for some a ∈ A , b ∈ B .
(2) If a ∈ A and b ∈ B , then a ◦ b ⊆ A ∗B .

In a hypergroupoid, A ⊆ B implies A ∗C ⊆ B ∗C and C ∗A ⊆ C ∗B for any A,B,C ∈ P∗(S) . The operation
“∗” on a hypersemigroup S is associative, that is (P∗(S), ∗) is a semigroup. The concepts related to ordered
groupoids (ordered semigroups) mentioned above are naturally transferred to ordered hypergroupoids (ordered
hypersemigroups). A hypergroupoid is called an ordered hypergroupoid if there is an order relation “≤” on S

such that a ≤ b implies a ◦ c ⪯ b ◦ c and c ◦ a ⪯ c ◦ b for every c ∈ S [3]. In an ordered hypersemigroup
the symbol (A] denotes the same set as in an ordered semigroup and has the same properties as in ordered
semigroup. A nonempty subset A of an ordered hypergroupoid (S, ◦,≤) is called a right (resp. left) ideal of
S if (1) A ∗ S ⊆ A (resp. S ∗ A ⊆ A) and (2) if a ∈ A and S ∋ t ≤ a , then t ∈ A , that is, if (A] = A ;
it is called an ideal of S if it is both a right ideal and a left ideal of S . A nonempty subset Q of an ordered
hypergroupoid S is called a quasi-ideal of S if (1) (Q ∗ S] ∩ (S ∗Q] ⊆ Q and (2) if a ∈ Q and S ∋ t ≤ a , then
t ∈ Q . A nonempty subset B of an ordered hypersemigroup S is called a bi-ideal of S if (1) B ∗ S ∗ B ⊆ B

and (2) if a ∈ B and S ∋ t ≤ a , then t ∈ B ; a nonepty subset A of S is called an interior ideal of S is (1)
S ∗ A ∗ S ⊆ A and (2) if a ∈ A and S ∋ t ≤ a , then t ∈ A . An ordered hypersemigroup (S, ◦,≤) is called
regular if for every a ∈ S there exists x ∈ S such that {a} ⪯ (a ◦ x) ∗ {a} ; it is called right regular if for every
a ∈ S there exists x ∈ S such that {a} ⪯ (a ◦ a) ∗ {x} ; left regular if for every a ∈ S there exists x ∈ S such
that {a} ⪯ {x} ∗ (a ◦ a) ; intraregular if for every a ∈ S there exist x, y ∈ S such that {a} ⪯ (x ◦ a) ∗ (a ◦ y) . As
is an ordered semigroup, an ordered hypersemigroup is regular, for example, if and only if a ∈ ({a}∗S ∗{a}] for
every a ∈ S or A ⊆ (A ∗S ∗A] for every nonempty subset A of S . The other type of ordered hypersemigroups
mentioned above can also be characterized in a similar way.

3. Main results

Lemma 1. (cf. also [2; p. 104, l. 12-20]) Let (S, ·,≤) be an ordered groupoid. We consider the hyperoperation
“◦” on S defined by

◦ : S × S → P∗(S) | (a, b) → a ◦ b, where

a ◦ b := {x ∈ S | x ≤ ab}.
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Then (S, ◦,≤) is an ordered hypergroupoid. If the multiplication of the groupoid (S, ·,≤) is associative, then
(S, ◦) is a hypersemigroup.

In the following we denote by (S, ·,≤) the ordered groupoid and by (S, ◦,≤) the ordered hypergroupoid
constructed in Lemma 1.
Corollary 2. If (S, ·,≤) is an ordered semigroup, then (S, ◦,≤) is an ordered hypersemigroup.

Theorem 3. A set A is a right (left) ideal, ideal, or quasi-ideal of an ordered groupoid (S, ·,≤) if and only if
A is a right (left) ideal, ideal or quasi-ideal, respectively, of the ordered hypergroupoid (S, ◦,≤) . In particular, if
(S, ·,≤) is an ordered semigroup, then A is a bi-ideal or interior ideal of (S, ·,≤) if and only if A is a bi-ideal
or interior ideal of (S, ◦,≤) .

Proof Let A be a right ideal of (S, ·,≤) . If t ∈ A ∗ S then t ∈ a ◦ x for some a ∈ A , x ∈ S , then
t ≤ ax ∈ AS ⊆ A and so t ∈ A ; thus A is a right ideal of (S, ◦,≤) . Similarly, if A is a left ideal of
(S, ·,≤) , then A is a left ideal of (S, ◦,≤) . As a consequence, if A is an ideal of (S, ·,≤) , then A is an ideal
of (S, ◦,≤) . Let A be a right ideal of (S, ◦,≤) . If t ∈ AS , then t = ax for some a ∈ A , x ∈ S . We have
ax ∈ a◦x ⊆ A∗S ⊆ A and so t ∈ A . Similarly, if A is a left ideal of (S, ◦,≤) , then A is a left ideal of (S, ·,≤) .
Hence, if A is an ideal of (S, ◦,≤) , then A is an ideal of (S, ·,≤) .

Let Q be a quasi-ideal of (S, ·,≤) and t ∈ (Q ∗ S] ∩ (S ∗ Q] . Since t ∈ (Q ∗ S] , we have t ≤ x for
some x ∈ Q ∗ S ; since t ∈ (S ∗ Q] , we have t ≤ y for some y ∈ S ∗ Q . Then we have x ∈ q ◦ s for some
q ∈ Q , s ∈ S , and y ∈ c ◦ d for some c ∈ S , d ∈ Q . Then we have t ≤ x ≤ qs ∈ QS and t ≤ y ≤ cd ∈ SQ

and then t ∈ (QS] ∩ (SQ] ⊆ Q . Thus we have (Q ∗ S] ∩ (S ∗ Q] ⊆ Q and so Q is a quasi-ideal of (S, ◦,≤) .
Let Q be a quasi-ideal of (S, ◦,≤) and t ∈ (QS] ∩ (SQ] . Since t ∈ (QS] , we have t ≤ qs for some q ∈ Q ,
s ∈ S . Since t ∈ SQ , we have t ≤ cd for some c ∈ S , d ∈ Q . Then we have t ∈ q ◦ s ∈ Q ∗ S ⊆ (Q ∗ S] and
t ∈ c ◦ d ∈ S ∗Q ⊆ (S ∗Q] . Then t ∈ (Q ∗ S] ∩ (S ∗Q] ⊆ Q and so Q is a quasi-ideal of (S, ·,≤) .

Let A be a bi-ideal of (S, ·,≤) and t ∈ (A ∗ S) ∗ A . Then t ∈ x ◦ y for some x ∈ A ∗ S , y ∈ A and
x ∈ a ◦ s for some a ∈ A , s ∈ S . Then we have t ≤ xy ≤ (as)y ∈ ASA ⊆ A , and t ∈ A . Thus we have
A∗S ∗A ⊆ A and so A is a bi-ideal of (S, ◦,≤) . Let A be a bi-ideal of (S, ◦,≤) and t ∈ ASA . Then t = (as)b

for some a, b ∈ A , s ∈ S . Since (as)b ≤ (as)b , we have (as)b ∈ (as) ◦ b = {as} ∗ {b} . Since as ≤ as , we have
as ∈ a ◦ s , that is {as} ⊆ a ◦ s . Thus we have t = (as)b ∈ (a ◦ s) ∗ {b} = {a} ∗ S ∗ {b} ⊆ A ∗ S ∗ A ⊆ A ; then
t ∈ A and so A is a bi-ideal of (S, ·,≤) .

Let now A be an interior ideal of (S, ·,≤) and t ∈ (S ∗A) ∗S . Then t ∈ x ◦ y for some x ∈ S ∗A , y ∈ S

and x ∈ s ◦ a for some s ∈ S , a ∈ A . Then we have t ≤ xy ≤ (sa)y ∈ SAS ⊆ A ; then t ∈ A . Thus we have
S∗A∗S ⊆ A , and A is an interior ideal of (S, ◦,≤) . Finally, let A be an interior ideal of (S, ◦,≤) and t ∈ SAS .
Then t = (xa)y for some x, y ∈ S , a ∈ A . Then (xa)y ∈ (xa)◦y ⊆ (x◦a)∗{y} = {x}∗{a}∗{y} ⊆ S∗A∗S ⊆ A ;
then t ∈ A and so A is an interior ideal of (S, ·,≤) . 2

If S is an ordered hypergroupoid, an element A ∈ P∗(S) is called proper if A ̸= S ; it is called
subidempotent if (A ∗A] ⊆ A .

Definition 4. An ordered hypergroupoid S is called right (resp. left) simple if S does not contain proper right
(resp. left) ideals, that is if A is a right (resp. left) ideal of S , then A = S ; it is called simple if S does not
contain proper ideals, that is if A is an ideal of S , then A = S .

If S is an ordered hypergroupoid such that ({a} ∗ S] = S for every a ∈ S or (A ∗ S] = S for every
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A ∈ P∗(S) , then S is right simple; if (S ∗ {a}] = S for every a ∈ S or (S ∗ A] = S for every A ∈ P∗(S) ,
then S is left simple. An ordered hypersemigroup S is simple if and only if (S ∗ {a} ∗ S] = S for every a ∈ S ,
equivalently if (S ∗ A ∗ S] = S for every A ∈ P∗(S) ; it is right simple if and only if ({a} ∗ S] = S for every
a ∈ S , equivalently if (A ∗S] = S for every A ∈ P∗(S) ; left simple if and only if (S ∗ {a}] = S for every a ∈ S ,
equivalently if (S ∗ A] = S for every A ∈ P∗(S) ; and an ordered hypersemigroup that is right simple or left
simple, it is simple.
Remark 5. The results on left and right simple ordered semigroups considered in [23] can be naturally
transferred to ordered hypersemigoups and Proposition 1 in it can be proved using only sets. In fact, if S is a
hypersemigroup that is both right and left simple and A a bi-ideal of S then, since (A∗S] = S and (S ∗A] = S ,
we have S = (S ∗ A] = ((A ∗ S] ∗ A] = ((A ∗ S) ∗ A] = (A ∗ S ∗ A] ⊆ (A] = A ; then A = S and so S does not
contain proper bi-ideals. Conversely, if an ordered hypersemigroup S does not contain proper subidempotent
bi-ideals and A is a left ideal of S then, since S ∗ A ⊆ A , we have A ∗ (S ∗ A) ⊆ A ∗ A ⊆ S ∗ A ⊆ A and
(A ∗ A] ⊆ (A] = A and so A is a subidempotent bi-ideal of S ; by hypothesis, we have A = S and so S is left
simple. Similarly S is right simple. On the other hand, if an ordered hypersemigroup is left and right simple,
then it is regular, and in regular ordered hypersemigroups the bi-ideals and the subidempotent bi-ideals are the
same.
Theorem 6. If an ordered groupoid (S, ·,≤) is left (resp. right) simple, then the ordered hypergroupoid
(S, ◦,≤) is so. An ordered semigroup (S, ·,≤) is left (resp. right) simple or simple if and only if the ordered
hypersemigroup (S, ◦,≤) is so.

Proof Let (S, ·,≤) be left simple and a, b ∈ S . Since (Sa] = S , we have b ≤ xa for some x ∈ S . Then we
have b ∈ x ◦ a = {x} ∗ {a} ⊆ S ∗ {a} ⊆ (S ∗ {a}]; then S = (S ∗ {a}] and so (S, ◦,≤) is left simple. Let now
(S, ◦,≤) be a left simple ordered hypersemigroup and a, b ∈ S . Since (S ∗ {a}] = S , we have b ≤ t for some
t ∈ S ∗ {a} . Then t ∈ x ◦ a for some x ∈ S and so t ≤ xa . We have b ≤ t ≤ xa ∈ Sa ; thus b ∈ (Sa] and so
(S, ·,≤) is left simple.

Let (S, ·,≤) be a simple ordered semigroup and a, b ∈ S . Then we have (SaS] = S and so b ≤ (xa)y

for some x, y ∈ S ; thus b ∈ (xa) ◦ y . Since xa ∈ x ◦ a , we have b ∈ (xa) ◦ y ⊆ (x ◦ a) ∗ {y} = {x} ∗ {a} ∗ {y} ⊆
S ∗ {a} ∗S ⊆ (S ∗ {a} ∗S] ; then S = (S ∗ {a} ∗S] and so (S, ◦,≤) is simple. Conversely, let (S, ◦,≤) be simple
and a, b ∈ S . Then (S ∗ {a} ∗ S] = S and b ≤ t for some t ∈ (S ∗ {a}) ∗ S . Then we have t ∈ u ◦ s for some
u ∈ S ∗ {a} , s ∈ S , and u ∈ v ◦ a for some v ∈ S . Then b ≤ t ≤ us ≤ (va)s = vas ∈ SaS , a ∈ (SaS] , and
S = (SaS] and so (S, ·,≤) is simple. 2

Definition 7. An ordered hypersemigroup S is called left quasiregular if for every a ∈ S there exist x, y ∈ S

such that {a} ⪯ (x ◦ a) ∗ (y ◦ a) . It is called right quasiregular if for every a ∈ S there exist x, y ∈ S such that
{a} ⪯ (a ◦ x) ∗ (a ◦ y) .

Definition 8. An ordered hypersemigroup S is called semisimple if for every a ∈ S there exist x, y, z ∈ S

such that {a} ⪯ (x ◦ a) ∗ (y ◦ a) ∗ {z} .
Exactly as in ordered semigroups, the right quasiregular and the left quasiregular ordered hypersemi-

groups are semisimple.

Theorem 9. An ordered semigroup (S, ·,≤) is regular, right (left) regular, intraregular, right (left) quasiregular,
or semisimple if and only if the ordered hypersemigroup (S, ◦,≤) is, respectively, so.
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Proof Let (S, ·,≤) be regular and a ∈ S . Then there exists x ∈ S such that a ≤ (ax)a . Then a ∈ (ax) ◦ a .
Since ax ∈ a◦x , we have ax◦a ⊆ (a◦x)∗{a} . Since a ∈ (a◦x)∗{a} and a ≤ a , we have {a} ⪯ (a◦x)∗{a} and
so (S, ◦,≤) is regular. Let (S, ◦,≤) be regular and a ∈ S . Then there exists x ∈ S such that {a} ⪯ (a◦x)∗{a} .
That is, there exist x, t ∈ S such that t ∈ (a ◦ x) ∗ {a} and a ≤ t . Then t ∈ u ◦ a for some u ∈ a ◦ x , from
which t ≤ ua and u ≤ ax . Thus we get a ≤ t ≤ (ax)a = axa and so (S, ·,≤) is regular.

Let (S, ·,≤) be right regular and a ∈ S . Then there exists x ∈ S such that a ≤ a2x . Since a ≤ (aa)x ,
we have a ∈ aa ◦ x . Since aa ∈ a ◦ a , we have aa ◦ x ⊆ (a ◦ a) ∗ {x} . Thus we have a ∈ (a ◦ a) ∗ {x} and a ≤ a ;
then {a} ⪯ (a ◦ a) ∗ {x} and so (S, ◦,≤) is right regular. Let (S, ◦,≤) be right regular and a ∈ S . Then there
exists x ∈ S such that {a} ⪯ (a ◦ a) ∗ {x} . Then a ∈ u ◦ x for some u ∈ a ◦ a . Since a ≤ ux and u ≤ a2 , we
have a ≤ a2x and so (S, ·,≤) is right regular. Similarly (S, ·,≤) is left regular if and only if (S, ◦,≤) is so.

Let (S, ·,≤) be intraregular and a ∈ S . Then there exist x, y ∈ S such that a ≤ xa2y = (xa)(ay) . Then
a ∈ (xa) ◦ (ay) and, since xa ∈ x ◦a and ay ∈ a ◦ y , we have xa ◦ay ⊆ (x ◦a) ∗ (a ◦ y) . Since a ∈ (x ◦a) ∗ (a ◦ y)
and a ≤ a , then {a} ⪯ (x ◦ a) ∗ (a ◦ y) , and (S, ◦,≤) is intraregular. Let (S, ◦,≤) be intraregular and a ∈ S .
Then there exist x, y, t ∈ S such that t ∈ (x◦a)∗ (a◦y) and a ≤ t . Then t ∈ u◦ v for some u ∈ x◦a , v ∈ a◦y
and so t ≤ uv , u ≤ xa , and v ≤ ay . Then we have a ≤ t ≤ (xa)(ay) = xa2y and so (S, ·,≤) is intraregular.

Let (S, ·,≤) be right quasiregular and a ∈ S . Then there exist x, y ∈ S such that a ≤ (ax)(ay) . Then
a ∈ (ax) ◦ (ay) ⊆ (a ◦ x) ∗ (a ◦ y) and so a ∈ (a ◦ x) ∗ (a ◦ y) ; then {a} ⪯ (a ◦ x) ∗ (a ◦ y) and (S, ◦,≤)

is right quasiregular. Let (S, ◦,≤) be right quasiregular and a ∈ S . Then there exist x, y ∈ S such that
{a} ⪯ (a ◦ x) ∗ (a ◦ y) . Then there exists t ∈ S such that t ∈ (a ◦ x) ∗ (a ◦ y) and a ≤ t . Then we have t ∈ u ◦ v
for some u ∈ a ◦ x , v ∈ a ◦ y and then t ≤ uv , u ≤ ax , and v ≤ ay . Hence a ≤ t ≤ (ax)(ay) = axay , and
(S, ·,≤) is right quasiregular. In a similar way, (S, ·,≤) is left quasiregular if and only if (S, ◦,≤) is so.

Let (S, ·,≤) be semisimple and a ∈ S . Then there exist x, y, z ∈ S such that a ≤ (xa)(yaz) . Then we
have a ∈ (xa)◦(yaz). We also have xa ∈ x◦a and (ya)z ∈ (ya)◦z ⊆ (y◦a)∗{z} . We have a ∈ (x◦a)∗(y◦a)∗{z}
and a ≤ a and so we have {a} ⪯ (x◦a)∗(y◦a)∗{z} , and (S, ◦,≤) is semisimple. Let now (S, ◦,≤) be semisimple
and a ∈ S . Then there exist x, y, z, t ∈ S such that t ∈ ((x ◦ a) ∗ (y ◦ a)) ∗ {z} and a ≤ t . Then t ∈ u ◦ z for
some u ∈ (x ◦ a) ∗ (y ◦ a) and u ∈ v ◦ w for some v ∈ x ◦ a , w ∈ y ◦ a . We have t ≤ uz , u ≤ vw , v ≤ xa , and
w ≤ ya . Then we have a ≤ t ≤ uz ≤ (vw)z ≤ (xa)(ya)z = xayaz and so (S, ·,≤) is semisimple. 2

Definition 10. An ordered hypersemigroup (S, ◦,≤) is called strongly regular if for every a ∈ S there exists
x ∈ S such that {a} ⪯ (a ◦ x) ∗ {a} and a ◦ x = x ◦ a .

Lemma 11. Let (S, ·,≤) be an ordered hypergroupoid and a, x ∈ S . Then ax = xa if and only if a ◦x = x ◦a .

Proof =⇒ . Let ax = xa . If t ∈ a ◦ x , then t ≤ ax = xa , that is t ∈ x ◦ a and so a ◦ x ⊆ x ◦ a . If t ∈ x ◦ a ,
then t ≤ xa = ax , so t ∈ a ◦ x and x ◦ a ⊆ a ◦ x and so a ◦ x = x ◦ a .
⇐=. Let a ◦ x = x ◦ a . Since ax ∈ a ◦ x = x ◦ a , we have ax ≤ xa . Since xa ∈ x ◦ a = a ◦ x , we have xa ≤ ax .
Thus we have ax = xa . 2

Theorem 12. An ordered semigroup (S, ·,≤) is strongly regular if and only if the ordered hypersemigroup
(S, ◦,≤) is so.

As application of the theorems of the paper we give the following examples.

Example 13. (cf. [13; Example 1]) The set S = {a, b, c, d, f} with the multiplication “ ·” given by Table 1 and
the order “≤” below is an example of an intraregular ordered semigroup.
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Table 1. Multiplication table of Example 13.

· a b c d f
a b a a a a
b a b b b b
c a b b b b
d a b b d d
f a b c d f

≤:= {(a, a), (b, b), (c, b), (c, c), (d, d), (f, d), (f, f)}.

The covering relation “≺” of (S, ·,≤) is the following:

≺= {(c, b), (f, d)};

and the figure of (S, ·,≤) is given by Figure 1.

c f

a

db

Figure 1. Figure corresponding to the order of Example 13.

The right, left ideals, bi-ideals, and quasi-ideals of (S, ·,≤) are the same and they are the sets {a, b, c}
and S .

The hypersemigroup (S, ◦,≤) that corresponds to the ordered semigroup (S, ·,≤) is given by Table 2 of
the hyperoperation and the same order as (S, ·,≤) .

Table 2. The hyperoperation of Example 13.

◦ a b c d f
a {b, c} {a} {a} {a} {a}
b {a} {b, c} {b, c} {b, c} {b, c}
c {a} {b, c} {b, c} {b, c} {b, c}
d {a} {b, c} {b, c} {d, f} {d, f}
f {a} {b, c} {c} {d, f} {f}

According to Theorems 3 and 9, the ordered hypersemigroup (S, ◦,≤) is intraregular and has the same
right, left ideals, bi-ideals, and quasi-ideals as the ordered semigroup (S, ·,≤) .
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Example 14. (cf. also [15; the Example]) The set S = {a, b, c, d, f} with the multiplication “ ·” given by Table
3 and the order below is an example of a regular ordered semigroup.

Table 3. Multiplication table of Example 14.

· a b c d f
a a a a a a
b a b a d a
c a f c c f
d a b d d b
f a f a c a

≤:= {(a, a), (a, b), (a, c), (a, d), (a, f), (b, b), (c, c), (d, d), (f, f)}.

The covering relation “≺” of (S, ·,≤) is the following:

≺= {a, b), (a, c), (a, d), (a, f)};

and its figure is given by Figure 2.

a

b

c d

f

Figure 2. Figure corresponding to the order of Example 14.

The right ideals of (S, ·,≤) are the sets: {a} , {a, b, d} , {a, c, f} , and S .
The left ideals of (S, ·,≤) are the sets: {a} , {a, c, d} , {a, b, f} , and S .
The bi-ideals and the quasi-ideals of (S, ·,≤) are the same and they are the following: {a} , {a, b} , {a, c} ,
{a, d} , {a, f} , {a, b, d} , {a, c, d} , {a, b, f} , {a, c, f} , and S .

The ordered hypersemigroup (S, ◦,≤) that corresponds to (S, ·,≤) is given by Table 4.
According to Theorems 3 and 9, the ordered hypersemigroup (S, ◦,≤) is regular and has the same right

ideals, left ideals, bi-ideals, and quasi-ideals as the ordered semigroup (S, ·,≤) .

Example 15. (cf. also [12; Example 1]) The set S = {a, b, c, d, e} with the multiplication “ ·” given by Table
5 and the order “≤” below is an ordered semigroup that is regular, right regular, left regular, and intraregular.
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Table 4. The hyperoperation of Example 14.

◦ a b c d f
a {a} {a} {a} {a} {a}
b {a} {a, b} {a} {a, d} {a}
c {a} {a, f} {a, c} {a, c} {a, f}
d {a} {a, b} {a, d} {a, d} {a, b}
f {a} {a, f} {a} {a, c} {a}

Table 5. Multiplication table of Example 15.

· a b c d e
a a d a d d
b a b a d d
c a d c d e
d a d a d d
e a d c d e

≤: = {(a, a), (a, c), (a, d), (a, e), (b, b), (b, d), (b, e), (c, c), (c, e),

(d, d), (d, e), (e, e)}

The covering relation of (S, ·,≤) is the following:

≺= {(a, c), (a, d), (c, e), (b, d), (d, e)};

and its figure is given by Figure 3.

e

dc

a

b

Figure 3. Figure corresponding to the order of Example 15.

The right ideals of (S, ·,≤) are the sets: {a, b, d} and S .
The left ideals of (S, ·,≤) are the sets: {a}, {a, c}, {a, b, d}, {a, b, c, d} , and S .
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The bi-ideals and the quasi-ideals of (S, ·,≤) coincide with the left ideals of (S, ·,≤) .
The hypersemigroup (S, ◦,≤) that corresponds to the ordered semigroup
(S, ·,≤) is given by Table 6.

Table 6. The hyperoperation of Example 15.

◦ a b c d e
a {a} {a, b, d} {a} {a, b, d} {a, b, d}
b {a} {b} {a} {a, b, d} {a, b, d}
c {a} {a, b, d} {a, c} {a, b, d} S
d {a} {a, b, d} {a} {a, b, d} {a, b, d}
e {a} {a, b, d} {a, c} {a, b, d} S

According to Theorems 3 and 9, the ordered hypersemigroup (S, ◦,≤) is regular, right regular, left
regular, and intraregular and the right (left) ideals, bi-ideals, and quasi-ideals of (S, ◦,≤) are the same as the
right (left) ideals, bi-ideals, and quasi-ideals of (S, ·,≤) .

Example 16. (cf. also [9; the Example]) We consider the ordered semigroup S = {a, b, c, d, e} defined by the
multiplication “ ·” given by Table 7 and the order “≤” below.

Table 7. Multiplication table of Example 16.

· a b c d e
a a a c a c
b a a c a c
c a a c a c
d d d e d e
e d d e d e

≤: = {(a, a), (a, b), (a, c), (a, d), (a, e), (b, b), (b, c), (b, d), (b, e),

(c, c), (c, e), (d, d), (d, e), (e, e)}.

We give the covering relation of (S, ·,≤) ; and its figure is given by Figure 4.

≺= {(a, b), (b, c), (b, d), (c, e), (d, e)}.

This is a simple ordered semigroup, as (SaS] = S for every a ∈ S ; it is also right quasiregular and left
quasiregular, and so semisimple as well.
The right ideals of (S, ·,≤) are the sets: {a, b, c} and S .
The left ideals of (S, ·,≤) are the sets: {a, b, d} and S .
The bi-ideals of (S, ·,≤) are the sets: {a} , {a, b} , {a, b, c} , {a, b, d} , and S .
The quasi-ideals of (S, ·,≤) are the sets: {a, b} , {a, b, c} , {a, b, d} , and S .

The ordered hypersemigroup (S, ◦,≤) that corresponds to the ordered semigroup (S, ·,≤) is given by
Table 8.
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a

c

e

d

b

Figure 4. Figure corresponding to the order of Example 16.

Table 8. The hyperoperation of Example 16.

◦ a b c d e
a {a} {a} {a, b, c} {a} {a, b, c}
b {a} {a} {a, b, c} {a} {a, b, c}
c {a} {a} {a, b, c} {a} {a, b, c}
d {a, b, d} {a, b, d} S {a, b, d} S
e {a, b, d} {a, b, d} S {a, b, d} S

According to Theorems 3, 6, and 9, the ordered hypersemigroup (S, ◦,≤) is also simple, right quasiregular,
and left quasiregular, and has the same right, left ideals, ideals, bi-ideals, and quasi-ideals as the ordered
semigroup (S, ·,≤) .

Example 17. (cf. also [16; the Example]) The set S = {a, b, c, d, e, f} with the multiplication given by Table
9 and the order defined by Figure 5 is a strongly regular ordered semigroup.

Table 9. Multiplication table of Example 17.

· a b c d e f
a b c d d d d
b c d d d d d
c d d d d d d
d d d d d d d
e e e e e e e
f f f f f f f
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d

cba

e f

Figure 5. Figure that shows the order of Example 17.

The right ideals of (S, ·,≤) are the sets: {a, b, c, d} , {a, b, c, d, e} , {a, b, c, d, f} , and S . The only left
ideal of (S, ·,≤) is the set S itself. The bi-ideals and the quasi-ideals of (S, ·,≤) coincide with the right ideals
of (S, ·,≤) .

The hypersemigroup (S, ◦,≤) that corresponds to the above ordered semigroup is given by Table 10.

Table 10. The hyperoperation of Example 17.

◦ a b c d e f
a {b} {c} {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}
b {a} {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}
c {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}
d {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}
e {a, b, c, d, e} {a, b, c, d, e} {a, b, c, d, e} {a, b, c, d, e} {a, b, c, d, e} {a, b, c, d, e}
f {a, b, c, d, f} {a, b, c, d, f} {a, b, c, d, f} {a, b, c, d, f} {a, b, c, d, f} {a, b, c, d, f}

According to Theorems 3 and 12, (S, ◦,≤) is a strongly regular ordered hypersemigroup having the same
right (left), bi-ideals, and quasi-ideals as the ordered semigroup (S, ·,≤) .

Example 18. (cf. also [22; Theorem 1]) Let us consider the ordered semigroup (S, ·,≤) defined by Table 11
and Figure 6.

This is right regular and so intraregular as well, not left regular, right quasiregular, not left quasiregular,
semisimple, not regular, right simple, not left simple, not simple, not strongly regular.
The right ideals of (S, ·,≤) are the sets: {a, b, c, d} , {a, b, c, d, f} , and S .
The left ideals of (S, ·,≤) are the sets: {a} , {a, b} , {a, b, c, d} , {a, b, c, d, f} , and S . The bi-ideals and the
quasi-ideals of (S, ·,≤) are the same as the left ideals of (S, ·,≤) .
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Table 11. Multiplication table of Example 18.

· a b c d e f
a a a a d d d
b a a b d d d
c a a c d d d
d a a d d d d
e a a d d e f
f a a d d e f

e

f

d

a b c

Figure 6. Figure that shows the order of Example 18.

The ordered hypersemigroup (S, ◦,≤) that corresponds to the ordered semigroup (S, ·,≤) is given by
Table 12. It is of the same type as (S, ·,≤) and has the same right, left ideals, bi-ideals, and quasi-ideals as the
ordered semigroup (S, ·,≤) .

Table 12. The hyperoperation of Example 18.

◦ a b c d e f
a {a} {a} {a} {a, b, c, d} {a, b, c, d} {a, b, c, d}
b {a} {a} {b} {a, b, c, d} {a, b, c, d} {a, b, c, d}
c {a} {a} {c} {a, b, c, d} {a, b, c, d} {a, b, c, d}
d {a} {a} {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}
e {a} {a} {a, b, c, d} {a, b, c, d} S {a, b, c, d, f}
f {a} {a} {a, b, c, d} {a, b, c, d} S {a, b, c, d, f}

In the above examples the ordered hypersemigroup (S, ◦,≤) has the same interior ideals as the ordered
semigroup (S, ·,≤) . One can write a program to find the interior ideals of (S, ·,≤) .

Remark 19. By a poe -semigroup we mean an ordered semigroup (: po -semigroup) having a greatest element
“e” (i.e. e ≥ a for all a ∈ S ). If we have a poe -semigroup given by a table of multiplication and a figure and
we want to check if it is regular, left (right) regular, intraregular, left (right) quasiregular or semisimple, then
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we can easily check—by hand—if for every a ∈ S we have a ≤ aea , a ≤ ea2 (a ≤ a2e), a ≤ ea2e , a ≤ eaea

(a ≤ aeae), or a ≤ eaeae , respectively (cf. also [4]).

The following question is natural: What about the filters? If (S, ·,≤) is an ordered semigroup and F a
filter of (S, ·,≤) , then is F a filter of the hypersemigroup (S, ◦,≤)? The following theorem gives the answer.

For the sake of completeness, let us first give the definition of the filter in an ordered semigroup and in
an ordered hypersemigroup. If (S, ·,≤) is an ordered semigroup, a nonempty subset F of S is called a filter
of S [5] if the following hold: (1) if a, b ∈ F , then ab ∈ F ; (2) if a, b ∈ S such that ab ∈ F , then a ∈ F and
b ∈ F , and (3) if a ∈ F and S ∋ b ≥ a , then b ∈ F . A nonempty subset F of (S, ◦,≤) is called a filter of S if
the following hold: (1) if a, b ∈ F , then a ◦ b ⊆ F ; (2) if a, b ∈ S such that a ◦ b ⊆ F , then a ∈ F and b ∈ F ;
(3) for every a, b ∈ S , we have a ◦ b ⊆ F or (a ◦ b) ∩ F = ∅ , and (4) if a ∈ F and S ∋ b ≥ a , then b ∈ F [19].

Theorem 20. If F is a filter of (S, ◦,≤) , then it is a filter of (S, ·,≤) . The converse statement does not hold
in general.

Proof Let F be a filter of (S, ◦,≤) and a, b ∈ F . Then we have a ◦ b ⊆ F . On the other hand, ab ∈ a ◦ b ;
thus we get ab ∈ F . Let now a, b ∈ S such that ab ∈ F . Since ab ∈ a ◦ b , we have (a ◦ b) ∩ F ̸= ∅ ; then
a ◦ b ⊆ F . Since F is a filter of (S, ◦,≤) , we have a, b ∈ F . Hence F is a filter of (S, ·,≤) .

For the converse statement we give the following example. 2

Example 21. ([21; Example 2]) We consider the ordered semigroup (S, ·,≤) defined by Table 13 and Figure
7.

Table 13. Multiplication table of Example 21.

· a b c d e f
a a a a a a a
b a b b b e e
c a b b b e e
d a b b c e e
e a b b b e e
f a b b c e e

The ordered hypersemigroup (S, ◦,≤) that corresponds to the ordered semigroup (S, ·,≤) is given by Table 14
and the same order as (S, ·,≤) .

Table 14. The hyperoperation of Example 21.

◦ a b c d e f
a {a} {a} {a} {a} {a} {a}
b {a} {a, b} {a, b} {a, b} {a, b, c, e} {a, b, c, e}
c {a} {a, b} {a, b} {a, b} {a, b, c, e} {a, b, c, e}
d {a} {a, b} {a, b} {a, b, c} {a, b, c, e} {a, b, c, e}
e {a} {a, b} {a, b} {a, b} {a, b, c, e} {a, b, c, e}
f {a} {a, b} {a, b} {a, b, c} {a, b, c, e} {a, b, c, e}
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a

b

c

e

d

f

Figure 7. Figure that shows the order of Example 21.

The set {b, c, d, e, f} is a filter of (S, ·,≤) but it is not a filter of (S, ◦,≤)

(: b ◦ c = {a, b} ⊈ {b, c, d, e, f}).

Note. In the above examples the part related to ordered semigroups has been implemented using our computer
programs. Clearly it was not possible to construct such examples by hand. Having examples on ordered
semigroups given by a table of multiplication and a figure, we get the corresponding examples on ordered
hypersemigroups using the theorems given in the present paper.

I would like to thank the two anonymous referees for their time to read the paper –something lately not
very usual.
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