

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Regular \mathscr{D} -classes of the semigroup of $n \times n$ tropical matrices

Lin YANG ^{1,2,*}

¹School of Mathematics, Northwest University, Xi'an, Shaanxi, P.R. China ²School of Science, Lanzhou University of Technology, Lanzhou, Gansu, P.R. China

Received: 16.03.2018 • Ac	ccepted/Published Online: 27.05.2018	•	Final Version: 24.07.2018
---------------------------	--------------------------------------	---	----------------------------------

Abstract: In this paper we give the characterizations of Green's relations \mathscr{R} , \mathscr{L} , and \mathscr{D} on the set of matrices with entries in a tropical semiring. An $m \times n$ tropical matrix A is called regular if there exists an $n \times m$ tropical matrix X satisfying AXA = A. Furthermore, we study the regular \mathscr{D} -classes of the semigroup of all $n \times n$ tropical matrices under multiplication and give a partition of a nonsingular regular \mathscr{D} -class.

Key words: Tropical algebra, basis submatrix, nonsingular idempotent matrix, regular matrix

1. Introduction

The set \mathbb{R} of reals extended by adding an infinite negative element $-\infty$ is called a tropical semiring. The tropical operations on $\mathbb{R} \cup \{-\infty\}$ are

$$a \oplus b = max\{a, b\}$$
 and $a \otimes b = a + b$.

Such algebra is also called the max-plus semiring and is denoted by \mathbb{T} . It has been an active area of study in its own right since the 1970s [4] and has broad applications in many different areas of science (see [1–5]). From an algebraic perspective, a key object is the multiplicative semigroup of all square matrices of a given size over the tropical algebra. In particular, Green's relations of the multiplicative semigroup have been studied by some authors in recent years (see [7, 10, 11]). In 2011 Johnson and Kambites [10] studied the algebraic structure of the multiplicative semigroup of all 2×2 tropical matrices. They gave a complete description of Green's relations, idempotents, and maximal subgroups of this semigroup. In 2012 Hollings and Kambites [7] gave a complete description of Green's relation \mathcal{D} for the multiplicative semigroup of all $n \times n$ tropical matrices. Johnson and Kambites [11] studied Green's \mathcal{J} -order and \mathcal{J} -equivalence for the semigroup of all $n \times n$ matrices over the tropical semiring.

As usual, the set of all $m \times n$ tropical matrices is denoted by $M_{m \times n}(\mathbb{T})$. In particular, we shall use $M_n(\mathbb{T})$ instead of $M_{n \times n}(\mathbb{T})$. The operations \oplus and \otimes on \mathbb{T} induce corresponding operations on tropical matrices in the obvious way. For brevity, we shall write AC in place of $A \otimes C$. It is easy to see that $(M_n(\mathbb{T}), \otimes)$ is a semigroup. Other concepts such as transpose and block matrix are defined in the usual way. For convenience, we refer to a matrix as a tropical matrix in the remainder of this paper. The Green relations \mathscr{R} , \mathscr{L} , and \mathscr{D}

^{*}Correspondence: yanglinmath@163.com

The author was supported by National Natural Science Foundation of China (11261030, 11561044)

²⁰¹⁰ AMS Mathematics Subject Classification: 15A03, 15A09, 15A23

on the set of matrices with entries in tropical semiring $\mathbb T$ are defined as follows:

 $\begin{array}{lll} A\mathscr{R}B & \Leftrightarrow & (\exists \ X, \ Y) \ A = BX, \ B = AY; \\ A\mathscr{L}B & \Leftrightarrow & (\exists \ X, \ Y) \ A = XB, \ B = YA; \\ A\mathscr{D}B & \Leftrightarrow & (\exists \ C)A\mathscr{R}C, \ C\mathscr{L}B; \\ A\mathscr{H}B & \Leftrightarrow & A\mathscr{R}B, \ A\mathscr{L}B; \end{array}$

where A, B, X, Y, C are (possibly rectangular) matrices with entries in \mathbb{T} . These relations are classical (and of great importance) in semigroup theory; see, e.g., [8]. Of course, the set of matrices with entries in \mathbb{T} is not a multiplicative semigroup because the product of two matrices is not defined if the size is incompatible. The \mathscr{R} -class (\mathscr{L} -class, \mathscr{H} -class, and \mathscr{D} -class resp.) containing matrix A will be written $R_A(L_A, H_A, \text{ and } D_A$ resp.).

The aim of this paper is to study the nonsingular regular \mathscr{D} -classes of the semigroup of $n \times n$ tropical matrices. Some preliminary results are presented in Section 2. In Section 3, we study Green's relation \mathscr{D} on the set of matrices with entries in \mathbb{T} . Based on this, we give the characterization of the nonsingular regular \mathscr{D} -classes of the semigroup of $n \times n$ tropical matrices in Section 4.

2. Preliminaries

Let \mathbb{T}^n denote the direct product of n copies of \mathbb{T} . Then \mathbb{T}^n forms a semiring and can be viewed as a \mathbb{T} -semimodule [1]. Each element of this semimodule is called a vector. A vector α in \mathbb{T}^n is called a *linear* combination of a subset $\{\alpha_1, \ldots, \alpha_k\}$ of \mathbb{T}^n if there exist $m_1, \ldots, m_k \in \mathbb{T}$ such that

$$\alpha = m_1 \alpha_1 \oplus \cdots \oplus m_k \alpha_k.$$

For a subset S of \mathbb{T}^n , let span(S) denote

$$\{\bigoplus_{i=1}^k m_i \alpha_i \mid k \in \mathbb{N}, \alpha_i \in S, m_i \in \mathbb{T}, i = 1, 2, \dots, k\},\$$

where \mathbb{N} denotes the set of all natural numbers. Then span(S) is a subsemimodule of \mathbb{T}^n generated by S. Recall that the set S is called *weakly linearly dependent* if there exists a vector $\alpha \in S$ such that α is a linear combination of elements in $S \setminus \{\alpha\}$. Otherwise, S is called *weakly linearly independent*. A subset $\{\alpha_i \mid i \in I\}$ of a subsemimodule \mathcal{V} of \mathbb{T}^n is called a *weak basis* of \mathcal{V} if $span(\{\alpha_i \mid i \in I\}) = \mathcal{V}$ and $\{\alpha_i \mid i \in I\}$ is weakly linearly independent.

By Theorem 5 in [12] we immediately have the following.

Lemma 2.1 Let S and S' be weak bases of a subsemimodule \mathcal{V} of \mathbb{T}^n . Then for each $\alpha \in S$ there exists a unique $\beta \in S'$ such that $\alpha = m\beta$ for some $m \in \mathbb{R}$.

Lemma 2.1 tells us that the cardinalities of any two weak bases for a given subsemimodule of \mathbb{T}^n are same. The cardinality is called the *weak dimension* of \mathcal{V} and is denoted by $\dim_w \mathcal{V}$. The column space (row space, resp.) of an $m \times n$ matrix A is the subsemimodule of \mathbb{T}^m (\mathbb{T}^n , resp.) spanned by all its columns (rows, resp.) and is denoted by Col(A) (Row(A), resp.). The column rank (row rank, resp.) of A, denoted by c(A)(r(A), resp.), is $\dim_w \text{Col}(A)$ ($\dim_w \text{Row}(A)$, resp.). An $m \times n$ matrix A is called nonsingular if c(A) = nand r(A) = m and otherwise singular.

In the sequel, the following notions and notations are needed.

YANG/Turk J Math

- ♦ I_n denotes the *identity matrix*, i.e. the $n \times n$ matrix whose diagonal entries are 0 and the other entries are $-\infty$.
- ♦ An $n \times n$ matrix A is called *invertible* if there exists an $n \times n$ matrix B such that $AB = BA = I_n$. In this case, B is called an inverse of A and is denoted by A^{-1} .
- ♦ An $n \times n$ matrix is called a *monomial matrix* if it has exactly one entry in each row and column that is not equal to $-\infty$.
- \diamond An $n \times n$ matrix is called a *permutation matrix* if it is formed from the identity matrix by reordering its columns.

It is well known [6] that an $n \times n$ matrix A is invertible if and only if A is monomial. Also, the inverse of a permutation matrix is its transpose. Denote the set of all $n \times n$ monomial matrices by $GL_n(\mathbb{T})$.

For a matrix A, let a_{i*} and a_{*j} denote the *i*th row and the *j*th column of A, respectively. As a consequence, it follows from Lemma 2.1 that:

Corollary 2.2 Let $\{a_{*i_1}, \ldots, a_{*i_r}\}$ and $\{a_{*j_1}, \ldots, a_{*j_k}\}$ be any two weak bases of Col(A). Then r = k, and there exists an $r \times r$ monomial matrix M such that

$$[\boldsymbol{a}_{*i_1}\cdots\boldsymbol{a}_{*i_r}]=[\boldsymbol{a}_{*j_1}\cdots\boldsymbol{a}_{*j_k}]M.$$

In the remainder of this paper, for simplicity, we use the following notation concerning a matrix A without further comment:

$$c(A) = r$$
 and $r(A) = s$,

- $A^c = [a_{*i_1} \cdots a_{*i_r}]$ is a submatrix of A such that the set $\{a_{*i_1}, \ldots, a_{*i_r}\}$ is a weak basis of $\operatorname{Col}(A)$;
- $A^r = \begin{bmatrix} a_{j_1*} \\ \vdots \\ a_{j_r*} \end{bmatrix}$ is a submatrix of A such that the set $\{a_{j_1*}, \ldots, a_{j_s*}\}$ is a weak basis of $\operatorname{Row}(A)$;
- \overline{A} denotes the $s \times r$ submatrix of A lying in A^c and A^r .

The submatrix \bar{A} is called a *basis submatrix* of A. For any nonzero matrix A we have that c(A) > 0 and r(A) > 0. It is easy to see that $c(A) = c(\bar{A}) =$ the number of columns of \bar{A} , and that $r(A) = r(\bar{A}) =$ the number of rows of \bar{A} .

3. Green's \mathscr{D} relations

In this section, we discuss Green's \mathscr{D} relation. First, we need the following result.

Lemma 3.1 Let A and B denote two matrices with entries in \mathbb{T} . Then the following statements are equivalent:

- (i) $A \mathscr{R} B$;
- (i) $\operatorname{Col}(A) = \operatorname{Col}(B)$;
- (i) $(\exists M \in GL_r(\mathbb{T})) B^c = A^c M$.

Proof The equivalence of (i) and (ii) was proved by Theorem 100 in "Two lectures on max-plus algebra" (http://amadeus.inria.fr/gaubert).

Suppose that $\operatorname{Col}(A) = \operatorname{Col}(B)$. Then we have that the columns of A^c and B^c are both weak bases of $\operatorname{Col}(A)$. It follows that

$$\operatorname{Col}(A) = \operatorname{Col}(B) \iff (\exists M \in GL_r(\mathbb{T})) B^c = A^c M \quad \text{(by Corollary 2.2)}.$$

The dual of Lemma 3.1 for relation \mathscr{L} is clear.

Lemma 3.2 Let A and B denote two matrices with entries in \mathbb{T} . Then the following statements are equivalent:

- (i) $A \mathcal{D} B$;
- (i) $\overline{A} \mathscr{D} \overline{B}$;
- (i) $(\exists N \in GL_s(\mathbb{T}), M \in GL_r(\mathbb{T})) \ \bar{B} = N\bar{A}M.$

Proof We need to prove it only for any nonzero matrices A and B. Since $(PAQ) \mathscr{D} A$ for any permutation matrices P and Q, we may assume that

$$A = \left[\begin{array}{cc} \bar{A} & A_1 \\ A_2 & A_3 \end{array} \right], B = \left[\begin{array}{cc} \bar{B} & B_1 \\ B_2 & B_3 \end{array} \right],$$

where $\overline{A}, \overline{B}$ are basic submatrices and A_i, B_i are of appropriate sizes for i = 1, 2, 3.

(i) \iff (ii). Suppose that $A \mathscr{D} B$. Since

$$\operatorname{Col}\left(\left[\begin{array}{c} \bar{A}\\ A_2 \end{array}\right]\right) = \operatorname{Col}(A)$$

it follows that $A \mathscr{R} \begin{bmatrix} \bar{A} \\ A_2 \end{bmatrix}$ by Lemma 3.1. Since $\operatorname{Row}(\begin{bmatrix} \bar{A} \\ A_2 \end{bmatrix}) = \operatorname{Row}(\bar{A})$, we have that $\begin{bmatrix} \bar{A} \\ A_2 \end{bmatrix} \mathscr{L}\bar{A}$ by the dual of Lemma 3.1. Thus, $A \mathscr{D}\bar{A}$. Similarly, $B \mathscr{D}\bar{B}$. Therefore, $A \mathscr{D}B$ is equivalent to $\bar{A} \mathscr{D}\bar{B}_{\mathsf{j}}\mathfrak{L}$

(ii) \Leftrightarrow (iii). (ii) is equivalent to

$$\bar{A}\mathscr{R}C$$
 and $C\mathscr{L}\bar{B}$ (3.1)

for some nonsingular matrix C.

Suppose that (3.1) holds. Then (3.1) implies that

$$\bar{A} = CM^{-1}$$
 and $\bar{B} = NC$

for some monomial matrix M and some monomial matrix N by Lemma 3.1 and its dual. Thus, we obtain that $N\bar{A}M = \bar{B}$.

If (iii) holds, then there exist two monomial matrices N and M such that $N\bar{A}M = \bar{B}$. Hence, (3.1) holds for $C = \bar{A}M$.

As a consequence, we have the following.

Corollary 3.3 Let A denote a matrix with entries in \mathbb{T} . If $A \mathscr{D} B$, then r(A) = r(B) and c(A) = c(B).

YANG/Turk J Math

An $m \times n$ matrix A is regular if there exists an $n \times m$ matrix X such that AXA = A. An $n \times n$ matrix A is *idempotent* if $A^2 = A$. In [8] Proposition 3.2, we know that in a regular \mathscr{D} -class each \mathscr{R} -class and each \mathscr{L} -class contains at least one idempotent. Let E be an $n \times n$ idempotent matrix. If $B \in D_E$, then by Lemma 3.2 we have

$$B = Q \left[\begin{array}{cc} C & CH \\ WC & WCH \end{array} \right] P$$

where $C \in D_{\bar{E}}$, P and Q are permutation matrices, and H and W are matrices of appropriate sizes. Hence, the regular \mathscr{D} -class D_E is determined by $D_{\bar{E}}$. We will study the nonsingular regular \mathscr{D} -classes in the next section.

4. Nonsingular regular \mathscr{D} -classes

In this section, we discuss the nonsingular regular \mathscr{D} -classes of the semigroup $(M_n(\mathbb{T}), \otimes)$. The \mathscr{R} -class $(\mathscr{L} - class, \mathscr{H} - class, and <math>\mathscr{D}$ -class resp.) in the semigroup $(M_n(\mathbb{T}), \otimes)$ is the restriction of the corresponding class in $\cup_{m=1}^{\infty} \cup_{n=1}^{\infty} M_{m \times n}(\mathbb{T})$. If a matrix of a regular \mathscr{D} -class is nonsingular, then by Corollary 3.3 and Proposition 3.1 in [8] we have that the matrices of this \mathscr{D} -class are all nonsingular regular matrices. We call the \mathscr{D} -class nonsingular regular \mathscr{D} -classes.

Next, recall the partial order [3] \leq on $M_{m \times n}(\mathbb{T})$ by

$$A \le B \Longleftrightarrow A \oplus B = B.$$

Lemma 4.1 ([3]) Let A, B be $m \times n$ matrices, let X be an $n \times p$ matrix, and let Y be a $p \times m$ matrix. Then the following statements hold.

- (i) $A \leq A \oplus B$;
- (i) If $A \leq B$, then $AX \leq BX$ and $YA \leq YB$.

Lemma 4.2 If $E = (e_{ij})$ is an $n \times n$ idempotent matrix, then $e_{ii} \leq 0$ for all $1 \leq i \leq n$.

Proof Let $E = (e_{ij})_{n \times n}$ be an idempotent matrix. Then for any $1 \le i \le n$,

$$e_{ii} \otimes e_{ii} \leq (e_{i1} \otimes e_{1i}) \oplus \cdots \oplus (e_{ii} \otimes e_{ii}) \oplus \cdots \oplus (e_{in} \otimes e_{ni}) = e_{ii}.$$

This implies that $e_{ii} \leq 0$.

Lemma 4.3 Let $E = (e_{ij})$ be an $n \times n$ idempotent matrix. If $e_{ii} < 0$ for some $i \in \{1, 2, ..., n\}$, then the *i*th column (row, resp.) of E is a linear combination of the remaining columns (rows, resp.). Furthermore, the matrix obtained from E by deleting the *i*th column and the *i*th row is an $(n-1) \times (n-1)$ idempotent matrix.

Proof Let $E = (e_{ij})_{n \times n}$ be an idempotent matrix. Suppose that $e_{ii} < 0$ for some $1 \le i \le n$. Without loss of generality, we assume that $e_{11} < 0$. Partition E as $\begin{bmatrix} e_{11} & E_{12} \\ E_{21} & E_{22} \end{bmatrix}$. Then we have

$$E^{2} = \begin{bmatrix} e_{11} \otimes e_{11} \oplus E_{12}E_{21} & e_{11}E_{12} \oplus E_{12}E_{22} \\ E_{21}e_{11} \oplus E_{22}E_{21} & E_{21}E_{12} \oplus E_{22}^{2} \end{bmatrix} = \begin{bmatrix} e_{11} & E_{12} \\ E_{21} & E_{22} \end{bmatrix}.$$

This implies that

$$\begin{bmatrix} E_{12}E_{21} & E_{12}E_{22} \\ E_{22}E_{21} & E_{21}E_{12} \oplus E_{22}^2 \end{bmatrix} = \begin{bmatrix} e_{11} & E_{12} \\ E_{21} & E_{22} \end{bmatrix},$$

since $e_{11} < 0$. Thus, it follows that

$$\begin{bmatrix} e_{11} \\ E_{21} \end{bmatrix} = \begin{bmatrix} E_{12}E_{21} \\ E_{22}E_{21} \end{bmatrix} = \begin{bmatrix} E_{12} \\ E_{22} \end{bmatrix} E_{21},$$
(4.1)

$$\begin{bmatrix} e_{11} & E_{12} \end{bmatrix} = \begin{bmatrix} E_{12}E_{21} & E_{12}E_{22} \end{bmatrix} = E_{12} \begin{bmatrix} E_{21} & E_{22} \end{bmatrix},$$
 (4.2)

$$E_{21}E_{12} \oplus E_{22}^2 = E_{22}. \tag{4.3}$$

Equation (4.1) ((4.2), resp.) tells us that the 1st column (the 1st row, resp.) of E is a linear combination of the remaining columns (rows, resp.). By Lemma 4.1 and (4.3), we have

$$E_{22}^2 \le E_{22} \text{ and } E_{21}E_{12} \le E_{22}.$$
 (4.4)

Thus, it follows by (4.4) and Lemma 4.1 that $E_{21}E_{12} = E_{21}E_{12}E_{22} \le E_{22}^2$, since $E_{12}E_{22} = E_{12}$. We therefore have

$$E_{22} = E_{21}E_{12} \oplus E_{22}^2 \le E_{22}^2 \oplus E_{22}^2 = E_{22}^2$$
(4.5)

by Lemma 4.1. Thus, (4.4) and (4.5) tell us that $E_{22}^2 = E_{22}$.

The above lemma tells us that if $E = (e_{ij})$ is an $n \times n$ idempotent matrix and $e_{ii} < 0$ for some $1 \le i \le n$, then c(E) < n and r(E) < n. Thus, by Lemmas 4.2 and 4.3, we immediately have the following result, which was obtained previously in [9] by a different method.

Corollary 4.4 All main diagonal entries of a nonsingular idempotent matrix are 0.

Proposition 4.5 Let *E* be a nonsingular idempotent matrix. If there exists a monomial matrix *M*, such that EME = E, then $M = I_n$.

Proof Suppose that $E = (e_{ij})$ is an $n \times n$ nonsingular idempotent matrix and that there exists a matrix M, such that EME = E. It follows that EM is idempotent and $E \mathscr{R} EM$. Thus, by Corollary 3.3 we can see that EM is a nonsingular idempotent matrix. It follows by Corollary 4.4 that the main diagonal entries of E and EM are all 0. Since EME = E, $M_{ij} \leq (EME)_{ij} = E_{ij}$, and so $M \leq E$. Hence,

$$EM \le E^2 = E \tag{4.6}$$

by Lemma 4.1 (ii). It follows by (EM)E(EM) = EM that $E_{ij} \leq ((EM)E(EM))_{ij} = (EM)_{ij}$. Thus,

$$E \le EM. \tag{4.7}$$

(4.6) and (4.7) tell us that EM = E.

Finally, assume that M is monomial. If M is not diagonal, it follows from EM = E that there exist two distinct indices j and l such that $\mathbf{e}_{*j} = a\mathbf{e}_{*l}$ for some real number a, a contradiction, since E is nonsingular. Then M is diagonal and hence $M = I_n$.

Proposition 4.6 Let *E* be a nonsingular idempotent matrix. If *F* is an idempotent matrix in D_E , then there exists a monomial matrix *M* such that $F = MEM^{-1}$.

Proof Suppose that E and F are $n \times n$ nonsingular idempotent matrices. If $F \in D_E$, then, by Lemma 3.2, we can show that F = MEN for some M, $N \in GL_n(\mathbb{T})$. Thus, it follows that $MEN = F = F^2 = MENMEN$. This implies that E = EMNE. Hence, we have by Proposition 4.5 that $MN = I_n$ and so $F = MEM^{-1}$. This completes the proof.

The following result is a corollary of Theorem 5.7 in [9]. We note that our result is obtained by elementary matrix techniques.

Proposition 4.7 Any nonsingular regular \mathcal{R} -class (\mathcal{L} -class, resp.) contains a unique idempotent.

Proof Suppose that R_A is a nonsingular regular \mathscr{R} -class. Then by Proposition 3.2 in [8] there exists a nonsingular idempotent matrix E such that $R_A = R_E$. If F is an idempotent matrix in R_E , then by Lemma 3.1 we can show that F = EM for some monomial matrix M. Thus, $EM = F = F^2 = EMEM$ and so E = EME. It follows by Proposition 4.5 that $M = I_n$. Hence, F = E. A similar argument establishes that there exists a unique idempotent in each nonsingular regular \mathscr{L} -class.

Lemma 4.8 Let E be a nonsingular idempotent matrix. If there exist monomial matrices M_1 and M_2 such that $EM_1 = M_2E$, then $M_1 = M_2$.

Proof Let *E* be an $n \times n$ nonsingular idempotent matrix. Suppose that there exist monomial matrices M_1 and M_2 such that $EM_1 = M_2E$. Then we have

$$EM_1 = M_2E \Longrightarrow E = M_2EM_1^{-1}$$
$$\Longrightarrow M_2EM_1^{-1}M_2EM_1^{-1} = M_2EM_1^{-1}$$
$$\Longrightarrow EM_1^{-1}M_2E = E$$
$$\Longrightarrow M_1^{-1}M_2 = I_n \qquad (by \ Proposition \ 4.5)$$
$$\Longrightarrow M_1 = M_2.$$

Lemma 4.9 If E is a nonsingular idempotent, then the set

$$C_E(GL_n(\mathbb{T})) = \{ M \in GL_n(\mathbb{T}) \mid EM = ME \}$$

is a subgroup of the group $GL_n(\mathbb{T})$.

Proof Suppose that E is a nonsingular idempotent. Since $EI_n = I_n E = E$ we have that $I_n \in C_E(GL_n(\mathbb{T}))$. If $M_1, M_2 \in C_E(GL_n(\mathbb{T}))$, then $EM_1 = M_1E, EM_2 = M_2E$, and it follows that

$$EM_1M_2 = M_1EM_2 = M_1M_2E_2$$

and so $M_1M_2 \in C_E(GL_n(\mathbb{T}))$. If $M \in C_E(GL_n(\mathbb{T}))$, then EM = ME, and so

$$M^{-1}E = EM^{-1}$$

Thus, $M^{-1} \in C_E(GL_n(\mathbb{T}))$. Hence, $C_E(GL_n(\mathbb{T}))$ is a subgroup of $GL_n(\mathbb{T})$.

Proposition 4.10 Let E be an $n \times n$ nonsingular idempotent matrix. Then

$$H_E = \{A \mid (\exists M \in C_E(GL_n(\mathbb{T}))A = ME\}.$$

Proof Suppose that E is an $n \times n$ nonsingular idempotent matrix. Then $H_E = \{EM \mid M \in GL_n(\mathbb{T})\} \cap \{ME \mid M \in GL_n(\mathbb{T})\}$ and so $H_E = \{A \mid (\exists M, N \in GL_n(\mathbb{T}))A = NE = EM\}$. It follows by Lemma 4.8 that $H_E = \{A \mid (\exists M \in C_E(GL_n(\mathbb{T})))A = ME = EM\}$. \Box

Proposition 4.11 Let E be a nonsingular idempotent matrix and F be an idempotent matrix in D_E . Then there exists a monomial matrix M such that

$$H_F = \{MBM^{-1} \mid B \in H_E\}.$$

Proof Suppose that E is an $n \times n$ nonsingular idempotent matrix and F is an idempotent $n \times n$ matrix in D_E . Then by Proposition 4.6 we have that there exists a monomial matrix M such that $F = MEM^{-1}$. It follows by Proposition 4.10 that

$$H_F = \{A \mid (\exists M \in GL_n(\mathbb{T}))A = MF = FM\}$$

and that

$$H_E = \{A \mid (\exists M \in GL_n(\mathbb{T}))A = ME = EM\}.$$

If $A \in H_F$, then there exists a monomial matrix M_1 such that $A = FM_1 = M_1F$. Then

$$FM_1 = M_1F \iff MEM^{-1}M_1 = M_1MEM^{-1}$$
$$\iff EM^{-1}M_1M = M^{-1}M_1ME$$
$$\iff EM^{-1}M_1M \in H_E.$$

It follows that $A = MEM^{-1}M_1 = M(EM^{-1}M_1M)M^{-1}$ and so $A \in \{MBM^{-1} \mid B \in H_E\}$. Thus, we can see that $H_F \subseteq \{MBM^{-1} \mid B \in H_E\}$. A similar argument establishes that $\{MBM^{-1} \mid B \in H_E\} \subseteq H_F$. \Box

We define a relation ρ on the set $GL_n(\mathbb{T}) \times GL_n(\mathbb{T})$ as follows:

$$(M_1, N_1)\rho(M_2, N_2) \iff M_1^{-1}M_2, N_1N_2^{-1} \in C_E(GL_n(\mathbb{T})).$$

Lemma 4.12 If E is a nonsingular idempotent, then ϱ is a equivalence relation on the set $GL_n(\mathbb{T}) \times GL_n(\mathbb{T})$.

Proof Suppose that E is a nonsingular idempotent. If $(M, N) \in GL_n(\mathbb{T}) \times GL_n(\mathbb{T})$, then by Lemma 4.9, we have that

$$M^{-1}M = NN^{-1} = I_n \in C_E(GL_n(\mathbb{T})),$$

and so $(M, N)\varrho(M, N)$.

If $(M_1, N_1), (M_2, N_2) \in GL_n(\mathbb{T}) \times GL_n(\mathbb{T})$ and $(M_1, N_1)\varrho(M_2, N_2)$, then

$$M_1^{-1}M_2, N_1N_2^{-1} \in C_E(GL_n(\mathbb{T})).$$

It follows by Lemma 4.9 that

$$M_2^{-1}M_1, N_2N_1^{-1} \in C_E(GL_n(\mathbb{T})).$$

This implies that $(M_2, N_2)\varrho(M_1, N_1)$.

Finally, if $(M_1, N_1)\varrho(M_2, N_2)$ and $(M_2, N_2)\varrho(M_3, N_3)$, then

$$M_1^{-1}M_2, N_1N_2^{-1}, M_2^{-1}M_3, N_2N_3^{-1} \in C_E(GL_n(\mathbb{T})),$$

and so

$$M_1^{-1}M_3 = M_1^{-1}M_2M_2^{-1}M_3 \in C_E(GL_n(\mathbb{T})),$$

$$N_1N_3^{-1} = N_1N_2^{-1}N_2N_3^{-1} \in C_E(GL_n(\mathbb{T})).$$

Hence, $(M_1, N_1)\rho(M_3, N_3)$.

We have therefore proved that ϱ is an equivalence relation on the set $GL_n(\mathbb{T}) \times GL_n(\mathbb{T})$.

Lemma 4.13 Let *E* be a nonsingular idempotent matrix. If $A, B \in D_E$, then there exist monomial matrices M_1, M_2, N_1, N_2 such that $A = M_1 E N_1, B = M_2 E N_2$. Further,

$$H_A = H_B \iff (M_1, N_1)\varrho(M_2, N_2)$$

Proof If E is a nonsingular idempotent matrix and $A, B \in D_E$, then by Lemma 3.2 we can see that

$$A = M_1 E N_1, B = M_2 E N_2$$

for some monomial matrices M_1 , N_1 , M_2 , and N_2 . Then

$$\begin{split} H_A &= H_B \Longleftrightarrow H_{M_1 E N_1} = H_{M_2 E N_2} \\ & \Leftrightarrow M_1 E N_1 \mathscr{H} M_2 E N_2 \\ & \Leftrightarrow M_1 E N_1 \mathscr{L} M_2 E N_2, M_1 E N_1 \mathscr{R} M_2 E N_2 \\ & \Leftrightarrow (\exists S, T \in GL_n(\mathbb{T})) M_1 E N_1 = S M_2 E N_2, M_1 E N_1 = M_2 E N_2 T \quad (by \ Lemma \ 3.1) \\ & \Leftrightarrow (\exists S, T \in GL_n(\mathbb{T})) E N_1 N_2^{-1} = M_1^{-1} S M_2 E, E N_1 T^{-1} N_2^{-1} = M_1^{-1} M_2 E \\ & \Leftrightarrow (\exists S, T \in GL_n(\mathbb{T})) M_1^{-1} S M_2 = N_1 N_2^{-1} \in C_E(GL_n(\mathbb{T})), \\ & N_1 T^{-1} N_2^{-1} = M_1^{-1} M_2 \in C_E(GL_n(\mathbb{T})) \quad (by \ Lemma \ 4.8) \\ & \Longrightarrow M_1^{-1} M_2, N_1 N_2^{-1} \in C_E(GL_n(\mathbb{T})) \quad (by \ Lemma \ 4.9) \\ & \Rightarrow (M_1, N_1) \varrho(M_2, N_2). \end{split}$$

Conversely, if $(M_1, N_1)\rho(M_2, N_2)$, then $M_1^{-1}M_2, N_1N_2^{-1} \in C_E(GL_n(\mathbb{T}))$, and so

$$M_1 E N_1 = M_1 E N_1 N_2^{-1} N_2 = M_1 N_1 N_2^{-1} E N_2 = (M_1 N_1 N_2^{-1} M_2^{-1}) M_2 E N_2,$$

$$M_1 E N_1 = M_2 M_2^{-1} M_1 E N_1 = M_2 E M_2^{-1} M_1 N_1 = M_2 E N_2 (N_2^{-1} M_2^{-1} M_1 N_1).$$

Thus, $M_1 E N_1 \mathscr{H} M_2 E N_2$.

Hence, we have therefore proved that $H_A = H_B$ if and only if $(M_1, N_1)\rho(M_2, N_2)$. By Lemma 3.2 and Lemma 4.13, we now have the following result:

YANG/Turk J Math

Theorem 4.14 Let E be a nonsingular idempotent matrix. Then

 $D_E = \bigcup \{ H_{MEN} \mid (M, N)\varrho \in (GL_n(\mathbb{T}) \times GL_n(\mathbb{T}))/\varrho \}.$

H_E	H_{EN_1}	H_{EN_2}	
$H_{N_1^{-1}E}$	$H_{N_1^{-1}EN_1}$	$H_{N_1^{-1}EN_2}$	
$H_{N_2^{-1}E}$	$H_{N_2^{-1}EN_1}$	$H_{N_2^{-1}EN_2}$	•••
			·

References

- Akian M, Gaubert S, Guterman A. Linear independence over tropical semirings and beyond. Contemp Math 2009; 495: 1-38.
- Bapat RB. Structure of a nonnegative regular matrix and its generalized inverse. Linear Algebra Appl 1998; 268: 31-39.
- [3] Butkovič P. Max-linear Systems: Theory and Algorithms. London, UK: Springer-Verlag, 2010.
- [4] Cuninghame-Green RA. Minimax Algebra. Lecture Notes in Economics and Mathematical Systems, Vol. 166. Berlin, Germany: Springer, 1979.
- [5] D'Alessandro F, Pasku E. A combinatorial property for semigroups of matrices. Semigroup Forum 2003; 67: 22-30.
- [6] Ellis A. Classification of conics in the tropical projective plane. MSc, Brigham Young University, Provo, UT, USA, 2005.
- [7] Hollings C, Kambites M. Tropical matrix duality and Green's D relation. J London Math Soc 2012; 86: 520-538.
- [8] Howie JM. Fundamentals of Semigroup Theory. London, UK: Clarendon Press, 1995.
- [9] Izhakian Z, Johnson M, Kambites M. Pure dimension and projectivity of tropical polytopes. Adv Math 2016; 303: 1236-1263.
- [10] Johnson M, Kambites M. Multiplicative structure of 2×2 tropical matrices. Linear Algebra Appl 2011; 435: 1612-1625.
- [11] Johnson M, Kambites M. Green's J-order and the rank of tropical matrices. J Pure Appl Algebra 2013; 217: 280-292.
- [12] Wagneur E. Moduloids and pseudomodule 1. Dimension theory. Discrete Math 1991; 98: 57-73.