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Abstract: In this paper we give the characterizations of Green’s relations R , L , and D on the set of matrices with
entries in a tropical semiring. An m × n tropical matrix A is called regular if there exists an n × m tropical matrix
X satisfying AXA = A . Furthermore, we study the regular D -classes of the semigroup of all n × n tropical matrices
under multiplication and give a partition of a nonsingular regular D -class.
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1. Introduction
The set R of reals extended by adding an infinite negative element −∞ is called a tropical semiring. The
tropical operations on R ∪ {−∞} are

a⊕ b = max{a, b} and a⊗ b = a+ b.

Such algebra is also called the max-plus semiring and is denoted by T . It has been an active area of study in
its own right since the 1970s [4] and has broad applications in many different areas of science (see [1–5]). From
an algebraic perspective, a key object is the multiplicative semigroup of all square matrices of a given size over
the tropical algebra. In particular, Green’s relations of the multiplicative semigroup have been studied by some
authors in recent years (see [7, 10, 11]). In 2011 Johnson and Kambites [10] studied the algebraic structure of the
multiplicative semigroup of all 2× 2 tropical matrices. They gave a complete description of Green’s relations,
idempotents, and maximal subgroups of this semigroup. In 2012 Hollings and Kambites [7] gave a complete
description of Green’s relation D for the multiplicative semigroup of all n× n tropical matrices. Johnson and
Kambites [11] studied Green’s J -order and J -equivalence for the semigroup of all n × n matrices over the
tropical semiring.

As usual, the set of all m×n tropical matrices is denoted by Mm×n(T) . In particular, we shall use Mn(T)
instead of Mn×n(T) . The operations ⊕ and ⊗ on T induce corresponding operations on tropical matrices in
the obvious way. For brevity, we shall write AC in place of A ⊗ C . It is easy to see that (Mn(T),⊗) is a
semigroup. Other concepts such as transpose and block matrix are defined in the usual way. For convenience,
we refer to a matrix as a tropical matrix in the remainder of this paper. The Green relations R , L , and D
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on the set of matrices with entries in tropical semiring T are defined as follows:

ARB ⇔ (∃ X, Y ) A = BX, B = AY ;

ALB ⇔ (∃ X, Y ) A = XB, B = Y A;

ADB ⇔ (∃ C)ARC, CLB;

AH B ⇔ ARB, ALB;

where A , B , X , Y , C are (possibly rectangular) matrices with entries in T . These relations are classical (and
of great importance) in semigroup theory; see, e.g., [8]. Of course, the set of matrices with entries in T is not
a multiplicative semigroup because the product of two matrices is not defined if the size is incompatible. The
R -class (L -class, H -class, and D -class resp.) containing matrix A will be written RA (LA , HA , and DA

resp.).
The aim of this paper is to study the nonsingular regular D -classes of the semigroup of n × n tropical

matrices. Some preliminary results are presented in Section 2. In Section 3, we study Green’s relation D on
the set of matrices with entries in T . Based on this, we give the characterization of the nonsingular regular
D -classes of the semigroup of n× n tropical matrices in Section 4.

2. Preliminaries
Let Tn denote the direct product of n copies of T . Then Tn forms a semiring and can be viewed as a
T -semimodule [1]. Each element of this semimodule is called a vector. A vector α in Tn is called a linear
combination of a subset {α1, . . . , αk} of Tn if there exist m1, . . . ,mk ∈ T such that

α = m1α1 ⊕ · · · ⊕mkαk.

For a subset S of Tn , let span(S) denote

{⊕k
i=1miαi | k ∈ N, αi ∈ S,mi ∈ T, i = 1, 2, . . . , k},

where N denotes the set of all natural numbers. Then span(S) is a subsemimodule of Tn generated by S .
Recall that the set S is called weakly linearly dependent if there exists a vector α ∈ S such that α is a linear
combination of elements in S \ {α} . Otherwise, S is called weakly linearly independent. A subset {αi | i ∈ I}
of a subsemimodule V of Tn is called a weak basis of V if span({αi | i ∈ I}) = V and {αi | i ∈ I} is weakly
linearly independent.

By Theorem 5 in [12] we immediately have the following.

Lemma 2.1 Let S and S′ be weak bases of a subsemimodule V of Tn . Then for each α ∈ S there exists a
unique β ∈ S′ such that α = mβ for some m ∈ R .

Lemma 2.1 tells us that the cardinalities of any two weak bases for a given subsemimodule of Tn are
same. The cardinality is called the weak dimension of V and is denoted by dimwV . The column space (row
space, resp.) of an m× n matrix A is the subsemimodule of Tm (Tn , resp.) spanned by all its columns (rows,
resp.) and is denoted by Col(A) (Row(A) , resp.). The column rank (row rank, resp.) of A , denoted by c(A)

(r(A) , resp.), is dimwCol(A) (dimwRow(A) , resp.). An m × n matrix A is called nonsingular if c(A) = n

and r(A) = m and otherwise singular.
In the sequel, the following notions and notations are needed.
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⋄ In denotes the identity matrix, i.e. the n × n matrix whose diagonal entries are 0 and the other entries
are −∞ .

⋄ An n× n matrix A is called invertible if there exists an n× n matrix B such that AB = BA = In . In
this case, B is called an inverse of A and is denoted by A−1 .

⋄ An n× n matrix is called a monomial matrix if it has exactly one entry in each row and column that is
not equal to −∞ .

⋄ An n× n matrix is called a permutation matrix if it is formed from the identity matrix by reordering its
columns.

It is well known [6] that an n × n matrix A is invertible if and only if A is monomial. Also, the inverse of a
permutation matrix is its transpose. Denote the set of all n× n monomial matrices by GLn(T) .

For a matrix A , let a i∗ and a∗j denote the ith row and the j th column of A , respectively. As a
consequence, it follows from Lemma 2.1 that:

Corollary 2.2 Let {a∗i1 , . . . , a∗ir} and {a∗j1 , . . . , a∗jk} be any two weak bases of Col(A) . Then r = k , and
there exists an r × r monomial matrix M such that

[a∗i1 · · · a∗ir ] = [a∗j1 · · · a∗jk ]M.

In the remainder of this paper, for simplicity, we use the following notation concerning a matrix A

without further comment:
c(A) = r and r(A) = s,

• Ac = [a∗i1 · · · a∗ir ] is a submatrix of A such that the set {a∗i1 , . . . , a∗ir} is a weak basis of Col(A) ;

• Ar =

 aj1∗
...

ajr∗

 is a submatrix of A such that the set {a j1∗, . . . , a js∗} is a weak basis of Row(A) ;

• Ā denotes the s× r submatrix of A lying in Ac and Ar .

The submatrix Ā is called a basis submatrix of A . For any nonzero matrix A we have that c(A) > 0 and
r(A) > 0 . It is easy to see that c(A) = c(Ā) = the number of columns of Ā , and that r(A) = r(Ā) = the
number of rows of Ā .

3. Green’s D relations
In this section, we discuss Green’s D relation. First, we need the following result.

Lemma 3.1 Let A and B denote two matrices with entries in T . Then the following statements are equivalent:

(i) A R B ;

(i) Col(A) = Col(B) ;

(i) (∃ M ∈ GLr(T)) Bc = AcM .
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Proof The equivalence of (i) and (ii) was proved by Theorem 100 in “Two lectures on max-plus algebra”
(http://amadeus.inria.fr/gaubert).

Suppose that Col(A) = Col(B) . Then we have that the columns of Ac and Bc are both weak bases of
Col(A) . It follows that

Col(A) = Col(B) ⇐⇒ (∃ M ∈ GLr(T)) Bc = AcM (by Corollary 2.2).

2

The dual of Lemma 3.1 for relation L is clear.

Lemma 3.2 Let A and B denote two matrices with entries in T . Then the following statements are equivalent:

(i) AD B ;

(i) ĀD B̄ ;

(i) (∃ N ∈ GLs(T),M ∈ GLr(T)) B̄ = NĀM .

Proof We need to prove it only for any nonzero matrices A and B . Since (PAQ)D A for any permutation
matrices P and Q , we may assume that

A =

[
Ā A1

A2 A3

]
, B =

[
B̄ B1

B2 B3

]
,

where Ā, B̄ are basic submatrices and Ai, Bi are of appropriate sizes for i = 1, 2, 3 .
(i) ⇐⇒ (ii). Suppose that AD B . Since

Col(
[

Ā
A2

]
) = Col(A),

it follows that AR

[
Ā
A2

]
by Lemma 3.1. Since Row(

[
Ā
A2

]
) = Row(Ā) , we have that

[
Ā
A2

]
L Ā by the

dual of Lemma 3.1. Thus, AD Ā . Similarly, B D B̄ . Therefore, AD B is equivalent to ĀD B̄ ¡£
(ii) ⇔ (iii). (ii) is equivalent to

ĀR C and C L B̄ (3.1)

for some nonsingular matrix C .
Suppose that (3.1) holds. Then (3.1) implies that

Ā = CM−1 and B̄ = NC

for some monomial matrix M and some monomial matrix N by Lemma 3.1 and its dual. Thus, we obtain that
NĀM = B̄ .

If (iii) holds, then there exist two monomial matrices N and M such that NĀM = B̄ . Hence, (3.1)
holds for C = ĀM . 2

As a consequence, we have the following.

Corollary 3.3 Let A denote a matrix with entries in T . If AD B , then r(A) = r(B) and c(A) = c(B) .
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An m×n matrix A is regular if there exists an n×m matrix X such that AXA = A . An n×n matrix
A is idempotent if A2 = A . In [8] Proposition 3.2, we know that in a regular D -class each R -class and each
L -class contains at least one idempotent. Let E be an n×n idempotent matrix. If B ∈ DE , then by Lemma
3.2 we have

B = Q

[
C CH

WC WCH

]
P

where C ∈ DĒ , P and Q are permutation matrices, and H and W are matrices of appropriate sizes. Hence,
the regular D -class DE is determined by DĒ . We will study the nonsingular regular D -classes in the next
section.

4. Nonsingular regular D -classes

In this section, we discuss the nonsingular regular D -classes of the semigroup (Mn(T), ⊗) . The R -class (L -
class, H -class, and D -class resp.) in the semigroup (Mn(T), ⊗) is the restriction of the corresponding class in
∪∞
m=1 ∪∞

n=1 Mm×n(T) . If a matrix of a regular D -class is nonsingular, then by Corollary 3.3 and Proposition
3.1 in [8] we have that the matrices of this D -class are all nonsingular regular matrices. We call the D -class
nonsingular regular D -classes.

Next, recall the partial order [3] ≤ on Mm×n(T) by

A ≤ B ⇐⇒ A⊕B = B.

Lemma 4.1 ([3]) Let A , B be m × n matrices, let X be an n × p matrix, and let Y be a p × m matrix.
Then the following statements hold.

(i) A ≤ A⊕B ;

(i) If A ≤ B , then AX ≤ BX and Y A ≤ Y B .

Lemma 4.2 If E = (eij) is an n× n idempotent matrix, then eii ≤ 0 for all 1 ≤ i ≤ n .

Proof Let E = (eij)n×n be an idempotent matrix. Then for any 1 ≤ i ≤ n ,

eii ⊗ eii ≤ (ei1 ⊗ e1i)⊕ · · · ⊕ (eii ⊗ eii)⊕ · · · ⊕ (ein ⊗ eni) = eii.

This implies that eii ≤ 0 . 2

Lemma 4.3 Let E = (eij) be an n× n idempotent matrix. If eii < 0 for some i ∈ {1, 2, . . . , n} , then the i th
column (row, resp.) of E is a linear combination of the remaining columns (rows, resp.) . Furthermore, the
matrix obtained from E by deleting the i th column and the i th row is an (n− 1)× (n− 1) idempotent matrix.

Proof Let E = (eij)n×n be an idempotent matrix. Suppose that eii < 0 for some 1 ≤ i ≤ n . Without loss

of generality, we assume that e11 < 0 . Partition E as
[

e11 E12

E21 E22

]
. Then we have

E2 =

[
e11 ⊗ e11 ⊕ E12E21 e11E12 ⊕ E12E22

E21e11 ⊕ E22E21 E21E12 ⊕ E2
22

]
=

[
e11 E12

E21 E22

]
.
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This implies that [
E12E21 E12E22

E22E21 E21E12 ⊕ E2
22

]
=

[
e11 E12

E21 E22

]
,

since e11 < 0 . Thus, it follows that[
e11
E21

]
=

[
E12E21

E22E21

]
=

[
E12

E22

]
E21, (4.1)[

e11 E12

]
=

[
E12E21 E12E22

]
= E12

[
E21 E22

]
, (4.2)

E21E12 ⊕ E2
22 = E22. (4.3)

Equation (4.1) ((4.2), resp.) tells us that the 1st column (the 1st row, resp.) of E is a linear combination of
the remaining columns (rows, resp.). By Lemma 4.1 and (4.3), we have

E2
22 ≤ E22 and E21E12 ≤ E22. (4.4)

Thus, it follows by (4.4) and Lemma 4.1 that E21E12 = E21E12E22 ≤ E2
22 , since E12E22 = E12 . We therefore

have
E22 = E21E12 ⊕ E2

22 ≤ E2
22 ⊕ E2

22 = E2
22 (4.5)

by Lemma 4.1. Thus, (4.4) and (4.5) tell us that E2
22 = E22 . 2

The above lemma tells us that if E = (eij) is an n × n idempotent matrix and eii < 0 for some 1 ≤ i ≤ n ,
then c(E) < n and r(E) < n . Thus, by Lemmas 4.2 and 4.3, we immediately have the following result, which
was obtained previously in [9] by a different method.

Corollary 4.4 All main diagonal entries of a nonsingular idempotent matrix are 0 .

Proposition 4.5 Let E be a nonsingular idempotent matrix. If there exists a monomial matrix M , such that
EME = E , then M = In .

Proof Suppose that E = (eij) is an n×n nonsingular idempotent matrix and that there exists a matrix M ,
such that EME = E . It follows that EM is idempotent and E R EM . Thus, by Corollary 3.3 we can see
that EM is a nonsingular idempotent matrix. It follows by Corollary 4.4 that the main diagonal entries of E

and EM are all 0 . Since EME = E , Mij ≤ (EME)ij = Eij , and so M ≤ E . Hence,

EM ≤ E2 = E (4.6)

by Lemma 4.1 (ii). It follows by (EM)E(EM) = EM that Eij ≤ ((EM)E(EM))ij = (EM)ij . Thus,

E ≤ EM. (4.7)

(4.6) and (4.7) tell us that EM = E .
Finally, assume that M is monomial. If M is not diagonal, it follows from EM = E that there exist two

distinct indices j and l such that e∗j = ae∗l for some real number a , a contradiction, since E is nonsingular.
Then M is diagonal and hence M = In . 2
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Proposition 4.6 Let E be a nonsingular idempotent matrix. If F is an idempotent matrix in DE , then there
exists a monomial matrix M such that F = MEM−1 .

Proof Suppose that E and F are n×n nonsingular idempotent matrices. If F ∈ DE , then, by Lemma 3.2, we
can show that F = MEN for some M, N ∈ GLn(T) . Thus, it follows that MEN = F = F 2 = MENMEN .
This implies that E = EMNE . Hence, we have by Proposition 4.5 that MN = In and so F = MEM−1 .
This completes the proof. 2

The following result is a corollary of Theorem 5.7 in [9]. We note that our result is obtained by elementary
matrix techniques.

Proposition 4.7 Any nonsingular regular R -class (L -class, resp.) contains a unique idempotent.

Proof Suppose that RA is a nonsingular regular R -class. Then by Proposition 3.2 in [8] there exists a
nonsingular idempotent matrix E such that RA = RE . If F is an idempotent matrix in RE , then by Lemma
3.1 we can show that F = EM for some monomial matrix M . Thus, EM = F = F 2 = EMEM and so
E = EME . It follows by Proposition 4.5 that M = In . Hence, F = E . A similar argument establishes that
there exists a unique idempotent in each nonsingular regular L -class. 2

Lemma 4.8 Let E be a nonsingular idempotent matrix. If there exist monomial matrices M1 and M2 such
that EM1 = M2E , then M1 = M2 .

Proof Let E be an n× n nonsingular idempotent matrix. Suppose that there exist monomial matrices M1

and M2 such that EM1 = M2E . Then we have

EM1 = M2E =⇒ E = M2EM−1
1

=⇒ M2EM−1
1 M2EM−1

1 = M2EM−1
1

=⇒ EM−1
1 M2E = E

=⇒ M−1
1 M2 = In (by Proposition 4.5)

=⇒ M1 = M2.

2

Lemma 4.9 If E is a nonsingular idempotent, then the set

CE(GLn(T)) = {M ∈ GLn(T) | EM = ME}

is a subgroup of the group GLn(T) .

Proof Suppose that E is a nonsingular idempotent. Since EIn = InE = E we have that In ∈ CE(GLn(T)) .
If M1,M2 ∈ CE(GLn(T)) , then EM1 = M1E,EM2 = M2E, and it follows that

EM1M2 = M1EM2 = M1M2E,

and so M1M2 ∈ CE(GLn(T)) . If M ∈ CE(GLn(T)) , then EM = ME , and so

M−1E = EM−1.

Thus, M−1 ∈ CE(GLn(T)) . Hence, CE(GLn(T)) is a subgroup of GLn(T) . 2
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Proposition 4.10 Let E be an n× n nonsingular idempotent matrix. Then

HE = {A | (∃M ∈ CE(GLn(T))A = ME}.

Proof Suppose that E is an n×n nonsingular idempotent matrix. Then HE = {EM | M ∈ GLn(T)}∩{ME |
M ∈ GLn(T)} and so HE = {A | (∃M, N ∈ GLn(T))A = NE = EM} . It follows by Lemma 4.8 that
HE = {A | (∃M ∈ CE(GLn(T)))A = ME = EM} . 2

Proposition 4.11 Let E be a nonsingular idempotent matrix and F be an idempotent matrix in DE . Then
there exists a monomial matrix M such that

HF = {MBM−1 | B ∈ HE}.

Proof Suppose that E is an n× n nonsingular idempotent matrix and F is an idempotent n× n matrix in
DE . Then by Proposition 4.6 we have that there exists a monomial matrix M such that F = MEM−1 . It
follows by Proposition 4.10 that

HF = {A | (∃M ∈ GLn(T))A = MF = FM}

and that
HE = {A | (∃M ∈ GLn(T))A = ME = EM}.

If A ∈ HF , then there exists a monomial matrix M1 such that A = FM1 = M1F . Then

FM1 = M1F ⇐⇒ MEM−1M1 = M1MEM−1

⇐⇒ EM−1M1M = M−1M1ME

⇐⇒ EM−1M1M ∈ HE .

It follows that A = MEM−1M1 = M(EM−1M1M)M−1 and so A ∈ {MBM−1 | B ∈ HE} . Thus, we can see
that HF ⊆ {MBM−1 | B ∈ HE} . A similar argument establishes that {MBM−1 | B ∈ HE} ⊆ HF . 2

We define a relation ϱ on the set GLn(T)×GLn(T) as follows:

(M1, N1)ϱ(M2, N2) ⇐⇒ M1
−1M2, N1N2

−1 ∈ CE(GLn(T)).

Lemma 4.12 If E is a nonsingular idempotent, then ϱ is a equivalence relation on the set GLn(T)×GLn(T) .

Proof Suppose that E is a nonsingular idempotent. If (M,N) ∈ GLn(T)×GLn(T) , then by Lemma 4.9, we
have that

M−1M = NN−1 = In ∈ CE(GLn(T)),

and so (M,N)ϱ(M,N) .
If (M1, N1), (M2, N2) ∈ GLn(T)×GLn(T) and (M1, N1)ϱ(M2, N2) , then

M1
−1M2, N1N2

−1 ∈ CE(GLn(T)).
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It follows by Lemma 4.9 that
M2

−1M1, N2N1
−1 ∈ CE(GLn(T)).

This implies that (M2, N2)ϱ(M1, N1) .
Finally, if (M1, N1)ϱ(M2, N2) and (M2, N2)ϱ(M3, N3) , then

M1
−1M2, N1N2

−1,M2
−1M3, N2N3

−1 ∈ CE(GLn(T)),

and so
M1

−1M3 = M1
−1M2M2

−1M3 ∈ CE(GLn(T)),

N1N3
−1 = N1N2

−1N2N3
−1 ∈ CE(GLn(T)).

Hence, (M1, N1)ϱ(M3, N3) .
We have therefore proved that ϱ is an equivalence relation on the set GLn(T)×GLn(T) . 2

Lemma 4.13 Let E be a nonsingular idempotent matrix. If A,B ∈ DE , then there exist monomial matrices
M1 , M2 , N1 , N2 such that A = M1EN1 , B = M2EN2 . Further,

HA = HB ⇐⇒ (M1, N1)ϱ(M2, N2).

Proof If E is a nonsingular idempotent matrix and A,B ∈ DE , then by Lemma 3.2 we can see that

A = M1EN1, B = M2EN2

for some monomial matrices M1 , N1 , M2 , and N2 . Then

HA = HB ⇐⇒ HM1EN1
= HM2EN2

⇐⇒ M1EN1H M2EN2

⇐⇒ M1EN1LM2EN2,M1EN1RM2EN2

⇐⇒ (∃S, T ∈ GLn(T))M1EN1 = SM2EN2,M1EN1 = M2EN2T (by Lemma 3.1)

⇐⇒ (∃S, T ∈ GLn(T))EN1N2
−1 = M1

−1SM2E,EN1T
−1N2

−1 = M1
−1M2E

⇐⇒ (∃S, T ∈ GLn(T))M1
−1SM2 = N1N2

−1 ∈ CE(GLn(T)),

N1T
−1N2

−1 = M1
−1M2 ∈ CE(GLn(T)) (by Lemma 4.8)

=⇒ M1
−1M2, N1N2

−1 ∈ CE(GLn(T)) (by Lemma 4.9)

=⇒ (M1, N1)ϱ(M2, N2).

Conversely, if (M1, N1)ϱ(M2, N2) , then M1
−1M2, N1N2

−1 ∈ CE(GLn(T)) , and so

M1EN1 = M1EN1N2
−1N2 = M1N1N2

−1EN2 = (M1N1N2
−1M2

−1)M2EN2,

M1EN1 = M2M2
−1M1EN1 = M2EM2

−1M1N1 = M2EN2(N2
−1M2

−1M1N1).

Thus, M1EN1H M2EN2 .
Hence, we have therefore proved that HA = HB if and only if (M1, N1)ϱ(M2, N2) . 2

By Lemma 3.2 and Lemma 4.13, we now have the following result:
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Theorem 4.14 Let E be a nonsingular idempotent matrix. Then

DE =
∪

{HMEN | (M,N)ϱ ∈ (GLn(T)×GLn(T))/ϱ}.

HE HEN1 HEN2 · · ·
HN1

−1E HN1
−1EN1

HN1
−1EN2

· · ·
HN2

−1E HN2
−1EN1

HN2
−1EN2

· · ·

· · · · · · · · ·
. . .
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