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Abstract: In this article we give the solvability conditions and the integral representations of the solutions of the
Neumann boundary value problem for the Cauchy—Riemann operator and the Beltrami operator with constant coefficient
in a disc sector with angle ¥ = =, n € N. Moreover, the Neumann problem for second-order operators with the
Bitsadze/Laplace operator as the main part is studied. Classical results of complex analysis are used to obtain the

expressions of the solvability conditions and the integral representations for the solutions explicitly.
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1. Introduction

The Neumann problem is a basic boundary value problem in complex analysis. It is well known that a Neumann
problem consists of finding a solution to a specified partial differential equation in the interior of a given domain
in terms of prescribed boundary values of its normal derivative. The Neumann or flux boundary condition
is typical for elliptic partial differential equations. Its need can be shown physically. For example, in heat
diffusion, because the flux is proportional to the temperature gradient, a Neumann condition can inform how
the heat flows across the boundary.

The aim of this paper is to investigate the Neumann problems for the Cauchy-Riemann operator, the
Beltrami operator, and the Bitsadze/Laplace operator in a disc sector. We obtain the integral representations
for the solutions. The resulting functions in general fail to satisfy the respective boundary conditions. Therefore
necessary and sufficient solvability conditions are described. In order to get a unique solution the normalization
conditions are appended.

This work is also concerned with the continued development of basic boundary value problems for complex
partial differential equations; see, e.g.,[1, 2, 4, 6-9, 18, 24]. The purpose of studying these problems lies in the
importance and amplitude of their applications. The Neumann problems arise in many areas including crack
theory, diffraction theory, electrostatics, elasticity theory, general relativity, heat transfer and diffusion, Hele—
Shaw flow, hydrodynamics, magneto statics, optical tomography, porous media, power electromagnetic, and
structural mechanics; see, e.g., [10-16, 19-21, 23].

This introductory section is continued to give basic mathematical tools and known results, given without

proof. More details one can find in the references provided below. In Section 2 we study the Neumann problem
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for both homogeneous and inhomogeneous Cauchy-Riemann equations. To do that we use the Dirichlet problem
in the sector studied in [24]. Section 3 is devoted to the Neumann problem for the Beltrami equation. Applying
the results obtained in Section 2, we reduce the Neumann problem for the Beltrami equation to a singular
integral equation. Using the Neumann series method, we get the solution of the problem. In Section 4 we
obtain the solvability of the Neumann problem for the Bitsadze/Laplace operator. We split the problem into
two boundary value problems: a Neumann problem for the inhomogeneous Cauchy—Riemann equation and a
Neumann problem for the inhomogeneous Beltrami equation. These boundary value problems are solved in
Sections 2 and 3, respectively. Substituting the solution of the second problem into the solvability condition
and the integral representation of the solution of the first one, we get a solution for the main problem of Section

4.
Let S be a bounded sector in the complex plane C defined by

S:{zEC:\z|<1,0<argz<%,neN} (1.1)

with three corner points at 0,1,w = ™/ where n is a fixed positive integer. The boundary 85 = [0,1]U LU
[w,0] is oriented counterclockwise, where [0, 1] is the straight segment from 0 to 1 and [w,0] is the segment
from w to 0. The oriented circular arc L, from 1 to w, is parameterized by L : 7 — ¢'7,7 € [0, Z]. By rotations,

one defines the domains
Sp=w?S ={wz22€8}, k=0,1,..n—1, (1.2)

where Sy = S is the sector defined by (1.1). Reflections on the real axis define
E,={%z2€8} k=0,1,...n— 1. (1.3)
Moreover, reflections on the unit circumference define
Sr={z"t:zeS}, &={z1:2€E}, k=0,1,...,n— 1 (1.4)

It is clear that Sk, Sk, Fk, &, kK =0,1,...,n — 1 are disjoint domains and

n—1
C= U (?k ng UEk ng>
k=0
Moreover,
n—1 n—1
UGkUE) ={z€C:lz| <1}, | J(SkUE) ={z€C: |z > 1}.
k=0 k=0

Obviously, the following Lemma holds.

Lemma 1.1 If z € S, then for k=0,1,..,.n—1,
2w e 8y, zw e By, 27w e Sy, 27w e &,
where Sk, Sk, Ex, & are defined by (1.1)—(1.4), respectively.
The fundamental tool for solving boundary value problems for partial differential equations in complex

analysis is the Cauchy—Pompeiu formula [5, 23].
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Theorem 1.1 If w € C1(S;C)NC(S;C), then

1 d¢ 1 o dédn Jw(z), z€S,
2ri 0sw(o§—27;/swg(o {07 z¢ 8,

and

27 BXS C—Z 7T

1 w d¢ 1 w dgdn w(z), zé€S8,
(© [0 { >

where S is the sector defined by (1.1) and ( =& +1in, &,n € R.

Applying Theorem 1.1 as well for z € S, as for all its symmetric points, given in Lemma 1.1, gives the
following modified Cauchy—Pompeiu-type formula for the sector S [24].

Theorem 1.2 Any w € C*(S;C)NC(S;C) can be represented as

1 n—1 1 z
w(z) = %/asw(o Z (C 2wk 2k ZC) “

k=0
1 iy 1 2
_W/SwC(C)kZ_;) (Czw% — % ZC) dédn, z € S.

For the required boundary behavior of the solution we consider the following lemma. Let

el 1 1 z z
K(z,¢) = < — —— + - — ) . (1.5)
kZ:o C— 2wt (—zw2k ¢ w2k 2k

Z(—w

Lemma 1.2 If v € C(9S;C), then

7(<)K(Z7 C)dC = V(t)v t € 9S, (16)

im —
z€8,2—t 2T [ 59

where K(z,() is defined by (1.5).

Remark 1 Lemma 1.2 appears as Proposition 3.1 in [24].

Now we recall the Dirichlet problem for the homogeneous Cauchy—Riemann equation in the sector S (see [24,
Theorem 4.1]), that is used in order to solve the Neumann problem for the Cauchy—Riemann operator (see
Section 2).

Lemma 1.3 If v € C(9S;C), then the Dirichlet problem

w; =0, z € Sv w+(C) = 7(C)7 C € asv
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is solvable if and only if

n—1 _
: >d§0 z€ S,
ZC

AOY (= o

2mi
k=0

and its solution is uniquely given as

n—1
w(z)_Qm/ Z( ZWQk_CUkazC)dC’ z € S.

=0

2. Neumann problem for the Cauchy—Riemann operator in the sector
If n¢ is the outward normal vector to the boundary 95, the outward normal derivative

One = —i[¢'0; — 5’85], ¢eas,
takes the form
(O + ¢ CeL,
One =  iwde — 585, ¢ € [w,0], (2.1)

—id +idz, ¢ €[0,1].

Theorem 2.1 Let v € C(9S;C). The Neumann problem

wz(z) =0, z €S,
(2.2)
On.w =1(t), t €05, w(a)=c,
where a € S and ¢ € C are fixed constants, is uniquely solvable if and only if
— z
2 kg ( — zu2k % _ EC) d¢ =0, z €5, (2.3)
where
(0, ¢el,
I(¢Q) =37, ¢€w,0] (2.4)
(), C€[01]
The solution is
n—1
_ 1 ¢ — aw?
'UJ(Z) = C+Tm BSF(C);){%I (C Zw2k>
w2k Ca w?k 1
! (Cz w2k>+<(z—a)}dc7 (2.5)

where a € S is a fixed constant.
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Proof If w is a solution to the Neumann problem (2.2), then W = w’ is a solution to the Dirichlet problem
W:(z) =0, z €S,
(2.6)
W =T(¢), ¢ €098,

where I' is defined by (2.4). According to Lemma 1.3 the Dirichlet problem (2.6) is solvable if and only if

n—1
1 1 z
F E — =
27 a5 (C) =0 (C — szk w2k — ZC) dC 07 Z€ S,
and its solution is
W) = — r<<>"§_1; N — T (2.7)
7 omi 58 ¢ — 2wk w2k — 3¢ FE ‘
k=0

For a fixed constant o € S, integrating along any simple path from « to z, lying in .S, leads to

k=0

_ 2k C _ 2k
Lz Ca _%bg (Cj:j%)}dc,

Clearly, w(z) given by (2.5) is analytic in S. That this function satisfies

which is the desired formula (2.5).
the Neumann boundary condition in (2.2) can be seen as follows. Differentiating on both sides of (2.5) with

respect to z and subtracting (2.3) from the resulting equation give

1
W)= g | TOKEQ 2 €8

where K(z,(¢) and I'(() are defined by (1.5) and (2.4), respectively. By Lemma 1.2, T'(¢) can be attained as
the boundary limit of w’. Hence, using (2.1) one can get

Oncw = Cu'(¢) = (T'(¢) =7(¢), ¢ € L.

Similarly, for ¢ € [0,1] U [w,0], one can obtain J,.w = ().
Next, we consider the inhomogeneous Neumann problem

w,?:f(z)a ZGSa
Oncto = 1(0), € €8S, w(a) = ¢,

where f € L,(S;C)NCY(S;C),p>2, 7€ C(dS;C) and a € S and ¢ € C are fixed constants.
Theorem 2.2 Let f € L,(S;C)NC(S;C),p > 2, v € C(8S;C). Then the Neumann problem (2.8) is uniquely

solvable if and only if

1 s 1 z
2mi /35 (©) — (C — Zw?k W2k 2() dc
1 d 1 z
= ; / fC(C) — (C — s2k w2k _C) dgdna (29)
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€ —zfQL  ¢eL,
[ FQ] ¢ € w0l

©—ifQ). el

1 (1 ¢ — aw?
_W/SfC(C)kZ_O{W%Iog (C—zw2k>

where o € S and ¢ € C are fived constants.

Proof Representing w = ¢ + T[f](z), where ¢ is analytic in S and

B L]

is the classical Pompeiu operator [5, 23], implies that

For f € L,(S;C),p > 2, T[f](2) satisfies, in the Sobolev sense [5, 23], the following equalities

where

is the Ahlfors—Beurling operator [5,

Then if w is a solution to the Neumann problem (2.8), the function ¢(z)

problem

1576

a’rL((p = aﬂcw(C) - ancT[f](C)’ QS 0s.

O:T[f(2) = f(2), 0.T[f)(2) = [f(2), z €5,

MG = -1 [ HOFE T e s,

23]. One can see

[F17(¢ () (e,
(

O T[FI(C) = {ZwH[ It

pL=0, z€ S8,
¢'(Q) =T1(¢) — HO[f]*(¢), (€IS,

_ 2k _ 2k
z afw—log (M)}d&dn, z €S,
—w

)+

O = 5fQ), ¢elw0,
—ilI[f]*(¢ )+Zf( ), ¢e[01].
= w(z) — T[f](2) solves the Dirichlet

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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where Ty is given by (2.10). By Lemma 1.3 the Dirichlet problem (2.17) for the analytic function ¢’(z) is

uniquely solvable if and only if

n—1 B
1 1 5
o [ @ -1 <<)1;0(<_Zw2k ) dC=0, €5,
and its solution is given by
n—1

¢ = 5 [ 0@ T OIS (o — sarg ) 46 2 €5

k=0

The later expressions can be simplified as follows. From (2.15), see [5, 15, 23], we get

) = o [ f)-D —%/ng(o%,zes.

2w Jas T—z

Taking the limit as z — ¢ € 95 implies

dedi

, z€8.
¢

M) = 550 - 5 [ 1027 - 2 [ 105

Here, the Plemelj—Sokhotski formulae [5, 15, 23] are applied. Therefore, for z € S,

1 L= < 1 = )
21 Jag IO kZ:O C— 2wk w2k — (¢ dc
d déd
— o [ 105 -2 [ 102
s

2w a5 (—z (—=z

1 = 1 z
1 [ 1) > (i -~ e ) e

Similarly, one obtains

—

n—

1 ! z
5 asH[f]Jr(O Z (Cszk T W2k gg) d¢

k=0

1 -
(C — 2k w%i 24‘) dgdn.

—

n—

1
=7T/Sf<<<>;

0

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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From (2.19) and (2.22) we obtain

P = o nl( — Z—zg> d¢
+% [ / fo(c dsdn
_i/sfc(C):z:é (C—lzw% - w%z—z§> dedy
= o Z( - ) & TAG)
_7/ fe(C ( ioﬂk — w%zzg) d&dn. (2.24)

Integrating on both sides of (2.24), along a path from « to z, lying in S, gives
B — ¢ — aw?
w(z) = w(a)+ %/ Z { - log (ngk
z—a w? ¢ —
N SN < ) } ¢
¢ ¢ 20 —
n—1
1 1 ¢ — aw?
_ = ] > 7
o X g ()

_ 2k C _ 2k
+ 2 : @ “C—Q log (M) } dedn, = € S. (2.25)

Applying the side condition w(a) = ¢, we get (2.11). Obviously the solvability condition (2.9) follows at once
by substituting (2.23) in (2.18).

Next, we verify that w(z) given by (2.11) under the condition (2.9) satisfies the Neumann boundary
value problem (2.8). In (2.11), the term

| crtontc g
is the only one that is not analytic in S. Therefore, we have

1
we — ;ag /S Fo(0) log(¢ — =)dedn

= { /f ) log(C fdeJr/f dﬁd”}
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This shows that the function, given by (2.11), solves the inhomogeneous Cauchy—Riemann equation (2.8). On
the other hand, differentiating (2.11) with respect to z gives

95 k=0
n—1
1 1 z
—— déd
R0 2 (e~ g ) o
which, after subtracting (2.9), gives
1
we= 5 [ TUOKEOK =1 [ L(OK( Odedn, (226)

where K (z,¢) and T'y are defined by (1.5) and (2.10), respectively.
Since, from (1.5), K(z,{) =0, for all (z,¢{) € 95 x S, then

lim / (¢ O)dédn =0, t € DS.

zE€S,z—t T
Therefore, taking the limit on both sides of (2.26) when z tends to t € 95, by Lemma 1.2 we get

lim w,(z)= lim 1 T1(Q)K(2,¢)d¢ =T1(t), t € 0S,

z€S, 2t z€8,2—t 2T Jgg

where T'; is defined by (2.10).

Hence, on L, where ¢ = e’ 9 € (0, E), n €N
n

Onew = —i{Cwe — ('we}
(T1(¢) +¢f(Q)
= 7(¢), C€L.

Similarly, one finds
8n<w = 7(<)a C € [(.d, O] U [Oa 1]

Hence, w(z), given by (2.11), satisfies the Neumann condition (2.8), that is, J,.w = 7(¢),{ € 9S. This
completes the proof of Theorem 2.2. O

3. Neumann problem for the Beltrami operator in the sector

First, we consider the Neumann problem for the homogeneous Beltrami equation in the sector S
wz+qw, =0, z€8 (3.1)
angw = 7(C)7 C €aS (32)

where v € C(05;C) and ¢ € C, |¢| < 1.
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Write (3.1) and (3.2) in the form
—qu., 2 €S, Op,w =7((), (€ 0S.

Wz =

Since
= —i[¢'we — ('wg], ¢ € DS,

Opow =

then one can obtain
v(¢)

vy
= —, ¢ €08S.
RN

By Theorem 2.2 the Neumann problem (3.3) is solvable if and only if

1 s 1 z
g O X (=~ )
1 sty 1 z
- f;/(qwc)c k;) (C — o C) dédn
where
Q) +Ewe, (el
I2(Q) = § 5 () — Fwe], ¢ € w,0]
ily(¢) +ique], ¢ €10,1]

and its solution is

where « € S is a fixed constant. Applying Gauss’s theorem [5] gives

/wCC Z ( 02k wzkz_ 5<> dédn

n—1 1 B
wCZ <C — a2k wzki 2@) d¢

211 a8 P

52

n—1
q z
T /ch > ( Zka + (w2F — 502) dg&dn,

k=0

1580
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and

¢ — aw? e
o oe\ ) T

w=F C—w%
o (=) o
n—1
q 1 ¢ — aw?k zZ—«
- —1
2mi &ng];){w% Og((—zw% + ¢

2k <_ 2k _
‘L}log(ic—:)%)}dc

n—1
q 1 1 1 zZ—
i\ (o )

¢ — zw?k 2

w2k « z 2wk al — w?
s <a<—w2k B z<—w2k> S 1°g<zc—w2k>}d5d"‘

Then, using (3.8), the solvability condition (3.5) takes the form

z
27rz Z < —zw2k 2k 5() a6

- =2
/ E( S+ )

where

T3(¢) = ;}E:;q‘ii’]]w(o, ¢ € w,0],

94¢),  ¢elo1].

Furthermore, from (3.7) and (3.9) we find
n—1
1 1 ¢ — aw?k
- r oo [ 2
w(z) w(a) + 5 /as 3(€) k§zo {w% og (C — zw2k>

o Z o (i~ i)

aw?k (- 2wk
z—a wi o z
2 2 \al — Wk 2wk

2w2k ac_WQk
1
+ e og(zc_w%)}dfdn,ze&

(3.10)

(3.11)

(3.12)
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where I's is defined by (3.11). Differentiating (3.12) with respect to z gives

w,(2) = p1(2) + ¢l [w,](2), z € S (3.13)
where
(2) = —— F(g)ri1 L % Vac zes (3.14)
PR = o 0g =\ (- 2wk 2 — w2k ’ ’ '
and
1 — 1 22
T4 [w,](2) = ;/SwC(C) kZ:O <<< EpETE + o= ka)2> dédn, z € S. (3.15)

The last equation defines a singular integral operator. It is just the sum of the II—operator, defined by (2.15),

and a bounded operator on L,(S;C), p > 2 defined by the integral

1/f(g){ CEE +Z( _ZW% (zg—zi%)Q)}dgdn’ z €S,

for any f € L,(S;C), p> 2. Thus, according to [3, Lemma 3.1], see also [4, 5, 23], under the conditions on ¢

and p we have

g ||, (s:0) < 1. (3.16)

Moreover, I + ¢lII; is a perturbation of the invertible operator I + ¢II with a bounded one. Using the bounded
index stability theorem [17], the operator I + ¢lII; is invertible, and hence the Ferdholm alternative can be
applied to the singular integral equation (3.13). Its solution can be given by the following Neumann series, for

which (3.16) is a sufficient condition to converge (see [22]),

=> (=1)(gIL)'[¢1](2), z €S (3.17)

=0

Substituting (3.17) in (3.12), the solution to problem (3.3) takes the form

1 n—1 _ 2k
w(z) = w(e)+ %/BS I3(Q) 2 {wl%log (E—Zﬁ%)
k=0

_ 2k C* 2k
e (S ) o

_f/s 1 (gI) [ ](C)S{wlzk <g(1m2k - (iw%)

1=0 k=0
_Z « _ L% « o z
2 2 \aC —w?k 20 — w2k
2w2k O‘C _ w2k
+ & log (ZC — % ) } dédn, z € S, (3.18)

1582



AKEL and ALDAWSARI/Turk J Math

where T's, 1, and II; are defined by (3.11), (3.14), and (3.15), respectively, and « € S is a fixed constant. The
solvability condition (3.10) takes the form

— z
— d
271'1 Z( — Zw?k w”“—z{) ¢
n—1 22
l+1 H ded
St e e

(3.19)

where I's, ¢1, and II; are defined by (3.11), (3.14), and (3.15), respectively. Thus, we have proved the following

result.

Theorem 3.1 The Neumann problem (3.1) and (5.2) is solvable if and only if (3.19) is satisfied. A unique

solution, up to some additive complex constant w(a) = ¢, can be given by (3.18).

Next, we deal with the inhomogeneous Neumann problem

w: 4+ quw, = f(z), z€ 8

(3.20)
Onew =7(C), ¢ €08S.
As before, we write (3.20) as
ws = f(2) — qu,, z €S,
(3.21)
On.w =7(C), ¢€as,
and thus we can obtain
—i¢'f(¢
PO IS
or
Y (Q—EF(Q)
a0 €D
we(() = { LYHEI© ¢ ¢ [, 0), (3.22)
i[’Y(Ci;;f(C)L Ce [0’ 1].
By Theorem 2.2 the Neumann problem (3.21) is solvable if and only if
— z
- d
2mi zzj ( — Zw Wk — Z() ¢
= l/ w i - : déd (3.23)
/s —qwe)c - zw% wk — 7 > '
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where

(f(Q) —que(C))], (€L,
f(C) - qwC(C))]v ¢e [wvo]v
i[y(¢) = i(f(¢) — que(Q))], ¢elo,1],

and its solution is

95 k=0
2k C_ 2k
R t= It
1 n—1 1 C_ 2k _
—W/(f—qwC)C(C)kz_%{%log<4_(§:2k) & COZ
2%k 2k
,% <j§ :Qk)}dgdn, zeS

& k=0
1 = 1 z _
=g O X (i )
— 1 72
+7/S(f - qwC)(C) kZ:O ((C — ngk)g ((A}Qk — 74-) > dfdna

and

2w 2k
+ 5 " 1o (jé :jz ) ( " —zc_zw%)}dfdn, ze8.
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Using these results, the solvability condition (3.23) takes the form
1 — z
- d
2mi z:: ( — Zw? Wk — 2{) ¢

_%/S(f —qluc)(C)Ti:1 ((C;w%)Q + (W%Z:g)z) dédn

k=0
=0, z€58, (3.26)
where
e - dlh (el
Ps(Q) = | ~SRtid™ + otfam ¢l (3:27)
SHEHER e

Moreover, the implicit expression (3.25) of the solution can be reduced to the following form:
1 — ¢ — aw?*
w(z) = w(a)+ 27rz/ Z{ (zw%)
z—a w al — w?k
- —1 ——— | ¢ d
T T¢ Og(zcw%)} ‘

1 (1 1 1
+;/S(f*qw<)(0z {wzk <C_aw2k - C_zOJZk)

k=0
z—a wr « z
o 2 _C2<a<—w2k_,z<—w2k)
k _
+ 22}5 log ( g )}dfdn, z€8S. (3.28)

Differentiating (3.28) with respect to z gives

w:(2) = ¢2(2) — IL[f — qu:](2), z€S, (3.29)

where II; is defined by (3.15), and

2(2) = 5— Z ( — T ZW%) ¢, z €S, (3.30)

with T's as defined by (3.27). Again, under the condition (3.16) applying the Neumann series method to the

singular integral equation (3.29) gives

Mg

f(2) = qu.(z ) (qI)'[f — qp2](2), = € 8S. (3.31)

l:O

1585



AKEL and ALDAWSARI/Turk J Math

Hence, substituting (3.31) in both (3.26) and (3.28) gives the necessary and sufficient condition for problem
(3.20) to be solvable

1 - z
F _
2mi s Z ( — w2k W2k Zﬁ) d

o n—1 72
/S ) (qI)' (f — qpa)( Z ( szk * (wz’“z— EC)2> e

=0 =0

1
7
=0, z€85, (3.32)

and the solution of the Neumann problem (3.20) is expressed as

_ 2k
o ) } dedn, = € S, (3.33)
where T's, ¢2, and II; are defined by (3.27), (3.30), and (3.15), respectively. This proves the following theorem.

Theorem 3.2 Let f € L,(5;C),p > 2,7 € C(05;C), and q € C,|q| < 1. The Neumann problem (3.20) is
solvable if and only if the condition (3.32) is satisfied. The solution is unique up to some additive complex
constant w(a) = ¢, and it can be of the form (3.33).

4. Neumann problem for the Bitsadze/Laplace operator in the sector

In this section we investigate a Neumann problem for a second-order partial differential equation with Bit-

sadze/Laplace operator as main part in the sector S, defined by (1.1).

Theorem 4.1 Let f € L,(S;C)NCY(S;C),p> 2, y0,71 € C(9S;C), and q € C, |q| < 1. Then the Neumann

problem

w22+qw22:f7zesv
ancw = ’YO(C)v an<w2 = ’71(()7 QS a8 (41)

w(a) = ¢, wz = cy.
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where a € S and ¢y, c1 € C are fived constants, is uniquely solvable if and only if

) ) n—1 1 z
2 Fl(oz(g—zw% _w2k_§<) d¢

211 a8

k=0
1 n—1 1 E

_ﬂ/sug(C)kZ_oQ_szk _w2k—z§> dédn, (4.2)
where

) Lyo(¢) - tu(Q)l,  CelL,

F1(Q) = § ~5ho(Q) + Zu(Q)], € [w,0], 43)

ilv(¢) = iu(Q)], ¢elo,1],

and

27Ti a8 =0
_ 2k 9k
(i)
1 [, (1 1 1
b Lo 02O X G (= =)
Zz— w2k (6% V4
- 2 _C2<04C—w2k_z(:—w2k>
2 2k C_ 2k
+ ?3 log(jc_:j%)}dfdn, 2 €S, (4.4)

with T's, w2, and 11y defined by (3.27), (3.30), and (3.15), respectively, and o € S, ¢1 € C are fixed constants.
The solution to problem (4.1) is

B -1 . 2k
w(z) = Co+i Fl(C)Z{wl%log (%)

211 oS

1 n—1 1 C— 2%k
[0 X { o (=)

k=0

. 2k C _ 2k
42 : @>_ % log (W) } dedn, z € S, (4.5)

where Ty and u are defined by (4.3) and (4.4), respectively, and « € S is a fized constant.

Proof The problem (4.1) is equivalent to the system

w; = u(z), z €5,
{%w(é) =%(¢), ¢ €8S, w(a) = c, (4.6)
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{uz +qu, = f(2), z €S, (4.7)
Oncu=71(C), ¢ €08, u(a) = ci.
By Theorem 3.2 the Neumann problem (4.7) is uniquely solvable if and only if

1 = 1 z

2mi Jos Fs(¢) kZ:O (C — 2w W — ZC) “

n—1 22
/Sl 3 ) (g (f — qpa)( Z)( ot (W%_ZO2>d§dn,
=0, z€8, (4.8)

where I's, @9, and II; are defined by (3.27), (3.30), and (3.15), respectively, and its solution is given by (4.4).

Here the Neumann series in (4.8) is covergent under the sufficient condition (3.16).

According to Theorem 2.2 the Neumann problem (4.6) is uniquely solvable if and only if the condition (4.2) is

satisfied, and the solution is given by (4.5). O
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