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Abstract: In this paper we give the characterizations of Green’s relations %, .2, and 2 on the set of matrices with
entries in a tropical semiring. An m X n tropical matrix A is called regular if there exists an n X m tropical matrix
X satisfying AXA = A. Furthermore, we study the regular Z-classes of the semigroup of all n x n tropical matrices

under multiplication and give a partition of a nonsingular regular Z-class.
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1. Introduction
The set R of reals extended by adding an infinite negative element —oo is called a tropical semiring. The

tropical operations on RU {—oo0} are
a®b=max{a,b} and a®b=a+b.

Such algebra is also called the max-plus semiring and is denoted by T. It has been an active area of study in
its own right since the 1970s [4] and has broad applications in many different areas of science (see [1-5]). From
an algebraic perspective, a key object is the multiplicative semigroup of all square matrices of a given size over
the tropical algebra. In particular, Green’s relations of the multiplicative semigroup have been studied by some
authors in recent years (see [7, 10, 11]). In 2011 Johnson and Kambites [10] studied the algebraic structure of the
multiplicative semigroup of all 2 x 2 tropical matrices. They gave a complete description of Green’s relations,
idempotents, and maximal subgroups of this semigroup. In 2012 Hollings and Kambites [7] gave a complete
description of Green’s relation 2 for the multiplicative semigroup of all n X n tropical matrices. Johnson and
Kambites [11] studied Green’s _# -order and _# -equivalence for the semigroup of all n x n matrices over the
tropical semiring.

As usual, the set of all m xn tropical matrices is denoted by M« (T). In particular, we shall use M, (T)
instead of M,,«,(T). The operations @ and ® on T induce corresponding operations on tropical matrices in
the obvious way. For brevity, we shall write AC in place of A ® C. It is easy to see that (M,(T),®) is a
semigroup. Other concepts such as transpose and block matrix are defined in the usual way. For convenience,

we refer to a matrix as a tropical matrix in the remainder of this paper. The Green relations %, ., and &
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on the set of matrices with entries in tropical semiring T are defined as follows:

AZB < (3X,Y)A=BX, B=AY;
AYB & (3X,Y)A=XB, B=YA,
A9B < (3C)AZC, C.£DB;

A#B & AZ%B, ALB;

where A, B, X, Y, C are (possibly rectangular) matrices with entries in T. These relations are classical (and
of great importance) in semigroup theory; see, e.g., [8]. Of course, the set of matrices with entries in T is not
a multiplicative semigroup because the product of two matrices is not defined if the size is incompatible. The
X -class (L -class, F-class, and Z-class resp.) containing matrix A will be written Ra(La, Ha, and Dy
resp.).

The aim of this paper is to study the nonsingular regular Z-classes of the semigroup of n x n tropical
matrices. Some preliminary results are presented in Section 2. In Section 3, we study Green’s relation  on
the set of matrices with entries in T. Based on this, we give the characterization of the nonsingular regular

9 -classes of the semigroup of n x n tropical matrices in Section 4.

2. Preliminaries
Let T™ denote the direct product of n copies of T. Then T" forms a semiring and can be viewed as a
T-semimodule [1]. Each element of this semimodule is called a vector. A vector a in T" is called a linear

combination of a subset {a1,...,ax} of T™ if there exist mq,...,my € T such that
a=mia] DD mrag.

For a subset S of T", let span(S) denote
{@F mio; |k eN,oa; € S,m; €T, i =1,2,...,k},

where N denotes the set of all natural numbers. Then span(S) is a subsemimodule of T" generated by S.
Recall that the set S is called weakly linearly dependent if there exists a vector a € S such that « is a linear
combination of elements in S\ {a}. Otherwise, S is called weakly linearly independent. A subset {o; |i € I}
of a subsemimodule V of T" is called a weak basis of V if span({e; | i € I}) =V and {«a; | i € I} is weakly
linearly independent.

By Theorem 5 in [12] we immediately have the following.

Lemma 2.1 Let S and S’ be weak bases of a subsemimodule V of T™. Then for each o € S there exists a

unique B8 € S" such that « = mpB for some m € R.

Lemma 2.1 tells us that the cardinalities of any two weak bases for a given subsemimodule of T™ are
same. The cardinality is called the weak dimension of V and is denoted by dim,,V. The column space (row
space, resp.) of an m x n matrix A is the subsemimodule of T™ (T", resp.) spanned by all its columns (rows,
resp.) and is denoted by Col(A) (Row(A), resp.). The column rank (row rank, resp.) of A, denoted by c¢(A)
(r(A), resp.), is dim,Col(A) (dim,Row(A), resp.). An m x n matrix A is called nonsingular if ¢(4) =n
and r(A) = m and otherwise singular.

In the sequel, the following notions and notations are needed.
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o I, denotes the identity matriz, i.e. the n X n matrix whose diagonal entries are 0 and the other entries
are —oo.

o An n x n matrix A is called invertible if there exists an n x n matrix B such that AB=BA=1,. In

this case, B is called an inverse of A and is denoted by A~!.

¢ An n x n matrix is called a monomial matriz if it has exactly one entry in each row and column that is

not equal to —oo.

¢ An n X n matrix is called a permutation matriz if it is formed from the identity matrix by reordering its
columns.

It is well known [6] that an n x n matrix A is invertible if and only if A is monomial. Also, the inverse of a
permutation matrix is its transpose. Denote the set of all n x n monomial matrices by GL,,(T).
For a matrix A, let a;. and a.; denote the ith row and the jth column of A, respectively. As a

consequence, it follows from Lemma 2.1 that:

Corollary 2.2 Let {@.iy,..., Qxi, } and {@.jy, ..., @y} be any two weak bases of Col(A). Then r =k, and

there exists an r X r monomial matriz M such that
[a’*il a*ir] = [a’*jl a*jk]M'

In the remainder of this paper, for simplicity, we use the following notation concerning a matrix A

without further comment:
c¢(A) =rand r(A) = s,

o A® =@, Q] is a submatrix of A such that the set {@.;,,..., @4, } is a weak basis of Col(A) ;
Qj+

o« A" = is a submatrix of A such that the set {@j,,..., a; .} is a weak basis of Row(A) ;
aj,x

o A denotes the s x r submatrix of A lying in A° and A".

The submatrix A is called a basis submatriz of A. For any nonzero matrix A we have that c¢(A) > 0 and
r(A) > 0. It is easy to see that c¢(A) = ¢(A) = the number of columns of A, and that 7(A) = r(A) = the

number of rows of A.

3. Green’s 2 relations

In this section, we discuss Green’s 2 relation. First, we need the following result.

Lemma 3.1 Let A and B denote two matrices with entries in T. Then the following statements are equivalent:
(i) AZ B;
(i) Col(A) = Col(B);

(i) (3 M € GL,(T)) B = A°M .
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Proof The equivalence of (i) and (ii) was proved by Theorem 100 in “Two lectures on max-plus algebra”
(http://amadeus.inria.fr/gaubert).

Suppose that Col(A) = Col(B). Then we have that the columns of A¢ and B¢ are both weak bases of
Col(A). Tt follows that

Col(A) = Col(B) <= (I M € GL.(T)) B = A°M  (by Corollary 2.2).

The dual of Lemma 3.1 for relation .Z is clear.
Lemma 3.2 Let A and B denote two matrices with entries in T. Then the following statements are equivalent:
(i) A2 B;
(i) A9 B;
(i) (3N € GLy(T),M € GL,(T)) B= NAM .

Proof We need to prove it only for any nonzero matrices A and B. Since (PAQ) % A for any permutation

matrices P and @), we may assume that

A Al . [B B
A‘{AQ Ag]’B_{BQ Bg}’

where A, B are basic submatrices and A;, B; are of appropriate sizes for i = 1,2, 3.

(i) <= (ii). Suppose that A2 B. Since

A
Col({ Ay }) = Col(A),
: A : A = A .
it follows that A% N by Lemma 3.1. Since Row( N ) = Row(A), we have that 2 Z A by the
2 2 2

dual of Lemma 3.1. Thus, A2 A. Similarly, B 2 B. Therefore, A2 B is equivalent to A% Bj£
(ii) < (iii). (ii) is equivalent to
AZC and C ¥ B (3.1)

for some nonsingular matrix C'.
Suppose that (3.1) holds. Then (3.1) implies that

A=CM~"'and B= NC
for some monomial matrix M and some monomial matrix N by Lemma 3.1 and its dual. Thus, we obtain that
NAM = B.
If (iii) holds, then there exist two monomial matrices N and M such that NAM = B. Hence, (3.1)
holds for C = AM . O

As a consequence, we have the following.

Corollary 3.3 Let A denote a matriz with entries in T. If AP B, then r(A) =r(B) and c(A) = ¢(B).
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An m x n matrix A is regular if there exists an n x m matrix X such that AXA = A. An n X n matrix
A is idempotent if A2 = A. In [8] Proposition 3.2, we know that in a regular Z-class each %-class and each
£ -class contains at least one idempotent. Let F be an n X n idempotent matrix. If B € Dg, then by Lemma
3.2 we have

C CH
b=Q [ WC WCH ] P

where C € D, P and @) are permutation matrices, and H and W are matrices of appropriate sizes. Hence,
the regular Z-class Dg is determined by Dg. We will study the nonsingular regular Z-classes in the next
section.

4. Nonsingular regular Z-classes

In this section, we discuss the nonsingular regular Z-classes of the semigroup (M, (T), ®). The Z-class (£-
class, ¢ -class, and Z-class resp.) in the semigroup (M, (T), ®) is the restriction of the corresponding class in
U1 U2y Myyxn(T) . If a matrix of a regular Z-class is nonsingular, then by Corollary 3.3 and Proposition
3.1 in [8] we have that the matrices of this Z-class are all nonsingular regular matrices. We call the Z-class
nonsingular regular Z-classes.

Next, recall the partial order [3] < on M, xn(T) by

A< B<+<—= A9 B=B0B.

Lemma 4.1 ([3]) Let A, B be m x n matrices, let X be an n x p matriz, and let Y be a p x m matriz.

Then the following statements hold.
(i) ASKA® B;
(i) If A< B, then AX <BX and YA<YB.
Lemma 4.2 If E = (e;;) is an n x n idempotent matriz, then e; <0 for all 1 <i<mn.
Proof Let E = (e;j)nxn be an idempotent matrix. Then for any 1 <14 < n,
ei ®ei < (€1 ®e1) DD (e ®ei) B D (€in ® €ni) = €4
This implies that e; < 0. O
Lemma 4.3 Let E = (e;5) be an n x n idempotent matriz. If e;; <0 for some i € {1,2,...,n}, then the ith

column (row, resp.) of E is a linear combination of the remaining columns (rows, resp.). Furthermore, the

matriz obtained from E by deleting the ith column and the ith row is an (n — 1) x (n — 1) idempotent matriz.

Proof Let E = (e;;)nxn be an idempotent matrix. Suppose that e;; < 0 for some 1 < ¢ < n. Without loss

eir Ero

of generality, we assume that e;; < 0. Partition E as
Ey1  Ey

} . Then we have

p2_ | eu®en @ E1oF21  e11E12 @ Ei1aFoo } _ [ er1  FEro }

Esie11 ® EooFoy Ey1E12 @ E3, Ey Ep

2065



YANG /Turk J Math

This implies that

[ B9y E2E2 } _ [ eir Ero }
EyEy  Eg1E12® E3, Ey Ey |’

since ey;; < 0. Thus, it follows that

e1l Ei2Fo Eia
= e E 4.1
[ Fx ] { Ep By } [ Fo ] 21, (4-1)
[ e11 Fi | =[ EeEByn E1oEy | =Ep| Ea B |, (4.2)
Es E1y ® E3, = Eo. (4.3)

Equation (4.1) ((4.2), resp.) tells us that the 1st column (the 1st row, resp.) of E is a linear combination of

the remaining columns (rows, resp.). By Lemma 4.1 and (4.3), we have
E§2 S E22 and E21E12 S EQQ. (44)

Thus, it follows by (4.4) and Lemma 4.1 that Eg1E1s = Eo1 E19E2 < E32,, since E1aE = E1a. We therefore
have

E22 = E21E12 ©® E222 S E222 &) E;Z = ESQ (45)
by Lemma 4.1. Thus, (4.4) and (4.5) tell us that E3, = Eas. O

The above lemma tells us that if £ = (e;;) is an n x n idempotent matrix and e;; < 0 for some 1 < i < n,
then ¢(E) < n and r(E) < n. Thus, by Lemmas 4.2 and 4.3, we immediately have the following result, which

was obtained previously in [9] by a different method.
Corollary 4.4 All main diagonal entries of a nonsingular idempotent matrix are 0.

Proposition 4.5 Let E be a nonsingular idempotent matriz. If there exists a monomial matriz M , such that
EME =FE, then M = 1,.

Proof Suppose that E = (e;;) is an n x n nonsingular idempotent matrix and that there exists a matrix M,
such that EME = E . Tt follows that EM is idempotent and £ % EM . Thus, by Corollary 3.3 we can see
that EM is a nonsingular idempotent matrix. It follows by Corollary 4.4 that the main diagonal entries of F
and EM are all 0. Since EME =FE, M;; < (EME);; = E;j, and so M < E. Hence,

EM<E?’=E (4.6)
by Lemma 4.1 (ii). It follows by (EM)E(EM) = EM that E;; < (EM)E(EM));; = (EM),;. Thus,
E < EM. (4.7)

(4.6) and (4.7) tell us that EM = E.

Finally, assume that M is monomial. If M is not diagonal, it follows from EM = E that there exist two
distinct indices j and [ such that e.; = ae,; for some real number a, a contradiction, since E is nonsingular.
Then M is diagonal and hence M = I,,. O
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Proposition 4.6 Let E be a nonsingular idempotent matrix. If F is an idempotent matriz in Dg, then there

exists a monomial matrizc M such that F = MEM 1.

Proof Suppose that E and F' are nxn nonsingular idempotent matrices. If F' € D, then, by Lemma 3.2, we
can show that = MEN for some M, N € GL,(T). Thus, it follows that MEN = F = F? = MENMEN .

This implies that £ = EMNE. Hence, we have by Proposition 4.5 that MN = I, and so F = MEM™'.
This completes the proof. O

The following result is a corollary of Theorem 5.7 in [9]. We note that our result is obtained by elementary

matrix techniques.

Proposition 4.7 Any nonsingular regular % -class (£ -class, resp.) contains a unique idempotent.

Proof Suppose that R4 is a nonsingular regular Z%-class. Then by Proposition 3.2 in [8] there exists a
nonsingular idempotent matrix F such that R4 = Rg. If F is an idempotent matrix in Rg, then by Lemma
3.1 we can show that F = EM for some monomial matrix M. Thus, EM = F = F? = EMEM and so
E = EME. It follows by Proposition 4.5 that M = I,,. Hence, F = E. A similar argument establishes that

there exists a unique idempotent in each nonsingular regular #-class. O

Lemma 4.8 Let E be a nonsingular idempotent matriz. If there exist monomial matrices My and My such
that EMl = MQE, then Ml = Mg .

Proof Let E be an n X n nonsingular idempotent matrix. Suppose that there exist monomial matrices M;
and M, such that EM; = MsE. Then we have

EM, = MoE = E = Mo EM;*
= MyEM;'MyEM; ' = MyEM;*
= EM;'MyE=E
— M;'M, =1, (by Proposition 4.5)
= M, = M.

Lemma 4.9 If E is a nonsingular idempotent, then the set
Cr(GL,(T))={M € GL,(T) | EM = ME}
is a subgroup of the group GL,(T).

Proof Suppose that E is a nonsingular idempotent. Since EI, = I, E = E we have that I, € Cg(GL,(T)).
If My, My € Cg(GL,(T)), then EMy = M1 E, EMy = M>E, and it follows that

EMiMy; = M1 EMy; = M1 MyFE,
and so MMy € Cg(GL,(T)). If M € Cg(GL,(T)), then EM = ME, and so
M'E=EM™".
Thus, M~ € Cg(GL,(T)). Hence, Cg(GL,(T)) is a subgroup of GL,(T). O
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Proposition 4.10 Let E be an n X n nonsingular idempotent matriz. Then
Hp ={A|(3M € Cg(GL,(T))A = ME}.

Proof Suppose that E is an nxn nonsingular idempotent matrix. Then Hg = {EM | M € GL,(T)}N{ME |
M e GL,(T)} and so Hg = {A | 3M, N € GL,(T))A = NE = EM}. It follows by Lemma 4.8 that
Hgp={A|(3M € Cg(GL,(T)))A=ME = EM}. m|

Proposition 4.11 Let E be a nonsingular idempotent matriz and F be an idempotent matriz in Dg. Then

there exists a monomial matriz M such that
Hp ={MBM™"|B¢c Hg}.

Proof Suppose that E is an n x n nonsingular idempotent matrix and F' is an idempotent n X n matrix in
Dg. Then by Proposition 4.6 we have that there exists a monomial matrix M such that F = MEM . It
follows by Proposition 4.10 that

Hp ={A| (3M € GL,(T))A = MF = FM}

and that
Hp={A|(3M € GL,(T))A=ME = EM}.

If A€ Hp, then there exists a monomial matrix M7 such that A = FM; = M1 F. Then
FM, = M\F <= MEM *M; = M\MEM "
<~ EM ‘MM =M 'M\ME
«— EM~'M,M € Hg.

It follows that A= MEM ~'M; = M(EM~*M;M)M~! andso A€ {MBM~! | B € Hg}. Thus, we can see
that Hp C {MBM~'| B € Hg}. A similar argument establishes that {MBM~! | B€ Hg} C Hp . O

We define a relation ¢ on the set GL, (T) x GL,(T) as follows:

(M1, N1)o(My, Ny) <= M; ' My, NyNy~t € Cg(GL,(T)).

Lemma 4.12 If E is a nonsingular idempotent, then o is a equivalence relation on the set GL,(T)x GL,(T).

Proof Suppose that E is a nonsingular idempotent. If (M, N) € GL,,(T) x GL,(T), then by Lemma 4.9, we
have that
M™M= NN~ =1, € Cg(GL,(T)),

and so (M, N)o(M,N).
If (Mlle), (MQ,NQ) S GLn(T) X GLn(T) and (Ml,Nl)Q(MQ,NQ), then

My~ "Mz, NyNo~! € Cp(GLy(T)).
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It follows by Lemma 4.9 that
My My, NoN, ! € Cp(GL,(T)).

This implies that (Ma, No)o(My, Ny).
Finally, if (M7, N1)o(Ma, No) and (Ma, N2)o(Ms, N3), then
My~ Ma, NyNo =t My~ M3, NaN3 =t € Cp(GL,(T)),

and so
My ' Ms = My *MyMy ™' M3 € Cp(GL,(T)),

NiN;~!' = Ny No "Ny N3t € Op(GL,(T)).

Hence, (Ml, Nl)Q(Mg, Ng) .
We have therefore proved that ¢ is an equivalence relation on the set GL,(T) x GL,(T). O

Lemma 4.13 Let E be a nonsingular idempotent matriz. If A, B € Dg, then there exist monomial matrices
My, My, N1, No such that A= M{EN,, B = MsEN,. Further,
Hjy = Hp < (M1, N1)o(Mas, Ns).
Proof If F is a nonsingular idempotent matrix and A, B € Dg, then by Lemma 3.2 we can see that
A=MEN;,B= MyEN,
for some monomial matrices My, Ny, Ms, and No. Then
Hiy=Hp < Hu,en, = Hu,EN,
<= M1 EN MyE N>
< M1EN1.ZLMsFENy, My EN1ZMsFE N,
<~ (35, T € GL,(T))M1EN, = SMyENo, M1 ENy = Mo EN>T (by Lemma3.1)
= (38,7 € GL,(T))EN, Ny~ ! = My *SMyE, EN; T 'Ny ™' = M, ' MyE
= (38,7 € GL,(T))M; *SMy = N;N, ' € C(GL,(T)),
NiT YNy, = My My € Cp(GL,(T)) (by Lemma 4.8)
= M, 'My, NyN, ! € Cg(GL,(T)) (by Lemma 4.9)
= (M7, N1)o(Ma, Ns).

Conversely, if (M7, Ny)o(Ms, N3), then M; =My, NyNy~t € Cg(GL,(T)), and so
MEN; = M{EN,Ny, !Ny = MiN; Ny ' ENy = (M NNy~ ' My ') My ENs,

MEN; = MyMy, 'MyENy; = MyEMy ' My Ny = MyENy(Ny ™' My~ M, Ny).

Thus, MlENlijQENQ.
Hence, we have therefore proved that Hy = Hp if and only if (M7, N1)o(Ma, Na). O

By Lemma 3.2 and Lemma 4.13, we now have the following result:
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Theorem 4.14 Let E be a nonsingular idempotent matriz. Then

Dg = U{HMEN | (M, N)o € (GLn(T) x GL,(T))/o}-

Hp Hgn, Hgn,
Hy —1gp | Hy—1gn, | Hy,-16n,
HNgflE HN271EN1 HN271EN2

References

[1] Akian M, Gaubert S, Guterman A. Linear independence over tropical semirings and beyond. Contemp Math 2009;
495: 1-38.

[2] Bapat RB. Structure of a nonnegative regular matrix and its generalized inverse. Linear Algebra Appl 1998; 268:
31-39.

[3] Butkovi¢ P. Max-linear Systems: Theory and Algorithms. London, UK: Springer-Verlag, 2010.

[4] Cuninghame-Green RA. Minimax Algebra. Lecture Notes in Economics and Mathematical Systems, Vol. 166. Berlin,
Germany: Springer, 1979.

[5] D’Alessandro F, Pasku E. A combinatorial property for semigroups of matrices. Semigroup Forum 2003; 67: 22-30.

[6] Ellis A. Classification of conics in the tropical projective plane. MSc, Brigham Young University, Provo, UT, USA,
2005.

[7] Hollings C, Kambites M. Tropical matrix duality and Green’s 2 relation. J London Math Soc 2012; 86: 520-538.
[8] Howie JM. Fundamentals of Semigroup Theory. London, UK: Clarendon Press, 1995.
[9] Izhakian Z, Johnson M, Kambites M. Pure dimension and projectivity of tropical polytopes. Adv Math 2016; 303:

1236-1263.

[10] Johnson M, Kambites M. Multiplicative structure of 2 x 2 tropical matrices. Linear Algebra Appl 2011; 435:
1612-1625.

[11] Johnson M, Kambites M. Green’s _# -order and the rank of tropical matrices. J Pure Appl Algebra 2013; 217:
280-292.

[12] Wagneur E. Moduloids and pseudomodule 1. Dimension theory. Discrete Math 1991; 98: 57-73.

2070



	Introduction
	Preliminaries
	Green's D relations
	Nonsingular regular D-classes 

