тӥвітак

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2018) 42: 2061 - 2070
© TÜBİTAK
doi:10.3906/mat-1803-80

Regular \mathscr{D}-classes of the semigroup of $n \times n$ tropical matrices

Lin YANG ${ }^{1,2, *}$ (D)
${ }^{1}$ School of Mathematics, Northwest University, Xi'an, Shaanxi, P.R. China
${ }^{2}$ School of Science, Lanzhou University of Technology, Lanzhou, Gansu, P.R. China

Received: 16.03 .2018	Accepted/Published Online: 27.05.2018	Final Version: 24.07 .2018

Abstract

In this paper we give the characterizations of Green's relations \mathscr{R}, \mathscr{L}, and \mathscr{D} on the set of matrices with entries in a tropical semiring. An $m \times n$ tropical matrix A is called regular if there exists an $n \times m$ tropical matrix X satisfying $A X A=A$. Furthermore, we study the regular \mathscr{D}-classes of the semigroup of all $n \times n$ tropical matrices under multiplication and give a partition of a nonsingular regular \mathscr{D}-class.

Key words: Tropical algebra, basis submatrix, nonsingular idempotent matrix, regular matrix

1. Introduction

The set \mathbb{R} of reals extended by adding an infinite negative element $-\infty$ is called a tropical semiring. The tropical operations on $\mathbb{R} \cup\{-\infty\}$ are

$$
a \oplus b=\max \{a, b\} \text { and } a \otimes b=a+b
$$

Such algebra is also called the max-plus semiring and is denoted by \mathbb{T}. It has been an active area of study in its own right since the 1970s [4] and has broad applications in many different areas of science (see [1-5]). From an algebraic perspective, a key object is the multiplicative semigroup of all square matrices of a given size over the tropical algebra. In particular, Green's relations of the multiplicative semigroup have been studied by some authors in recent years (see [7, 10, 11]). In 2011 Johnson and Kambites [10] studied the algebraic structure of the multiplicative semigroup of all 2×2 tropical matrices. They gave a complete description of Green's relations, idempotents, and maximal subgroups of this semigroup. In 2012 Hollings and Kambites [7] gave a complete description of Green's relation \mathscr{D} for the multiplicative semigroup of all $n \times n$ tropical matrices. Johnson and Kambites [11] studied Green's \mathscr{J}-order and \mathscr{J}-equivalence for the semigroup of all $n \times n$ matrices over the tropical semiring.

As usual, the set of all $m \times n$ tropical matrices is denoted by $M_{m \times n}(\mathbb{T})$. In particular, we shall use $M_{n}(\mathbb{T})$ instead of $M_{n \times n}(\mathbb{T})$. The operations \oplus and \otimes on \mathbb{T} induce corresponding operations on tropical matrices in the obvious way. For brevity, we shall write $A C$ in place of $A \otimes C$. It is easy to see that $\left(M_{n}(\mathbb{T}), \otimes\right)$ is a semigroup. Other concepts such as transpose and block matrix are defined in the usual way. For convenience, we refer to a matrix as a tropical matrix in the remainder of this paper. The Green relations \mathscr{R}, \mathscr{L}, and \mathscr{D}

[^0]on the set of matrices with entries in tropical semiring \mathbb{T} are defined as follows:
\[

$$
\begin{aligned}
A \mathscr{R} B & \Leftrightarrow(\exists X, Y) A=B X, B=A Y ; \\
A \mathscr{L} B & \Leftrightarrow(\exists X, Y) A=X B, B=Y A ; \\
A \mathscr{D} B & \Leftrightarrow(\exists C) A \mathscr{R} C, C \mathscr{L} B ; \\
A \mathscr{H} B & \Leftrightarrow A \mathscr{R} B, A \mathscr{L} B ;
\end{aligned}
$$
\]

where A, B, X, Y, C are (possibly rectangular) matrices with entries in \mathbb{T}. These relations are classical (and of great importance) in semigroup theory; see, e.g., [8]. Of course, the set of matrices with entries in \mathbb{T} is not a multiplicative semigroup because the product of two matrices is not defined if the size is incompatible. The \mathscr{R}-class (\mathscr{L}-class, \mathscr{H}-class, and \mathscr{D}-class resp.) containing matrix A will be written $R_{A}\left(L_{A}, H_{A}\right.$, and D_{A} resp.).

The aim of this paper is to study the nonsingular regular \mathscr{D}-classes of the semigroup of $n \times n$ tropical matrices. Some preliminary results are presented in Section 2. In Section 3, we study Green's relation \mathscr{D} on the set of matrices with entries in \mathbb{T}. Based on this, we give the characterization of the nonsingular regular \mathscr{D}-classes of the semigroup of $n \times n$ tropical matrices in Section 4 .

2. Preliminaries

Let \mathbb{T}^{n} denote the direct product of n copies of \mathbb{T}. Then \mathbb{T}^{n} forms a semiring and can be viewed as a \mathbb{T}-semimodule [1]. Each element of this semimodule is called a vector. A vector α in \mathbb{T}^{n} is called a linear combination of a subset $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ of \mathbb{T}^{n} if there exist $m_{1}, \ldots, m_{k} \in \mathbb{T}$ such that

$$
\alpha=m_{1} \alpha_{1} \oplus \cdots \oplus m_{k} \alpha_{k}
$$

For a subset S of \mathbb{T}^{n}, let $\operatorname{span}(S)$ denote

$$
\left\{\oplus_{i=1}^{k} m_{i} \alpha_{i} \mid k \in \mathbb{N}, \alpha_{i} \in S, m_{i} \in \mathbb{T}, i=1,2, \ldots, k\right\}
$$

where \mathbb{N} denotes the set of all natural numbers. Then $\operatorname{span}(S)$ is a subsemimodule of \mathbb{T}^{n} generated by S. Recall that the set S is called weakly linearly dependent if there exists a vector $\alpha \in S$ such that α is a linear combination of elements in $S \backslash\{\alpha\}$. Otherwise, S is called weakly linearly independent. A subset $\left\{\alpha_{i} \mid i \in I\right\}$ of a subsemimodule \mathcal{V} of \mathbb{T}^{n} is called a weak basis of \mathcal{V} if $\operatorname{span}\left(\left\{\alpha_{i} \mid i \in I\right\}\right)=\mathcal{V}$ and $\left\{\alpha_{i} \mid i \in I\right\}$ is weakly linearly independent.

By Theorem 5 in [12] we immediately have the following.

Lemma 2.1 Let S and S^{\prime} be weak bases of a subsemimodule \mathcal{V} of \mathbb{T}^{n}. Then for each $\alpha \in S$ there exists a unique $\beta \in S^{\prime}$ such that $\alpha=m \beta$ for some $m \in \mathbb{R}$.

Lemma 2.1 tells us that the cardinalities of any two weak bases for a given subsemimodule of \mathbb{T}^{n} are same. The cardinality is called the weak dimension of \mathcal{V} and is denoted by $\operatorname{dim}_{w} \mathcal{V}$. The column space (row space, resp.) of an $m \times n$ matrix A is the subsemimodule of \mathbb{T}^{m} (\mathbb{T}^{n}, resp.) spanned by all its columns (rows, resp.) and is denoted by $\operatorname{Col}(A)(\operatorname{Row}(A)$, resp.). The column rank (row rank, resp.) of A, denoted by $c(A)$ $(r(A)$, resp. $)$, is $\operatorname{dim}_{w} \operatorname{Col}(A)\left(\operatorname{dim}_{w} \operatorname{Row}(A)\right.$, resp.). An $m \times n$ matrix A is called nonsingular if $c(A)=n$ and $r(A)=m$ and otherwise singular.

In the sequel, the following notions and notations are needed.
$\diamond I_{n}$ denotes the identity matrix, i.e. the $n \times n$ matrix whose diagonal entries are 0 and the other entries are $-\infty$.
\diamond An $n \times n$ matrix A is called invertible if there exists an $n \times n$ matrix B such that $A B=B A=I_{n}$. In this case, B is called an inverse of A and is denoted by A^{-1}.
\diamond An $n \times n$ matrix is called a monomial matrix if it has exactly one entry in each row and column that is not equal to $-\infty$.
\diamond An $n \times n$ matrix is called a permutation matrix if it is formed from the identity matrix by reordering its columns.

It is well known [6] that an $n \times n$ matrix A is invertible if and only if A is monomial. Also, the inverse of a permutation matrix is its transpose. Denote the set of all $n \times n$ monomial matrices by $G L_{n}(\mathbb{T})$.

For a matrix A, let $\boldsymbol{a}_{i *}$ and $\boldsymbol{a}_{* j}$ denote the i th row and the j th column of A, respectively. As a consequence, it follows from Lemma 2.1 that:

Corollary 2.2 Let $\left\{\boldsymbol{a}_{* i_{1}}, \ldots, \boldsymbol{a}_{* i_{r}}\right\}$ and $\left\{\boldsymbol{a}_{* j_{1}}, \ldots, \boldsymbol{a}_{* j_{k}}\right\}$ be any two weak bases of $\operatorname{Col}(A)$. Then $r=k$, and there exists an $r \times r$ monomial matrix M such that

$$
\left[\boldsymbol{a}_{* i_{1}} \cdots \boldsymbol{a}_{* i_{r}}\right]=\left[\boldsymbol{a}_{* j_{1}} \cdots \boldsymbol{a}_{* j_{k}}\right] M
$$

In the remainder of this paper, for simplicity, we use the following notation concerning a matrix A without further comment:

$$
c(A)=r \text { and } r(A)=s
$$

- $A^{c}=\left[\boldsymbol{a}_{* i_{1}} \cdots \boldsymbol{a}_{* i_{r}}\right]$ is a submatrix of A such that the set $\left\{\boldsymbol{a}_{* i_{1}}, \ldots, \boldsymbol{a}_{* i_{r}}\right\}$ is a weak basis of $\operatorname{Col}(A)$;
- $A^{r}=\left[\begin{array}{c}\boldsymbol{a}_{j_{1} *} \\ \vdots \\ \boldsymbol{a}_{j_{r} *}\end{array}\right]$ is a submatrix of A such that the set $\left\{\boldsymbol{a}_{j_{1} *}, \ldots, \boldsymbol{a}_{j_{s} *}\right\}$ is a weak basis of $\operatorname{Row}(A)$;
- \bar{A} denotes the $s \times r$ submatrix of A lying in A^{c} and A^{r}.

The submatrix \bar{A} is called a basis submatrix of A. For any nonzero matrix A we have that $c(A)>0$ and $r(A)>0$. It is easy to see that $c(A)=c(\bar{A})=$ the number of columns of \bar{A}, and that $r(A)=r(\bar{A})=$ the number of rows of \bar{A}.

3. Green's \mathscr{D} relations

In this section, we discuss Green's \mathscr{D} relation. First, we need the following result.

Lemma 3.1 Let A and B denote two matrices with entries in \mathbb{T}. Then the following statements are equivalent:
(i) $A \mathscr{R} B$;
(i) $\operatorname{Col}(A)=\operatorname{Col}(B)$;
(i) $\left(\exists M \in G L_{r}(\mathbb{T})\right) B^{c}=A^{c} M$.

Proof The equivalence of (i) and (ii) was proved by Theorem 100 in "Two lectures on max-plus algebra" (http://amadeus.inria.fr/gaubert).

Suppose that $\operatorname{Col}(A)=\operatorname{Col}(B)$. Then we have that the columns of A^{c} and B^{c} are both weak bases of $\operatorname{Col}(A)$. It follows that

$$
\operatorname{Col}(A)=\operatorname{Col}(B) \Longleftrightarrow\left(\exists M \in G L_{r}(\mathbb{T})\right) B^{c}=A^{c} M \quad \text { (by Corollary 2.2) }
$$

The dual of Lemma 3.1 for relation \mathscr{L} is clear.
Lemma 3.2 Let A and B denote two matrices with entries in \mathbb{T}. Then the following statements are equivalent:
(i) $A \mathscr{D} B$;
(i) $\bar{A} \mathscr{D} \bar{B}$;
(i) $\left(\exists N \in G L_{s}(\mathbb{T}), M \in G L_{r}(\mathbb{T})\right) \bar{B}=N \bar{A} M$.

Proof We need to prove it only for any nonzero matrices A and B. Since $(P A Q) \mathscr{D} A$ for any permutation matrices P and Q, we may assume that

$$
A=\left[\begin{array}{cc}
\bar{A} & A_{1} \\
A_{2} & A_{3}
\end{array}\right], B=\left[\begin{array}{cc}
\bar{B} & B_{1} \\
B_{2} & B_{3}
\end{array}\right],
$$

where \bar{A}, \bar{B} are basic submatrices and A_{i}, B_{i} are of appropriate sizes for $i=1,2,3$.
(i) \Longleftrightarrow (ii). Suppose that $A \mathscr{D} B$. Since

$$
\operatorname{Col}\left(\left[\begin{array}{c}
\bar{A} \\
A_{2}
\end{array}\right]\right)=\operatorname{Col}(A)
$$

it follows that $A \mathscr{R}\left[\begin{array}{c}\bar{A} \\ A_{2}\end{array}\right]$ by Lemma 3.1. Since $\operatorname{Row}\left(\left[\begin{array}{c}\bar{A} \\ A_{2}\end{array}\right]\right)=\operatorname{Row}(\bar{A})$, we have that $\left[\begin{array}{c}\bar{A} \\ A_{2}\end{array}\right] \mathscr{L} \bar{A}$ by the dual of Lemma 3.1. Thus, $A \mathscr{D} \bar{A}$. Similarly, $B \mathscr{D} \bar{B}$. Therefore, $A \mathscr{D} B$ is equivalent to $\bar{A} \mathscr{D} \bar{B} ; £$
(ii) \Leftrightarrow (iii). (ii) is equivalent to

$$
\begin{equation*}
\bar{A} \mathscr{R} C \text { and } C \mathscr{L} \bar{B} \tag{3.1}
\end{equation*}
$$

for some nonsingular matrix C.
Suppose that (3.1) holds. Then (3.1) implies that

$$
\bar{A}=C M^{-1} \text { and } \bar{B}=N C
$$

for some monomial matrix M and some monomial matrix N by Lemma 3.1 and its dual. Thus, we obtain that $N \bar{A} M=\bar{B}$.

If (iii) holds, then there exist two monomial matrices N and M such that $N \bar{A} M=\bar{B}$. Hence, (3.1) holds for $C=\bar{A} M$.

As a consequence, we have the following.
Corollary 3.3 Let A denote a matrix with entries in \mathbb{T}. If $A \mathscr{D} B$, then $r(A)=r(B)$ and $c(A)=c(B)$.

YANG/Turk J Math

An $m \times n$ matrix A is regular if there exists an $n \times m$ matrix X such that $A X A=A$. An $n \times n$ matrix A is idempotent if $A^{2}=A$. In [8] Proposition 3.2, we know that in a regular \mathscr{D}-class each \mathscr{R}-class and each \mathscr{L}-class contains at least one idempotent. Let E be an $n \times n$ idempotent matrix. If $B \in D_{E}$, then by Lemma 3.2 we have

$$
B=Q\left[\begin{array}{cc}
C & C H \\
W C & W C H
\end{array}\right] P
$$

where $C \in D_{\bar{E}}, P$ and Q are permutation matrices, and H and W are matrices of appropriate sizes. Hence, the regular \mathscr{D}-class D_{E} is determined by $D_{\bar{E}}$. We will study the nonsingular regular \mathscr{D}-classes in the next section.

4. Nonsingular regular \mathscr{D}-classes

In this section, we discuss the nonsingular regular \mathscr{D}-classes of the semigroup $\left(M_{n}(\mathbb{T}), \otimes\right)$. The \mathscr{R}-class $(\mathscr{L}$ class, \mathscr{H}-class, and \mathscr{D}-class resp.) in the semigroup $\left(M_{n}(\mathbb{T}), \otimes\right)$ is the restriction of the corresponding class in $\cup_{m=1}^{\infty} \cup_{n=1}^{\infty} M_{m \times n}(\mathbb{T})$. If a matrix of a regular \mathscr{D}-class is nonsingular, then by Corollary 3.3 and Proposition 3.1 in [8] we have that the matrices of this \mathscr{D}-class are all nonsingular regular matrices. We call the \mathscr{D}-class nonsingular regular \mathscr{D}-classes.

Next, recall the partial order [3] \leq on $M_{m \times n}(\mathbb{T})$ by

$$
A \leq B \Longleftrightarrow A \oplus B=B
$$

Lemma 4.1 ([3]) Let A, B be $m \times n$ matrices, let X be an $n \times p$ matrix, and let Y be a $p \times m$ matrix. Then the following statements hold.
(i) $A \leq A \oplus B$;
(i) If $A \leq B$, then $A X \leq B X$ and $Y A \leq Y B$.

Lemma 4.2 If $E=\left(e_{i j}\right)$ is an $n \times n$ idempotent matrix, then $e_{i i} \leq 0$ for all $1 \leq i \leq n$.
Proof Let $E=\left(e_{i j}\right)_{n \times n}$ be an idempotent matrix. Then for any $1 \leq i \leq n$,

$$
e_{i i} \otimes e_{i i} \leq\left(e_{i 1} \otimes e_{1 i}\right) \oplus \cdots \oplus\left(e_{i i} \otimes e_{i i}\right) \oplus \cdots \oplus\left(e_{i n} \otimes e_{n i}\right)=e_{i i}
$$

This implies that $e_{i i} \leq 0$.

Lemma 4.3 Let $E=\left(e_{i j}\right)$ be an $n \times n$ idempotent matrix. If $e_{i i}<0$ for some $i \in\{1,2, \ldots, n\}$, then the i th column (row, resp.) of E is a linear combination of the remaining columns (rows, resp.). Furthermore, the matrix obtained from E by deleting the i th column and the i th row is an $(n-1) \times(n-1)$ idempotent matrix.

Proof Let $E=\left(e_{i j}\right)_{n \times n}$ be an idempotent matrix. Suppose that $e_{i i}<0$ for some $1 \leq i \leq n$. Without loss of generality, we assume that $e_{11}<0$. Partition E as $\left[\begin{array}{ll}e_{11} & E_{12} \\ E_{21} & E_{22}\end{array}\right]$. Then we have

$$
E^{2}=\left[\begin{array}{cc}
e_{11} \otimes e_{11} \oplus E_{12} E_{21} & e_{11} E_{12} \oplus E_{12} E_{22} \\
E_{21} e_{11} \oplus E_{22} E_{21} & E_{21} E_{12} \oplus E_{22}^{2}
\end{array}\right]=\left[\begin{array}{cc}
e_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right]
$$

This implies that

$$
\left[\begin{array}{cc}
E_{12} E_{21} & E_{12} E_{22} \\
E_{22} E_{21} & E_{21} E_{12} \oplus E_{22}^{2}
\end{array}\right]=\left[\begin{array}{cc}
e_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right]
$$

since $e_{11}<0$. Thus, it follows that

$$
\begin{align*}
& {\left[\begin{array}{l}
e_{11} \\
E_{21}
\end{array}\right]=\left[\begin{array}{l}
E_{12} E_{21} \\
E_{22} E_{21}
\end{array}\right]=\left[\begin{array}{l}
E_{12} \\
E_{22}
\end{array}\right] E_{21}} \tag{4.1}\\
& {\left[\begin{array}{ll}
e_{11} & E_{12}
\end{array}\right]=\left[\begin{array}{ll}
E_{12} E_{21} & E_{12} E_{22}
\end{array}\right]=E_{12}\left[\begin{array}{ll}
E_{21} & E_{22}
\end{array}\right]} \tag{4.2}\\
& E_{21} E_{12} \oplus E_{22}^{2}=E_{22} \tag{4.3}
\end{align*}
$$

Equation (4.1) ((4.2), resp.) tells us that the 1 st column (the 1 st row, resp.) of E is a linear combination of the remaining columns (rows, resp.). By Lemma 4.1 and (4.3), we have

$$
\begin{equation*}
E_{22}^{2} \leq E_{22} \text { and } E_{21} E_{12} \leq E_{22} \tag{4.4}
\end{equation*}
$$

Thus, it follows by (4.4) and Lemma 4.1 that $E_{21} E_{12}=E_{21} E_{12} E_{22} \leq E_{22}^{2}$, since $E_{12} E_{22}=E_{12}$. We therefore have

$$
\begin{equation*}
E_{22}=E_{21} E_{12} \oplus E_{22}^{2} \leq E_{22}^{2} \oplus E_{22}^{2}=E_{22}^{2} \tag{4.5}
\end{equation*}
$$

by Lemma 4.1. Thus, (4.4) and (4.5) tell us that $E_{22}^{2}=E_{22}$.
The above lemma tells us that if $E=\left(e_{i j}\right)$ is an $n \times n$ idempotent matrix and $e_{i i}<0$ for some $1 \leq i \leq n$, then $c(E)<n$ and $r(E)<n$. Thus, by Lemmas 4.2 and 4.3, we immediately have the following result, which was obtained previously in [9] by a different method.

Corollary 4.4 All main diagonal entries of a nonsingular idempotent matrix are 0 .

Proposition 4.5 Let E be a nonsingular idempotent matrix. If there exists a monomial matrix M, such that $E M E=E$, then $M=I_{n}$.

Proof Suppose that $E=\left(e_{i j}\right)$ is an $n \times n$ nonsingular idempotent matrix and that there exists a matrix M, such that $E M E=E$. It follows that $E M$ is idempotent and $E \mathscr{R} E M$. Thus, by Corollary 3.3 we can see that $E M$ is a nonsingular idempotent matrix. It follows by Corollary 4.4 that the main diagonal entries of E and $E M$ are all 0 . Since $E M E=E, M_{i j} \leq(E M E)_{i j}=E_{i j}$, and so $M \leq E$. Hence,

$$
\begin{equation*}
E M \leq E^{2}=E \tag{4.6}
\end{equation*}
$$

by Lemma 4.1 (ii). It follows by $(E M) E(E M)=E M$ that $E_{i j} \leq((E M) E(E M))_{i j}=(E M)_{i j}$. Thus,

$$
\begin{equation*}
E \leq E M \tag{4.7}
\end{equation*}
$$

(4.6) and (4.7) tell us that $E M=E$.

Finally, assume that M is monomial. If M is not diagonal, it follows from $E M=E$ that there exist two distinct indices j and l such that $\boldsymbol{e}_{* j}=a \boldsymbol{e}_{* l}$ for some real number a, a contradiction, since E is nonsingular. Then M is diagonal and hence $M=I_{n}$.

Proposition 4.6 Let E be a nonsingular idempotent matrix. If F is an idempotent matrix in D_{E}, then there exists a monomial matrix M such that $F=M E M^{-1}$.

Proof Suppose that E and F are $n \times n$ nonsingular idempotent matrices. If $F \in D_{E}$, then, by Lemma 3.2, we can show that $F=M E N$ for some $M, N \in G L_{n}(\mathbb{T})$. Thus, it follows that $M E N=F=F^{2}=M E N M E N$. This implies that $E=E M N E$. Hence, we have by Proposition 4.5 that $M N=I_{n}$ and so $F=M E M^{-1}$. This completes the proof.

The following result is a corollary of Theorem 5.7 in [9]. We note that our result is obtained by elementary matrix techniques.

Proposition 4.7 Any nonsingular regular \mathscr{R}-class (\mathscr{L}-class, resp.) contains a unique idempotent.
Proof Suppose that R_{A} is a nonsingular regular \mathscr{R}-class. Then by Proposition 3.2 in [8] there exists a nonsingular idempotent matrix E such that $R_{A}=R_{E}$. If F is an idempotent matrix in R_{E}, then by Lemma 3.1 we can show that $F=E M$ for some monomial matrix M. Thus, $E M=F=F^{2}=E M E M$ and so $E=E M E$. It follows by Proposition 4.5 that $M=I_{n}$. Hence, $F=E$. A similar argument establishes that there exists a unique idempotent in each nonsingular regular \mathscr{L}-class.

Lemma 4.8 Let E be a nonsingular idempotent matrix. If there exist monomial matrices M_{1} and M_{2} such that $E M_{1}=M_{2} E$, then $M_{1}=M_{2}$.

Proof Let E be an $n \times n$ nonsingular idempotent matrix. Suppose that there exist monomial matrices M_{1} and M_{2} such that $E M_{1}=M_{2} E$. Then we have

$$
\begin{aligned}
E M_{1}=M_{2} E & \Longrightarrow E=M_{2} E M_{1}^{-1} \\
& \Longrightarrow M_{2} E M_{1}^{-1} M_{2} E M_{1}^{-1}=M_{2} E M_{1}^{-1} \\
& \Longrightarrow E M_{1}^{-1} M_{2} E=E \\
& \Longrightarrow M_{1}^{-1} M_{2}=I_{n} \quad \quad \text { (by Proposition } 4.5 \text {) } \\
& \Longrightarrow M_{1}=M_{2}
\end{aligned}
$$

Lemma 4.9 If E is a nonsingular idempotent, then the set

$$
C_{E}\left(G L_{n}(\mathbb{T})\right)=\left\{M \in G L_{n}(\mathbb{T}) \mid E M=M E\right\}
$$

is a subgroup of the group $G L_{n}(\mathbb{T})$.
Proof Suppose that E is a nonsingular idempotent. Since $E I_{n}=I_{n} E=E$ we have that $I_{n} \in C_{E}\left(G L_{n}(\mathbb{T})\right)$. If $M_{1}, M_{2} \in C_{E}\left(G L_{n}(\mathbb{T})\right)$, then $E M_{1}=M_{1} E, E M_{2}=M_{2} E$, and it follows that

$$
E M_{1} M_{2}=M_{1} E M_{2}=M_{1} M_{2} E
$$

and so $M_{1} M_{2} \in C_{E}\left(G L_{n}(\mathbb{T})\right)$. If $M \in C_{E}\left(G L_{n}(\mathbb{T})\right)$, then $E M=M E$, and so

$$
M^{-1} E=E M^{-1}
$$

Thus, $M^{-1} \in C_{E}\left(G L_{n}(\mathbb{T})\right)$. Hence, $C_{E}\left(G L_{n}(\mathbb{T})\right)$ is a subgroup of $G L_{n}(\mathbb{T})$.

Proposition 4.10 Let E be an $n \times n$ nonsingular idempotent matrix. Then

$$
H_{E}=\left\{A \mid\left(\exists M \in C_{E}\left(G L_{n}(\mathbb{T})\right) A=M E\right\}\right.
$$

Proof Suppose that E is an $n \times n$ nonsingular idempotent matrix. Then $H_{E}=\left\{E M \mid M \in G L_{n}(\mathbb{T})\right\} \cap\{M E \mid$ $\left.M \in G L_{n}(\mathbb{T})\right\}$ and so $H_{E}=\left\{A \mid\left(\exists M, N \in G L_{n}(\mathbb{T})\right) A=N E=E M\right\}$. It follows by Lemma 4.8 that $H_{E}=\left\{A \mid\left(\exists M \in C_{E}\left(G L_{n}(\mathbb{T})\right)\right) A=M E=E M\right\}$.

Proposition 4.11 Let E be a nonsingular idempotent matrix and F be an idempotent matrix in D_{E}. Then there exists a monomial matrix M such that

$$
H_{F}=\left\{M B M^{-1} \mid B \in H_{E}\right\}
$$

Proof Suppose that E is an $n \times n$ nonsingular idempotent matrix and F is an idempotent $n \times n$ matrix in D_{E}. Then by Proposition 4.6 we have that there exists a monomial matrix M such that $F=M E M^{-1}$. It follows by Proposition 4.10 that

$$
H_{F}=\left\{A \mid\left(\exists M \in G L_{n}(\mathbb{T})\right) A=M F=F M\right\}
$$

and that

$$
H_{E}=\left\{A \mid\left(\exists M \in G L_{n}(\mathbb{T})\right) A=M E=E M\right\}
$$

If $A \in H_{F}$, then there exists a monomial matrix M_{1} such that $A=F M_{1}=M_{1} F$. Then

$$
\begin{aligned}
F M_{1}=M_{1} F & \Longleftrightarrow M E M^{-1} M_{1}=M_{1} M E M^{-1} \\
& \Longleftrightarrow E M^{-1} M_{1} M=M^{-1} M_{1} M E \\
& \Longleftrightarrow E M^{-1} M_{1} M \in H_{E}
\end{aligned}
$$

It follows that $A=M E M^{-1} M_{1}=M\left(E M^{-1} M_{1} M\right) M^{-1}$ and so $A \in\left\{M B M^{-1} \mid B \in H_{E}\right\}$. Thus, we can see that $H_{F} \subseteq\left\{M B M^{-1} \mid B \in H_{E}\right\}$. A similar argument establishes that $\left\{M B M^{-1} \mid B \in H_{E}\right\} \subseteq H_{F}$.

We define a relation ϱ on the set $G L_{n}(\mathbb{T}) \times G L_{n}(\mathbb{T})$ as follows:

$$
\left(M_{1}, N_{1}\right) \varrho\left(M_{2}, N_{2}\right) \Longleftrightarrow M_{1}^{-1} M_{2}, N_{1} N_{2}^{-1} \in C_{E}\left(G L_{n}(\mathbb{T})\right)
$$

Lemma 4.12 If E is a nonsingular idempotent, then ϱ is a equivalence relation on the set $G L_{n}(\mathbb{T}) \times G L_{n}(\mathbb{T})$.
Proof Suppose that E is a nonsingular idempotent. If $(M, N) \in G L_{n}(\mathbb{T}) \times G L_{n}(\mathbb{T})$, then by Lemma 4.9, we have that

$$
M^{-1} M=N N^{-1}=I_{n} \in C_{E}\left(G L_{n}(\mathbb{T})\right)
$$

and so $(M, N) \varrho(M, N)$.
If $\left(M_{1}, N_{1}\right),\left(M_{2}, N_{2}\right) \in G L_{n}(\mathbb{T}) \times G L_{n}(\mathbb{T})$ and $\left(M_{1}, N_{1}\right) \varrho\left(M_{2}, N_{2}\right)$, then

$$
M_{1}^{-1} M_{2}, N_{1} N_{2}^{-1} \in C_{E}\left(G L_{n}(\mathbb{T})\right)
$$

It follows by Lemma 4.9 that

$$
M_{2}^{-1} M_{1}, N_{2} N_{1}^{-1} \in C_{E}\left(G L_{n}(\mathbb{T})\right)
$$

This implies that $\left(M_{2}, N_{2}\right) \varrho\left(M_{1}, N_{1}\right)$.
Finally, if $\left(M_{1}, N_{1}\right) \varrho\left(M_{2}, N_{2}\right)$ and $\left(M_{2}, N_{2}\right) \varrho\left(M_{3}, N_{3}\right)$, then

$$
M_{1}^{-1} M_{2}, N_{1} N_{2}^{-1}, M_{2}^{-1} M_{3}, N_{2} N_{3}^{-1} \in C_{E}\left(G L_{n}(\mathbb{T})\right)
$$

and so

$$
\begin{aligned}
M_{1}^{-1} M_{3} & =M_{1}^{-1} M_{2} M_{2}^{-1} M_{3} \in C_{E}\left(G L_{n}(\mathbb{T})\right) \\
N_{1} N_{3}^{-1} & =N_{1} N_{2}^{-1} N_{2} N_{3}^{-1} \in C_{E}\left(G L_{n}(\mathbb{T})\right)
\end{aligned}
$$

Hence, $\left(M_{1}, N_{1}\right) \varrho\left(M_{3}, N_{3}\right)$.
We have therefore proved that ϱ is an equivalence relation on the set $G L_{n}(\mathbb{T}) \times G L_{n}(\mathbb{T})$.

Lemma 4.13 Let E be a nonsingular idempotent matrix. If $A, B \in D_{E}$, then there exist monomial matrices $M_{1}, M_{2}, N_{1}, N_{2}$ such that $A=M_{1} E N_{1}, B=M_{2} E N_{2}$. Further,

$$
H_{A}=H_{B} \Longleftrightarrow\left(M_{1}, N_{1}\right) \varrho\left(M_{2}, N_{2}\right)
$$

Proof If E is a nonsingular idempotent matrix and $A, B \in D_{E}$, then by Lemma 3.2 we can see that

$$
A=M_{1} E N_{1}, B=M_{2} E N_{2}
$$

for some monomial matrices M_{1}, N_{1}, M_{2}, and N_{2}. Then

$$
\begin{aligned}
& H_{A}=H_{B} \Longleftrightarrow H_{M_{1} E N_{1}}=H_{M_{2} E N_{2}} \\
& \Longleftrightarrow M_{1} E N_{1} \mathscr{H} M_{2} E N_{2} \\
& \Longleftrightarrow M_{1} E N_{1} \mathscr{L} M_{2} E N_{2}, M_{1} E N_{1} \mathscr{R} M_{2} E N_{2} \\
& \Longleftrightarrow\left(\exists S, T \in G L_{n}(\mathbb{T})\right) M_{1} E N_{1}=S M_{2} E N_{2}, M_{1} E N_{1}=M_{2} E N_{2} T \quad \text { (by Lemma 3.1) } \\
& \Longleftrightarrow\left(\exists S, T \in G L_{n}(\mathbb{T})\right) E N_{1} N_{2}^{-1}=M_{1}^{-1} S M_{2} E, E N_{1} T^{-1} N_{2}^{-1}=M_{1}^{-1} M_{2} E \\
& \Longleftrightarrow\left(\exists S, T \in G L_{n}(\mathbb{T})\right) M_{1}^{-1} S M_{2}=N_{1} N_{2}^{-1} \in C_{E}\left(G L_{n}(\mathbb{T})\right), \\
& N_{1} T^{-1} N_{2}^{-1}=M_{1}^{-1} M_{2} \in C_{E}\left(G L_{n}(\mathbb{T})\right) \quad(\text { by Lemma 4.8) } \\
& \Longleftrightarrow M_{1}^{-1} M_{2}, N_{1} N_{2}^{-1} \in C_{E}\left(G L_{n}(\mathbb{T})\right) \\
& \Longleftrightarrow\left(M_{1}, N_{1}\right) \varrho\left(M_{2}, N_{2}\right) .
\end{aligned}
$$

Conversely, if $\left(M_{1}, N_{1}\right) \varrho\left(M_{2}, N_{2}\right)$, then $M_{1}^{-1} M_{2}, N_{1} N_{2}{ }^{-1} \in C_{E}\left(G L_{n}(\mathbb{T})\right)$, and so

$$
\begin{aligned}
& M_{1} E N_{1}=M_{1} E N_{1} N_{2}^{-1} N_{2}=M_{1} N_{1} N_{2}^{-1} E N_{2}=\left(M_{1} N_{1} N_{2}^{-1} M_{2}^{-1}\right) M_{2} E N_{2} \\
& M_{1} E N_{1}=M_{2} M_{2}^{-1} M_{1} E N_{1}=M_{2} E M_{2}^{-1} M_{1} N_{1}=M_{2} E N_{2}\left(N_{2}^{-1} M_{2}^{-1} M_{1} N_{1}\right)
\end{aligned}
$$

Thus, $M_{1} E N_{1} \mathscr{H} M_{2} E N_{2}$.
Hence, we have therefore proved that $H_{A}=H_{B}$ if and only if $\left(M_{1}, N_{1}\right) \varrho\left(M_{2}, N_{2}\right)$.
By Lemma 3.2 and Lemma 4.13, we now have the following result:

Theorem 4.14 Let E be a nonsingular idempotent matrix. Then

$$
\begin{aligned}
& D_{E}=\bigcup\left\{H_{M E N} \mid(M, N) \varrho \in\left(G L_{n}(\mathbb{T}) \times G L_{n}(\mathbb{T})\right) / \varrho\right\} . \\
& \begin{array}{|l|l|l|l|}
\hline H_{E} & H_{E N_{1}} & H_{E N_{2}} & \cdots \\
\hline H_{N_{1}-1} & H_{N_{1}-1} N_{1} & H_{N_{1}-1 E N_{2}} & \cdots \\
\hline H_{N_{2}-1} E & H_{N_{2}-1} E N_{1} & H_{N_{2}-1} N_{2} & \cdots \\
\hline \ldots & \cdots & \cdots & \ddots \\
\hline
\end{array}
\end{aligned}
$$

References

[1] Akian M, Gaubert S, Guterman A. Linear independence over tropical semirings and beyond. Contemp Math 2009; 495: 1-38.
[2] Bapat RB. Structure of a nonnegative regular matrix and its generalized inverse. Linear Algebra Appl 1998; 268: 31-39.
[3] Butkovič P. Max-linear Systems: Theory and Algorithms. London, UK: Springer-Verlag, 2010.
[4] Cuninghame-Green RA. Minimax Algebra. Lecture Notes in Economics and Mathematical Systems, Vol. 166. Berlin, Germany: Springer, 1979.
[5] D'Alessandro F, Pasku E. A combinatorial property for semigroups of matrices. Semigroup Forum 2003; 67: 22-30.
[6] Ellis A. Classification of conics in the tropical projective plane. MSc, Brigham Young University, Provo, UT, USA, 2005.
[7] Hollings C, Kambites M. Tropical matrix duality and Green's \mathscr{D} relation. J London Math Soc 2012; 86: 520-538.
[8] Howie JM. Fundamentals of Semigroup Theory. London, UK: Clarendon Press, 1995.
[9] Izhakian Z, Johnson M, Kambites M. Pure dimension and projectivity of tropical polytopes. Adv Math 2016; 303: 1236-1263.
[10] Johnson M, Kambites M. Multiplicative structure of 2×2 tropical matrices. Linear Algebra Appl 2011; 435: 1612-1625.
[11] Johnson M, Kambites M. Green's \mathscr{J}-order and the rank of tropical matrices. J Pure Appl Algebra 2013; 217: 280-292.
[12] Wagneur E. Moduloids and pseudomodule 1. Dimension theory. Discrete Math 1991; 98: 57-73.

[^0]: *Correspondence: yanglinmath@163.com
 The author was supported by National Natural Science Foundation of China (11261030, 11561044)
 2010 AMS Mathematics Subject Classification: 15A03, 15A09, 15A23

