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Abstract: In this paper, using the Calkin–Gorbachuk method, the general form of all self-adjoint operators generated
by first order linear singular multipoint quasi-differential expressions in the direct sum of weighted Hilbert spaces of
vector functions has been found. Later on, the geometry of the spectrum set of these type extensions was researched.
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1. Introduction

The general theory of self-adjoint extensions of linear densely-defined closed symmetric operators in any Hilbert
space was mentioned for the first time in the mathematical literature in famous works of Neumann [12] and Stone
[14]. Application to scalar linear even order symmetric differential operators and description of all self-adjoint
extensions in terms of boundary values was done by Glazman in his seminal work [5] and by Naimark [11] in
his book. It is noteworthy to mention that Glazman–Krein–Naimark (or Everitt–Krein–Glazman–Naimark)
theorem is very important in the mathematical literature. The Calkin–Gorbachuk method is also another
important method in this area (see [6,13]).

Our major motivation originates from some interesting researches [2–4,15] on scalar cases.
In the present study, the representation of all self-adjoint extensions of the multipoint symmetric quasi-

differential operators is obtained. These operators are generated by first order symmetric quasi-differential
operator expression in the space of the direct sum of weighted Hilbert spaces of vector functions defined on the
semiinfinite intervals. In Section 3, we study them in the sense of abstract boundary values. In Section 4, we
also examine the spectrum of these self-adjoint extensions.

For the differential operators in Hilbert space three questions are important:
(1) Is this operator symmetric?
(2) What are the boundary conditions by which it is generated?
(3) What is the spectrum of this operator? (see [15])
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2. Statement of the problem
Let H be a separable Hilbert space and a1 , a2 ∈ R . In the Hilbert space

H = L2
ω1
(H, (−∞, a1))⊕ L2

ω2
(H, (a2,∞))

of vector functions on (−∞, a1)∪(a2,∞) , consider the following linear multipoint differential operator expression
for first order in the form

l(u) = (l1(u1), l2(u2)),

where u = (u1, u2) ,

l1(u1) = i
α1

ω1
(α1u1)

′
+A1u1,

l2(u2) = i
α2

ω2
(α2u2)

′
+A2u2,

where:
(1) α1, ω1 : (−∞, a1) → (0,∞) , α2, ω2 : (a2,∞) → (0,∞) ;
(2) α1, ω1 ∈ C(−∞, a1) , α2, ω2 ∈ C(a2,∞) ;

(3)
∫ a1

−∞
ω1(t)
α2

1(t)
dt = ∞ ,

∫∞
a2

ω2(t)
α2

2(t)
dt = ∞ ;

(4) A1 : D(A1) ⊂ H → H and A2 : D(A2) ⊂ H → H are linear self-adjoint operators.
The minimal L10 (L20 ) and maximal L1 (L2 ) operators associated with differential expression l1 ( l2 )

in L2
ω1
(H, (−∞, a1)) (L2

ω2
(H, (a2,∞))) can be constructed by using the same technique in [7].

The operators L0 = L10⊕L20 and L = L1⊕L2 in the Hilbert space H are called minimal and maximal
operators associated with differential expression l(·) , respectively. It is clear that the operator L0 is symmetric
and L∗

0 = L in H . One can easily see that the operator L0 is not maximal. Furthermore, differential expression
l(·) with boundary condition (α2u2)(a2) = (α1u1)(a1) generates a self-adjoint extension of L0 .

Our aim in this paper is to obtain all self-adjoint extensions of the minimal operator L0 in H in terms
of boundary values and examine the spectrum of them.

3. Description of all self-adjoint extensions

In this section, we will study the abstract representation of all self-adjoint extensions of the minimal operator
L0 in terms of boundary values using the method of Calkin and Gorbachuk.

Let us prove the following auxiliary result we will need:

Lemma 1 The deficiency indices of the operators L10 and L20 are in form

(m(L10), n(L10)) = (dimH, 0),

(m(L20), n(L20)) = (0, dimH).

Proof The general solutions of differential equations can be given as follows:

i
α1(t)

ω1(t)
(α1u

±
1 )

′
(t)± iu±

1 (t) = 0, t < a1,
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i
α2(t)

ω2(t)
(α2u

±
2 )

′
(t)± iu±

2 (t) = 0, t > a2,

where

u±
1 (t) =

1

α1(t)
exp

(
±
∫ a1

t

ω1(s)

α2
1(s)

ds

)
f1, t < a1, f1 ∈ H,

u±
2 (t) =

1

α2(t)
exp

(
∓
∫ t

a2

ω2(s)

α2
2(s)

ds

)
f2, t > a2, f2 ∈ H,

respectively.
Then we obtain that

∥u+
2 ∥2L2

ω2
(H,(a2,∞)) =

∫ ∞

a2

∥u+
2 (t)∥2Hω2(t)dt

=

∫ ∞

a2

∥ 1

α2(t)
exp

(
−
∫ t

a2

ω2(s)

α2
2(s)

ds

)
f2∥2Hω2(t)dt

=

∫ ∞

a2

ω2(t)

α2
2(t)

exp

(
−2

∫ t

a2

ω2(s)

α2
2(s)

ds

)
dt∥f2∥2H

=

∫ ∞

a2

exp

(
−2

∫ t

a2

ω2(s)

α2
2(s)

ds

)
d

(∫ t

a2

ω2(s)

α2
2(s)

ds

)
∥f2∥2H

=
1

2

(
1− exp

(
−2

∫ ∞

a2

ω2(s)

α2
2(s)

ds

))
∥f2∥2H =

1

2
∥f2∥2H < ∞.

By simple calculations, we also have that

u−
2 (t) =

1

α2(t)
exp

(∫ t

a2

ω2(s)

α2
2(s)

ds

)
f2 /∈ L2

ω2
(H, (a2,∞)).

Consequently, the deficiency indices of the operator L20 can be expressed in the following form:

(m(L20), n(L20)) = (0, dimH).

By using the same technique, one can also show that

(m(L10), n(L10)) = (dimH, 0),

which completes the proof. 2

From the last assertion, it is obvious that

m(L0) = m(L10) +m(L20) = dimH

and
n(L0) = n(L10) + n(L20) = dimH.

Consequently, the symmetric minimal operator L0 has a self-adjoint extension (see [6]).
In order to describe all self-adjoint extensions of the minimal operator L0 , it is necessary to construct a

space of boundary values for it.
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Definition 1 [6] Let H be any Hilbert space and S : D(S) ⊂ H → H be a closed densely defined symmetric
operator on the Hilbert space having equal finite or infinite deficiency indices. A triplet (H, γ1, γ2) , where H is
a Hilbert space and γ1 and γ2 are linear mappings from D(S∗) into H , is called a space of boundary values for
the operator S , if for any f, g ∈ D(S∗)

(S∗f, g)H − (f, S∗g)H = (γ1(f), γ2(g))H − (γ2(f), γ1(g))H

while for any F,G ∈ H , there exists an element f ∈ D(S∗) such that γ1(f) = F and γ2(f) = G .

It is known that for any symmetric operator with equal deficiency indices, we have at least one space of
boundary values (see [6]).

Theorem 1 The triplet (H, γ1, γ2) , where

γ1 : D(L) ⊂ H → H, γ1(u) =
1√
2
((α1u1)(a1)− (α2u2)(a2)), u = (u1, u2) ∈ D(L),

γ2 : D(L) ⊂ H → H, γ2(u) =
1

i
√
2
((α1u1)(a1) + (α2u2)(a2)), u = (u1, u2) ∈ D(L)

is a space of boundary values of the minimal operator L0 in H .

Proof In this case, for any u = (u1, u2) and v = (v1, v2) from D(L) one can easily check that

(Lu, v)H − (u, Lv)H = (i
α1

ω1
(α1u1)

′
+A1u1, v1)L2

ω1
(H,(−∞,a1)) + (i

α2

ω2
(α2u2)

′
+A2u2, v2)L2

ω2
(H,(a2,∞))

− (u1, i
α1

ω1
(α1v1)

′
+A1v1)L2

ω1
(H,(−∞,a1)) − (u2, i

α2

ω2
(α2v2)

′
+A2v2)L2

ω2
(H,(a2,∞))

= (i
α1

ω1
(α1u1)

′
, v1)L2

ω1
(H,(−∞,a1)) + (A1u1, v1)L2

ω1
(H,(−∞,a1))

+ (i
α2

ω2
(α2u2)

′
, v2)L2

ω2
(H,(a2,∞)) + (A2u2, v2)L2

ω2
(H,(a2,∞))

− (u1, i
α1

ω1
(α1v1)

′
)L2

ω1
(H,(−∞,a1)) − (u1, A1v1)L2

ω1
(H,(−∞,a1))

− (u2, i
α2

ω2
(α2v2)

′
)L2

ω2
(H,(a2,∞)) − (u2, A2v2)L2

ω2
(H,(a2,∞))

= i

[
(
α1

ω1
(α1u1)

′
, v1)L2

ω1
(H,(−∞,a1)) + (u1,

α1

ω1
(α1v1)

′
)L2

ω1
(H,(−∞,a1))

]
+ i

[
(
α2

ω2
(α2u2)

′
, v2)L2

ω2
(H,(a2,∞)) + (u2,

α2

ω2
(α2v2)

′
)L2

ω2
(H,(a2,∞))

]
= i

[∫ a1

−∞
(
α1

ω1
(α1u1)

′
, v1)Hω1(t)dt+

∫ a1

−∞
(u1,

α1

ω1
(α1v1)

′
)Hω1(t)dt

]

+ i

[∫ ∞

a2

(
α2

ω2
(α2u2)

′
, v2)Hω2(t)dt+

∫ ∞

a2

(u2,
α2

ω2
(α2v2)

′
)Hω2(t)dt

]
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= i

[∫ a1

−∞
((α1u1)

′
, (α1v1))Hdt+

∫ a1

−∞
((α1u1), (α1v1)

′
)Hdt

]

+ i

[∫ ∞

a2

((α2u2)
′
, (α2v2))Hdt+

∫ ∞

a2

((α2u2), (α2v2)
′
)Hdt

]

= i

(∫ a1

−∞
((α1u1), (α1v1))

′

Hdt+

∫ ∞

a2

((α2u2), (α2v2))
′

Hdt

)
= i [((α1u1)(a1), (α1v1)(a1))H − ((α2u2)(a2), (α2v2)(a2))H ]

= (γ1(u), γ2(v))H − (γ2(u), γ1(v))H .

Now let f1, f2 ∈ H . Let us find the function u = (u1, u2) ∈ D(L) such that

γ1(u) =
1√
2
((α1u1)(a1)− (α2u2)(a2)) = f1

and

γ2(u) =
1

i
√
2
((α1u1)(a1) + (α2u2)(a2)) = f2.

From this we can obtain that

(α1u1)(a1) =
(if2 + f1)√

2
, (α2u2)(a2) =

(if2 − f1)√
2

If we choose the functions u1(·) and u2(·) as

u1(t) =
1

α1(t)
exp

(
−
∫ a1

t

ω1(s)

α2
1(s)

ds

)
(if2 + f1)√

2
, t < a1,

u2(t) =
1

α2(t)
exp

(
−
∫ t

a2

ω2(s)

α2
2(s)

ds

)
(if2 − f1)√

2
, t > a2

then it is obvious that (u1, u2) ∈ D(L) and γ1(u1) = f1 , γ2(u2) = f2 . 2

With the use of the Calkin–Gorbachuk method [6], we obtain the following:

Theorem 2 If L̃ is a self-adjoint extension of the minimal operator L0 in H , then it is generated by the
differential operator expression l = (l1, l2) and the boundary condition

(α2u2)(a2) = W (α1u1)(a1),

where W : H → H is a unitary operator. Moreover, the unitary operator W in H is determined uniquely by
the extension L̃ , i.e. L̃ = LW , and vice versa.

Proof It is known that all self-adjoint extensions of the minimal operator L̃0 are described by the differential-
operator expression l = (l1, l2) with boundary condition

(V − E)γ1(u) + i(V + E)γ2(u) = 0, u = (u1, u2) ∈ D(L),
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where V : H → H is a unitary operator. Therefore, from Lemma 3.3, we obtain

(V − E)
1√
2
((α1u1)(a1)− (α2u2)(a2)) + i(V + E)

1

i
√
2
((α1u1)(a1) + (α2u2)(a2)) = 0.

Hence it is obtained that
(α2u2)(a2) = −V (α1u1)(a1).

Choosing W = −V in the last boundary condition we have

(α2u2)(a2) = W (α1u1)(a1).

2

4. Spectrum of self-adjoint extensions
In this section we will investigate the structure of the spectrum of the self-adjoint extension LW of the minimal
operator L0 in H .

Theorem 3 The point spectrum σp(LW ) of the self-adjoint extension LW is empty.

Proof Let us consider the following eigenvalue problem defined by

l(u) = λu, u = (u1, u2) ∈ H, λ ∈ R,

with boundary condition
(α2u2)(a2) = W (α1u1)(a1).

Then we have
iα1(t)
ω1(t)

(α1u1)
′
(t) +A1u1(t) = λu1(t), t < a1,

iα2(t)
ω2(t)

(α2u2)
′
(t) +A2u2(t) = λu2(t), t > a2,

(α2u2)(a2) = W (α1u1)(a1).

The general solutions of these differential equations are as follows:

u1(t;λ) =
1

α1(t)
exp

(
−i(A1 − λE)

∫ a1

t
ω1(s)
α2

1(s)
ds
)
f
(1)
λ , f

(1)
λ ∈ H, t < a1,

u2(t;λ) =
1

α2(t)
exp

(
i(A2 − λE)

∫ t

a2

ω2(s)
α2

2(s)
ds
)
f
(2)
λ , f

(2)
λ ∈ H, t > a2.

In this case

∥u1(t;λ)∥2L2
ω1

(H,(−∞,a1))
= ∥ 1

α1(t)
exp

(
−i(A1 − λE)

∫ a1

t

ω1(s)

α2
1(s)

ds

)
f
(1)
λ ∥2L2

ω1
(H,(−∞,a1))

=

∫ a1

−∞

ω1(t)

α2
1(t)

dt∥f (1)
λ ∥2H = ∞

and

∥u2(t;λ)∥2L2
ω2

(H,(a2,∞)) = ∥ 1

α2(t)
exp

(
i(A2 − λE)

∫ t

a2

ω2(s)

α2
2(s)

ds

)
f
(2)
λ ∥2L2

ω2
(H,(a2,∞))

=

∫ ∞

a2

ω2(t)

α2
2(t)

dt∥f (2)
λ ∥2H = ∞.
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Then one can notice that u1(·, λ) /∈ L2
ω1
(H, (−∞, a1)) and u2(·, λ) /∈ L2

ω2
(H, (a2,∞)) .

Consequently, we obtain that σp(LW ) = ∅ for very unitary operator W in H . 2

Notice that the residual spectrum of any self-adjoint operator in any Hilbert space is empty. Therefore,
it is enough to study the continuous spectrum of the self-adjoint extensions LW of the minimal operator L0 in
H . It is well known that

σ(LW ) ⊂ R

in the theory of linear self-adjoint operators in Hilbert spaces.
One can immediately obtain the following:

Theorem 4 The continuous spectrum σc(LW ) of the self-adjoint extension LW in H coincides with R , i.e.
σc(LW ) = R .

Proof For λ ∈ C, λi = Imλ > 0 and f = (f1, f2) ∈ H one can see that

∥Rλ(LW ))f(t)∥2H = ∥ 1

α1(t)
exp

i(A1 − λE)

t∫
a1

ω1(s)

α2
1(s)

ds

 fλ

+
i

α1(t)

a1∫
t

exp

i(A1 − λE)

t∫
s

ω1(τ)

α2
1(τ)

dτ

 ω1(s)

α1(s)
f1(s)ds∥2L2

ω1
(H,(−∞,a1))

+∥ i

α2(t)

∞∫
t

exp

i(A2 − λE)

t∫
s

ω2(τ)

α2
2(τ)

dτ

 ω2(s)

α2(s)
f2(s)ds∥2L2

ω2
(H,(a2,∞))

≥ ∥ 1

α2(t)

∞∫
t

exp

i(A2 − λE)

t∫
s

ω2(τ)

α2
2(τ)

dτ

 ω2(s)

α2(s)
f2(s)ds∥2L2

ω2
(H,(a2,∞)).

The vector functions f∗(t;λ) have the form f∗(t;λ) =

(
0,

1

α2(t)
exp

(
i(A2 − λ)

t∫
a2

ω2(s)

α2
2(s)

ds

)
f

)
, λ ∈ C ,

λi = Imλ > 0, f ∈ H belong to H. Indeed,

∥f∗(t;λ)∥2H =

∞∫
a2

1

α2
2(t)

∥exp

i(A2 − λ)

t∫
a2

ω2(s)

α2
2(s)

ds

 f∥2Hω2(t)dt

=

∞∫
a2

1

α2
2(t)

exp

−2λi

t∫
a2

ω2(s)

α2
2(s)

ds

ω2(t)dt∥f∥2H

=
1

2λi
∥f∥2H < ∞.
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For such functions f∗(λ; . ) , we have

∥Rλ(LW )f∗(λ; . )∥2H ≥ ∥ i

α2(t)

∞∫
t

1

α2(s)
exp

i(A2 − λE)

t∫
s

ω2(τ)

α2
2(τ)

dτ + i(A2 − λE)

t∫
a2

ω2(s)

α2
2(s)

ds


ω2(s)

α2(s)
fds∥2L2

ω2
(H,(a2,∞))

= ∥ 1

α2(t)
exp

−iλ

t∫
a2

ω2(τ)

α2
2(τ)

dτ + iA2

t∫
a2

ω2(τ)

α2
2(τ)

dτ


∞∫
t

1

α2(s)
exp

−2λi

s∫
a2

ω2(τ)

α2
2(τ)

dτ

 ω2(s)

α2(s)
f(s)ds∥2L2

ω2
(H,(a2,∞))

= ∥ 1

α2(t)
exp

λi

t∫
a2

ω2(τ)

α2
2(τ)

dτ

 ∞∫
t

ω2(s)

α2
2(s)

exp

−2λi

s∫
a2

ω2(τ)

α2
2(τ)

dτ

 ds∥2L2
ω2

(H,(a2,∞))∥f∥
2
H

= ∥ 1

2λiα2(t)
exp

−λi

t∫
a2

ω2(s)

α2
2(τ)

dτ

 ∥2L2
ω2

(H,(a2,∞))∥f∥
2
H

=
1

4λ2
i

∞∫
a2

1

α2
2(t)

exp

−2λi

t∫
a2

ω2(τ)

α2
2(τ)

dτ

 dt∥f∥2H

=
1

8λ3
i

∥f∥2H .

Using the above inequality we get

∥Rλ(LW )f∗(λ; . )∥H ≥ ∥f∥2H
2
√
2λi

√
λi

=
1

2λi
∥f∗(λ; t)∥H,

i.e. for λi = Imλ > 0 and f ̸= 0 we can write

∥Rλ(LW )f∗(λ; . )∥H
∥f∗(λ; t)∥H

≥ 1

2λi

and it is also obvious that

∥Rλ(LW )∥ ≥ ∥Rλ(LW )f∗(λ; . )∥H
∥f∗(λ; t)∥H

, f ̸= 0.

As a consequence, we get

∥Rλ(LW )∥ ≥ 1

2λi
for λ ∈ C, λi = Imλ > 0,

which shows that every λr ∈ R belongs to the continuous spectrum of the extension LW . This completes the
proof. 2
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Note: Some interesting models related to the theory of singular multipoint ordinary self-adjoint operators have
been investigated in [8-10].
Note: When α1 = α2 = 1 , similar results were obtained in [1].
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