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Abstract: In this paper, an integral representation is given for special bounded solutions of pseudoparabolic equations
of the form

Lw :=
∂

∂t

(
wϕ + aw + bw

)
+ cw + dw

by means of a generating pair of the corresponding class of the generalized Q -holomorphic functions in Lp,2(C) , for
p > 2 , where a, b, c, d are functions of z alone.

Key words: Cauchy-type integral representation, generalized Beltrami systems

1. Introduction
An analogue of analytic function theory was developed by Douglis [4] for a more general elliptic system in the
plane while the Cauchy–Riemann equations assume the complex form

wx + iwy + aEwx + bEwy = 0.

Later Bojarskiĭ [3] extended the function theory of Douglis to a more general system, which was written in
following form:

Dw(z) := wz(z)−Q(z)wz(z) = 0, (1.1)

where w is an m×1 vector and Q is an m×m quasidiagonal matrix. He also presumed that all of eigenvalues
of Q are less than 1 . Subsequently, Hile [6] took into consideration Eq. (1.1), taking Q as an m×m complex
matrix and w as an m× s complex matrix. If Q (z) satisfies the property

Q (z1)Q (z2) = Q (z2)Q (z1)

for any two points z1, z2 in the domain Ω0 of Q , we say that Q (z) is self-commuting. More generally, if A
and B are matrix valued functions defined in Ω0 and satify the condition

A (z1)B (z2) = B (z2)A (z1) , for all z1, z2 in Ω0,

then we say that A and B commute in Ω0 . If Q (z) is self-commuting and has no eigenvalues of magnitude 1 for
each z in Ω0 , then Hile called the system (1.1) a generalized Beltrami system and the solutions of such a system
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were called Q -holomorphic functions, which have properties similar to those of the complex analytic functions.
Following Douglis and Bojarskiĭ, Hile introduced the concept of the generating solution for the investigated
Q -holomorphic functions. He referred to the matrix valued function ϕ (z) := ϕ0 (z)+N (z) defined in a domain
Ω0 for a generating solution of (1.1), where N is the nilpotent part of ϕ and ϕ0 is the main diagonal term of
ϕ satisfying the Beltrami equation

∂ϕ0
∂z

− µ
∂ϕ0
∂z

= 0.

Moreover, if a function Φ(z) satisfies the equation DΦ(z) = 0 , then it is called a Q -holomorphic function and
may be written merely as an analytic function of a generating solution, namely Φ(z) ≡ f (ϕ (z)) [6]. Hence,
this relation proposes defining differentiation formally with respect to ϕ as

∂

∂ϕ
=

(
ϕzϕz − ϕzϕz

)−1
[
ϕz

∂

∂z
− ϕz

∂

∂z

]
and differentiation with respect to the conjugate of ϕ as

∂

∂ϕ
=

(
ϕzϕz − ϕzϕz

)−1
ϕzD.

From the above equation, we may write (1.1) in the following form:

∂w

∂ϕ
= 0.

Later in [8, 9], by means of the techniques of Vekua and Bers, a theory of functions was given for the equation

∂w

∂ϕ
+ aw + bw = 0, (1.2)

where the unknown w(z) = {wij(z)} is an m×s complex matrix, Q(z) = {qij(z)} is a self-commuting complex
matrix with dimensions m×m , and qk,k−1 ̸= 0 for k = 2, . . .m . The matrices a = {aij(z)} and b = {bij(z)} ,
which belong to Lp(Ω0) , commute with Q . Solutions of such an equation were called generalized Q-holomorphic
functions. The results obtained in the case of equation (1.2) closely resemble those in the classical theory of
Vekua [10] and Bers [2].

Integral representations of analytic functions appeared in the early phases of the development of mathe-
matical analysis and function theory mainly as proper devices for the explicit representation of analytic solutions
of differential equations. Gilbert and Schneider investigated pseudoparabolic equations in [5] by making use of
the generalized analytic function theory of Vekua [10], which have the following form:

Lw :=
∂

∂t
[wz̄ + Ãw + B̃w̄] + C̃w + D̃w̄,

where Ã, B̃, C̃, D̃ are functions of z only and belong to Lp,2(C) , p > 2 . Lp,2(C) is the space of functions w
that satisfies the following conditions: w(z) is defined in C and

w(z) ∈ Lp(C0), w
(2)(z) := |z|−2w(1/z) ∈ Lp(C0).
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Here, C0 := {z : |z| ≤ 1} . The validity of integral representations reminiscent of representations of generalized
analytic functions was shown. This helps in solving initial-boundary value problems.

In this work, by utilizing a generating pair of the corresponding class of generalized Q-holomorphic
functions, the general solution is given for a pseudoparabolic equation of the form

L[w] := E[wt] +A[w] = 0, (1.3)

where E is an elliptic operator

E[w] := wϕ(z, t) + a(z)w(z, t) + b(z)w(z, t)

and A is an algebraic operator that has the following form:

A[w] := c(z)w(z, t) + d(z)w(z, t),

where the unknown w(z, t) = {wij(z, t)} is an m×s complex matrix. The coefficients a, b, c , and d are m×m
complex matrices commuting with Q and do not depend on the time variable t . They vanish identically in the
unbounded component of C\D̂ where D ⊂ C is a bounded domain.

2. Representations of solutions via fundamental solutions

By means of the Pompeiu operator (see [8], p. 433 ), the pseudoparabolic equation (1.3) may be formulated as
the integral equation

w (z, t) + J
(
a (z)w (z, t) + b (z)w (z, t)

)
+ J

(∫ t

0

(
c (z)w (z, τ) + d (z)w (z, τ)

)
dτ

)
= w (z, 0) + J

(
a (z)w (z, 0) + b (z)w (z, 0)

)
+Ψ(z, t) (2.1)

where

(JF ) (z) = P−1

∫
C
dϕ(ζ)dϕ(ζ) (ϕ (ζ)− ϕ (z))

−1
F (ζ)

and ∂2Ψ
∂ϕ∂t

≡ 0 , where the constant matrix P is defined by

P =

∫
|z|=1

(zI + zQ)
−1

(Idz +Qdz) ,

called the P-value for the generalized Beltrami system ([6], p. 107). Here

Ψ(z, t) =

∞∑
k=0

ϕk (z) ak (t) (z ∈ C, t ∈ R) , Ψ(z, 0) = 0,

and Ψ(z, t) is a differentiable function of t for an m× s matrix function ak of t . A Q -holomorphic version of
Liouville’s theorem can be proven in the same way as in the complex case as we know that

dnw(z)

dϕn
= n!P−1

∫
|ζ−z|=r

dϕ(ζ)(ϕ(ζ)− ϕ(z))−n−1w(ζ)
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for all n and for any r > 0 ([6], p. 115).

For each t ∈ R , Ψ(z, t) is a bounded Q -holomorphic function in C provided that w (z, t) is a bounded
function in C . Thus, Ψ(z, t) is a function of only t . This means that Ψ(z, t) = Ψ (t) by the help of Liouville’s
theorem. In Eq. (2.1), when z goes to ∞ , we easily obtain

Ψ(t) := w (∞, t)− w (∞, 0) , i.e. Ψ(0) = 0.

Therefore, (1.3) is equivalent to the following equation:

w(z, t) + J
(
a(z)w(z, t) + b(z)w(z, t)

)
= −J

(∫ t

0

(
c(z)w(z, τ) + d(z)w(z, τ)

)
dτ

)
+Ψ(t) + φ (z) (2.2)

for bounded solutions. Here

φ (z) := w (z, 0) + J
(
a (z)w (z, 0) + b (z)w (z, 0)

)
. (2.3)

If w is a continuous solution of (2.2), which is bounded in z ∈ C for each t ∈ R , then

Ψ ∈ C(R), φ ∈ C(C).

Now we consider (2.2) for given Ψ ∈ C(R) and φ ∈ C(C) and show that the space of bounded functions in
z ∈ C for each t ∈ R is BC(C× R) .

Lemma 2.1 Let Ψ ∈ C(R) , φ ∈ C(C) , and the coefficients a, b satisfy the inequality∫
C
(∥a(ζ)∥+ ∥b(ζ)∥) dξdη

|ζ − z|
≤ α < 1. (2.4)

Then equation (2.2) has a unique solution in BC(C× R) , where the standard norm of a matrix M = (mij) is
given by

∥M∥2 =
∑
i,j

|mij |2.

Proof Suppose that two solutions of Eq. (2.2) are w1 and w2 , which have the same initial data and the same
asymptotic behavior when z → ∞ . In that case, the difference ω := w1 −w2 is a solution of the homogeneous
equation

ω = Tω :=− J
(
a(z)ω(z, t) + b(z)ω(z, t)

)
− J

(∫ t

0

(
c(z)w(z, τ) + d(z)w(z, τ)

)
dτ

)
.

In addition to the inequality provided by the coefficients a and b , we find an upper bound of∫
C
(∥c(ζ)∥+ ∥d(ζ)∥) dξdη

|ζ − z|
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in terms of β and if we define
∥ω∥1 := sup

z∈C,|t|≤1

∥ω(z, t)∥,

then after some simple calculations, we get

∥Tω∥1 ≤ (α+ β|t|)∥ω∥1.

Thus, as

|t| < min{1, 1− α

β
},

we conclude that T is a contractive operator. Therefore, ω = Tω has only the trivial solution

ω(z, t) ≡ 0 for z ∈ C, |t| ≤ t0 := min{1, 1− α

β
}.

The above statement is true as well for |t| = t0 by virtue of continuity. This conclusion can be extended to read

ω(z, t) ≡ 0 (z ∈ C, t ∈ R)

since the equation (1.3) is an autonomous differential equation with respect to t . 2

Let us denote the class of functions having real derivatives up to order p , which are continuous and
bounded with Bp(C) .

Corollary 2.2 Let w(∞, t) ∈ C(R) , and w(z, 0) ∈ B0(C) . If the inequality (2.4) is fulfilled, then equation
(1.3) has a unique solution in BC(C× R) .

Lemma 2.3 Let Ψ ∈ C1(R) , φ ∈ B1(C), and let the inequality (2.4) hold. Then integral equation (2.2) is
solvable.

Proof This lemma will be proved using iteration. We can rewrite (2.2) in the following form:

w − Tw = Ψ+ φ.

To solve this equation, by the help of iteration method, let us put

w0 := Ψ + φ

wk = Ψ+ φ+ Twk−1, k ∈ N0.

Then the solution of (2.2) can be obtained as

w = lim
k→∞

wk =

∞∑
k=0

Tk (Ψ + φ) .

The series converges because of the estimates

∥∥(Tkw
)
(z, t)

∥∥ ≤
k∑

l=0

(
k

l

)
αk−lβl |t|

l

l!
∥w0∥t ,

( ∥w0∥t = sup
z∈C,|τ |≤|t|

∥w0 (z, τ)∥ ),
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and

∥w (z, τ)∥ ≤
∞∑
k=0

1

k!

(
β |t|
1− α

)k ∥w0∥t
1− α

, (z ∈ C, t ∈ R) .

2

Next we deal with special solutions of (1.3) that are bounded. If the function φ given by (2.3) is a
bounded Q -holomorphic function in C , then φ must be a constant, namely

φ (z) ≡ w (∞, 0) ,

so that
Ψ(t) + φ (z) ≡ w (∞, t) .

Therefore, we can consider the equation
w − Tw = ψ, (2.5)

where ψ is a differentiable function of t in R.
(i) ψ is a real matrix function: the unique solution of (2.5) is represented by

∞∑
k=0

Tkψ =

∞∑
k=0

αkψk

where αk is an m×m complex matrix valued function of z only, and ψk are defined by means of

ψ0 := ψ, ψk (t) :=

∫ t

0

ψk−1 (τ) dτ (k ∈ N) .

The functions αk in solutions of (2.5) are determined using the coefficient functions a, b, c, d of the operator
L . They do not depend on ψ . Since a, b, c, d ∈ Lp,2(C) , p > 2 , J is a compact operator (see [8], p. 445),
and the following recursive system can be solved for k = 1, 2, ... : α0 (z) + J

(
a (z)α0 (z) + b (z)α0 (z)

)
= I

αk (z) + J
(
a (z)αk (z) + b (z)αk (z)

)
= −J

(
c (z)αk−1 (z) + d (z)αk−1 (z)

)
.

(2.6)

Let (F,G) be the generating pair corresponding to the functions (a, b) , and then α0 has to be the function F

on the left ([9], p. 944), and αk s, denoted by Fk, are obtained recursively by solving the system. For a given
real matrix ψ , it can be seen that the solution of (2.5) is given by the following:

F0 := F, (Fψ) (z, t) :=
∞∑
k=0

Fk (z)ψk (t) (z ∈ C, t ∈ R) . (2.7)

(ii) ψ is a pure imaginary matrix function: this case is similar to the case (i). A solution of (2.5) can be
obtained as

G0 := G, (Gψ) (z, t) :=
∞∑
k=0

Gk (z)ψk (t) , (z ∈ C, t ∈ R) (2.8)
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where G is the function on the right-hand side of the generating pair (F,G) and the Gk s are the solutions of
the following system: G0 (z) + J

(
a (z)G0 (z) + b (z)G0 (z)

)
= iI

Gk (z) + J
(
a (z)Gk (z) + b (z)Gk (z)

)
= −J

(
c (z)Gk−1 (z) + d (z)Gk−1 (z)

)
.

(2.9)

The coefficients Fk and Gk , which appeared in (2.7) and (2.8), respectively, are normalized at ∞ by

F0 (∞) = I, G0 (∞) = iI, Fk (∞) = 0, Gk (∞) = 0, (k ∈ N) .

(iii) ψ = ψ1 + iψ2 is a complex matrix function: let w be a solution of

w − Tw = ψ1 + iψ2

where ψ1 and ψ2 are real, differentiable functions of t . Then

w̃ := w − Fψ1 −Gψ2

is a solution of the homogeneous equation
w̃ − Tw̃ = 0.

This is evident from the iterated integration of ψ at initial data

(Fψ1 +Gψ2) (z, 0) = F0 (z)ψ1 (0) +G0 (z)ψ2 (0)

and because of the properties of Fk and Gk , k ∈ N0 , we have

(Fψ1 +Gψ2) (∞, t) = ψ1 (t) + iψ2 (t) = ψ (t)

when z → ∞ . By using the first equations in (2.6) and (2.9) and the corresponding function φ given by (2.3),
we have

φ (z) ≡ ψ (0) .

As a conclusion, w̃ is identically zero. Hence, we have the following representation for the required solution in
the case of ψ being a complex matrix function as

w = Fψ1 +Gψ2.

Let Γ be a rectifiable boundary of bounded domain D and denote the closure of D with D̂ .

Remark 2.4 We introduce a fundamental system χ(k) (z, t; ζ, τ) commuting with Q as a pair of solutions of
(1.3). This system has the power series representation

χ(k) (z, t; ζ, τ) =

∞∑
v=0

χ(k)
v (z, ζ)

(t− τ)
v+1

(v + 1)!
, k = 1, 2, (2.10)

such that the pair
{
χ
(1)
0 (z, ζ), χ

(2)
0 (z, ζ)

}
is a fundamental system for the equation E[w] = 0 obtained in a

similar way to the Vekua system as in [1, 5, 10], where

χ
(k)
0 (z, ζ) =

1

2
(−i)k−1(ϕ(ζ)− ϕ(z))−1 exp[ω(k)(z)− ω(k)(ζ)].
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Here, χ(k)
0 ∈ Bα , α = (p− 2)/p , and ω(k)(z) = O(|z|α) as |z| → ∞ , k=1,2 (see [7]). Substituting this series

into equation (1.3) and equating powers of (t− τ) , we obtain the recursive system

E[χ
(k)
0 (z, ζ)] = 0

E[χ
(k)
v+1(z, ζ)] +A[χ(k)

v (z, ζ)] = 0, (k = 1, 2, v = 0, 1, 2, ...).

From the system of integral equations obtained above, by utilizing the Pompeiu operator we can compute the

following expression for χ(k)
v+1 , (v = 0, 1, 2, ...) :

χ
(k)
v+1(z, ζ) + J(aχ

(k)
v+1 + bχ

(k)
v+1) = −J(cχ(k)

v + dχ
(k)
v ) + Υ

(k)
v+1(z, ζ), v = 0, 1, 2, ...,

where the Υ
(k)
v+1 are arbitrary Q-holomorphic functions. We normalize the χ

(k)
v+1 by setting Υ

(k)
v+1 ≡ 0 .

Definition 2.5 The fundamental kernels Ω(k) of L are

Ω(k) (z, t; ζ, τ) = χ(1) (z, t; ζ, τ) + (−1)
k−1

iχ(2) (z, t; ζ, τ) , k = 1, 2, (2.11)

where χ(1) and χ(2) are the fundamental solutions. Also, from the properties of the matrix norm, the local
behavior of Ω(k) can be obtained similarly to [7] as

∥∥∥Ω(1) (z, t; ζ, τ)− (t− τ) (ϕ (ζ)− ϕ (z))
−1

∥∥∥ = O
(
|z − ζ|−

2
p |t− τ |

)
,

for ζ − z → 0, t− τ → 0, β = 2
p < 1,∥∥Ω(2) (z, t; ζ, τ)

∥∥ = O
(
|z − ζ|−

2
p |t− τ |

)
, ( ζ − z → 0, t− τ → 0, β = 2

p < 1),∥∥Ω(k) (z, t; ζ, τ)
∥∥ = O

(
|z|−1 |t− τ |

)
, (z → ∞, k = 1, 2) .

(2.12)

Definition 2.6 The associated operator, corresponding to operator L given in (1.3), is defined by

L̃v =
∂

∂t
[vϕ̄ − av − b∗bv] + cv + b∗dv

where b∗ is given by b∗ = ϕ−1
z ϕz .

Theorem 2.7 Let w be a solution of (1.3) in D̂×R and have zero initial data w (z, 0) ≡ 0 . If Ω̃(1) and Ω̃(2)

are the fundamental kernels for the associated equation L̃v = 0 , then

P−1

∫
Γ

[
dϕ (ζ) Ω̃(1)

τ (ζ, τ ; z, t)wτ (ζ, τ)− dϕ (ζ) Ω̃
(2)
τ (ζ, τ ; z, t)wτ (ζ, τ)

]
dτ =

{
−wt (z, t) , z ∈ D

0 , z /∈ D̂
, t ∈ R.

Proof The proof is based on a variant of Morera’s theorem. Let w and v be the solutions of (1.3) and
associated equation L̃v = 0 , respectively. If for t = 0 , we have w = 0 and v = 0 , then

Re

(
1

2i

∫
Γ

∫ t

0

dϕ (ζ) vτ (ζ, τ)wτ (ζ, τ) dτ

)
= 0.
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The remaining part of the proof can be obtained as in ([7], Theorem 2.7), so we omit the remaining part of the
proof. 2

Now, if we use the property between the fundamental kernels of (1.3) and the fundamental kernels of the
associated equation, which can be shown by using Definition 2.5 above and Theorem 2.8 given in [7], we have

Ω(1) (z, t; ζ, τ) = −Ω̃(1)
τ (ζ, τ ; z, t) ,

Ω(2) (z, t; ζ, τ) = −Ω̃
(2)
τ (ζ, τ ; z, t) .

Thus, we obtain the following theorem.

Theorem 2.8 A solution of (1.3) in D̂×R , which vanishes identically at initial data, has the following form:

P−1

∫ t

0

∫
Γ

[
dϕ (ζ)Ω(1)

τ (z, t; ζ, τ)wτ (ζ, τ)− dϕ (ζ)Ω(2)
τ (z, t; ζ, τ)wτ (ζ, τ)

]
dτ =

{
w (z, t) , z ∈ D

0 , z /∈ D̂
, t ∈ R.

Let us denote the Riemann sphere by Ĉ and give the following theorem:

Theorem 2.9 If w (z, t) is Q-holomorphic in Ĉ\D̂ for each t ∈ R , w vanishes identically at infinity, and
wt (z, t) is continuous in C\D × R, w (z, 0) ≡ 0, and a = b = c = d = 0 in Ĉ\D̂, then

P−1

∫ t

0

∫
Γ

[
dϕ (ζ)Ω(1)

τ (z, t; ζ, τ)wτ (ζ, τ)− dϕ (ζ)Ω(2)
τ (z, t; ζ, τ)wτ (ζ, τ)

]
dτ =

{
−w (z, t) , z /∈ D̂
0 , z ∈ D

, t ∈ R.

Proof Let GR := {ζ : |ζ| < R} such that 2 |z| < R and D̂ ⊂ GR. Let us take z ∈ C\D̂ , which belongs to
GR . By hypothesis, the coefficients a, b, c, d vanish outside D̂. w is a solution of (1.3) in (GR\D̂)×R . Since
the conditions of Theorem 2.8 are fulfilled, the solution w can be written as

w (z, t) = P−1

∫ t

0

∫
∂(GR−D̂)

{
dϕ (ζ)Ω(1)

τ (z, t; ζ, τ)wτ (ζ, τ)− dϕ (ζ)Ω(2)
τ (z, t; ζ, τ)wτ (ζ, τ)

}
dτ.

In the case of z → ∞ , w (z, t) = O
(
|z|−1

)
, wt (z, t) = O

(
|z|−1

)
. If we consider the above integral in two

parts, the part of the integral taken over |ζ| = R , i.e. on the ∂GR , tends to zero as asymptotic behavior of
fundamental kernels (2.12) as R tends to infinity. If z ∈ D , then the left-hand side of the last equation has to
be replaced by 0 by Theorem 2.8. 2

Theorem 2.10 Let w (z, 0) ≡ 0 and the coefficients a, b, c, d are equal to zero outside D̂ . Then a continuous
solution of (1.3) in D̂ × R may be represented in the form

w (z, t) = P−1

∫ t

0

∫
Γ

{
dϕ (ζ)Ω(1)

τ (z, t; ζ, τ)Ψτ (ζ, τ)− dϕ (ζ)Ω(2)
τ (z, t; ζ, τ)Ψτ (ζ, τ)

}
dτ, (2.13)

where z ∈ D, t ∈ R and

Ψ(z, t) := P−1

∫
Γ

dϕ (ζ) (ϕ (ζ)− ϕ (z))
−1
w (ζ, t) (2.14)

is a Q-holomorphic function of z in D , continuous in D̂, and a continuously differentiable function of t in R .
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Proof Let us rewrite the equation (2.1) in the subsequent form:

w = Tw +Ψ, (2.15)

and take into consideration that Tw is a Q -holomorphic function of z in Ĉ\D̂ and continuously differentiable
with respect to t in R . By the help of the following calculations,

(Tw)(∞, t) ≡ 0, (Tw)(z, 0) ≡ 0,

it is shown that the hypothesis of Theorem 2.9 is fulfilled and as a conclusion of this theorem we have

P−1

∫ t

0

∫
Γ

{
dϕ (ζ)Ω(1)

τ (z, t; ζ, τ) (Tw)τ (ζ, τ)

−dϕ (ζ)Ω(2)
τ (z, t; ζ, τ) (Tw)τ (ζ, τ)

}
dτ = 0.

Ψ is continuous in D̂ × R since w and Tw are continuous functions there and furthermore Ψ is continuously
differentiable with respect to t ∈ R and Q -holomorphic in z ∈ D .

Let us substitute Tw +Ψ into w in (2.13) in Theorem 2.8 and use the last equality to obtain (2.13).

Additionally, (2.14) can be found from the Cauchy integral formula for Q -holomorphic functions by
substituting w − Tw into Ψ where Tw is considered to be Q -holomorphic in Ĉ\D̂ for every t ∈ R and
(Tw)(∞, t) ≡ 0 . 2

Now let us give another representation of solutions of (1.3) using (2.13) and (2.14).

Theorem 2.11 Every solution of (1.3) with a = b = c = d = 0 outside D̂, vanishing identically at t = 0 , may
be represented as

w (z, t) = Ψ (z, t) +

∫ t

0

∫
D

dϕ(ζ)dϕ(ζ)
{
Γ(1)
τ (z, t; ζ, τ)Ψτ (ζ, τ)

+Γ(2)
τ (z, t; ζ, τ)Ψτ (ζ, τ)

}
dτ

where Ψ is given in (2.14) and Γ(k) , k = 1, 2 , are given with the help of fundamental kernels as

Γ(1) (z, t; ζ, τ) := −P−1Ω
(1)

ϕ̄
(z, t; ζ, τ) ,

Γ(2) (z, t; ζ, τ) := −P−1Ω
(2)
ϕ (z, t; ζ, τ) .

Proof Applying Green’s identity for Q -holomorphic functions (see [6], p. 113) to the right-hand side of the
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relation (2.13), we may write

w (z, t) = limε→0

{
− P−1

∫ t

0

∫
Dε
dϕ(ζ)dϕ(ζ)

(
Ω

(1)

ϕ̄τ
(z, t; ζ, τ)Ψτ (ζ, τ)

+Ω
(2)
ϕτ (z, t; ζ, τ)Ψτ (ζ, τ)

)
dτ

}
+ limε→0

{
P−1

∫ t

0

∫
|ζ−z|=ε

(
dϕ (ζ)Ω

(1)
τ (z, t; ζ, τ)Ψτ (ζ, τ)

−dϕ (ζ)Ω(2)
τ (z, t; ζ, τ)Ψτ (ζ, τ)

)
dτ

}
,

where Dε is the intersection of the domains D and |ζ − z| > ε. Taking into account the formulae (2.12), the
proof is completed. 2

Since the χ(k) for k = 1, 2 , which are functions of (ζ, τ) , for a fixed (z, t) , are solutions of the
pseudoparabolic Eq. (1.3), it is clear that Ω(k) are solutions of the following equations:

Ω
(1)

ϕ̄τ
(z, t; ζ, τ)− a (ζ)Ω(1)

τ (z, t; ζ, τ)− b∗(ζ)b (ζ)Ω(2)
τ (z, t; ζ, τ)

+c (ζ)Ω(1) (z, t; ζ, τ) + b∗(ζ)d (ζ)Ω(2) (z, t; ζ, τ) = 0,

Ω
(2)
ϕτ (z, t; ζ, τ)− a (ζ)Ω(2)

τ (z, t; ζ, τ)− b∗(ζ)b (ζ)Ω(1)
τ (z, t; ζ, τ)

+c (ζ)Ω(2) (z, t; ζ, τ) + b∗(ζ)d (ζ)Ω(1) (z, t; ζ, τ) = 0,

and one can rewrite the above equations as

PΓ
(1)
τ (z, t; ζ, τ) = −a (ζ)Ω(1)

τ (z, t; ζ, τ)− b∗(ζ)b (ζ)Ω
(2)
τ (z, t; ζ, τ)

+c (ζ)Ω(1) (z, t; ζ, τ) + b∗(ζ)d (ζ)Ω(2) (z, t; ζ, τ) ,

PΓ
(2)
τ (z, t; ζ, τ) = −a (ζ)Ω(2)

τ (z, t; ζ, τ)− b∗(ζ)b (ζ)Ω
(1)
τ (z, t; ζ, τ)

+c (ζ)Ω(2) (z, t; ζ, τ) + b∗(ζ)d (ζ)Ω(1) (z, t; ζ, τ) ,

(2.16)

where b∗ = ϕ−1
z ϕz .

3. Integral representation of the second-kind solutions

In the previous section, we supposed that the inequality (2.4) holds and got the result under this assumption.
However, unlike preceding considerations, without this restriction, a similar approach can be done. To obtain
another integral formulation, the fundamental kernels Ω(k) (z, ζ) (k = 1, 2) of the equation

wϕ̄ + aw + bw = 0

can be used as given in [7]. Similarly to the complex case (see [10], p. 187), taking into account the equations
(2.16), it is easily seen that the special solutions of (1.3) satisfy the following integral equation:

w (z, t)− 2iP−1

∫ t

0

∫
C
dϕ(ζ)dϕ(ζ)

{
Ω(1) (z, ζ)

[
c (ζ)w (ζ, τ) + d (ζ)w (ζ, τ)

]
+Ω(2) (z, ζ)

[
c (ζ)w (ζ, τ) + d (ζ)w (ζ, τ)

]}
dτ = Ψ(z, t) , (3.1)
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where Ψ is a solution of
Ψϕ̄t + aΨt + bΨt = 0.

To show this, we split the integral over D into two integrals such that one is over Dε and the other one is over
|ζ − z| < ε as above. (3.1) can be differentiated with respect to t and ϕ̄ .

We deal with bounded solutions of (1.3) again in C× I where I is an interval in R . Let w be a bounded
solution satisfying (3.1) for some Ψ . Thus, for each t in R , Ψ(z, t) must be a bounded solution of

ωϕ + aω + bω = 0

in C . As before, provided that (F0, G0) is a generating pair of the last equation (see Section 2), every bounded
solution can be written as

F0λ+G0µ

where λ and µ are real constant matrices. Thus, Ψ(z, t) is of the form below:

Ψ(z, t) = F0(z)λ(t) +G0(z)µ(t),

where λ and µ are real differentiable matrix functions of t in R .

Now let us investigate the general solution according to λ and µ .

(i) Let λ = µ = 0 . Let us show the integral operator in (3.1) by P . The problem to be solved is

w − Pw = 0. (3.2)

Let us consider the following bound:

∥2iP−1∥
∫
C

∥∥∥dϕ(ζ)dϕ(ζ)∥∥∥ (∥c∥+ ∥d∥)
(∥∥∥Ω(1) (z, ζ)

∥∥∥+
∥∥∥Ω(2) (z, ζ)

∥∥∥) dξdη ≤ κ < ∞,

and define
∥w∥κ := sup

z∈C,κ|t|≤1

∥w (z, t)∥ .

Thus, for z ∈ C and κ |t| ≤ 1 , the inequality

∥w (z, t)∥ ≤ κ ∥w∥κ |t|

holds by (3.2). It can easily be seen that w vanishes identically in z ∈ C and κ |t| ≤ 1 . As above, by
virtue of autonomity of L , w must vanish identically in C× R , so (3.2) has only a trivial solution.

(ii) Let µ = 0 . In this case we search for the solution of

w − Pw = F0λ.

To obtain the solution, we use the iteration method, i.e.

w0 := λF0, wk := w0 + Pwk−1 (k ∈ N), w := lim
k→∞

wk =

∞∑
k=0

Pkw0.
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If the series

∞∑
k

PkF0λ =

∞∑
k

Fkλk, (k ∈ N0)

is convergent where

λ0 :=λ, λk(t) =

∫ t

0

λk−1(τ)dτ (k ∈ N, t ∈ R),

Fk :=2iP−1

∫
C
dϕ(ζ)dϕ(ζ)

{
Ω(1) (z, ζ)

(
c (ζ)Fk−1 (ζ) + d (ζ)Fk−1 (ζ)

)
+Ω(2) (z, ζ)

(
c (ζ)Fk−1 (ζ) + d (ζ)Fk−1 (ζ)

)}
, (k ∈ N),

then the function w is uniquely defined. Taking into consideration the following estimates,

∥Fk∥ ≤ κk ∥F0∥ , ∥λk∥t ≤
|t|k

k!
∥λ0∥t (k ∈ N0),

where
∥Fk∥ = sup

z∈C
∥Fk(z)∥ , ∥λk∥t := sup

|τ≤|t|
∥λk(τ)∥ ,

the convergence is obtained such that

(Fλ)(z, t) :=
∞∑
k=0

Fk(z)λk(t), (z ∈ C, t ∈ R) (3.3)

is the solution and λk and Fk have the properties

λk(0) = 0, Fk(∞) = 0 (k ∈ N), F0(∞) = I.

(iii) Let λ = 0 . If µk and Gk are defined in the same way as in (ii) like λk and Fk , respectively, the unique
solution of

w − Pw = G0µ

is

(Gµ)(z, t) :=
∞∑
k=0

Gk(z)µk(t), (z ∈ C, t ∈ R). (3.4)

Moreover, µk and Gk have the following properties:

µk(0) = 0, Gk(∞) = 0 (k ∈ N), G0(∞) = iI.

(iv) Let λ and µ be arbitrary. The equation is

w − Pw = F0λ+G0µ
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and the solution of this equation is given by

w = Fλ+Gµ.

It is clear that the operators F and G are the same as in (2.7) and (2.8) since the Fk s in (3.3) are special
solutions of the system (2.6) and similarly the Gk s in (3.4) are special solutions of the system (2.9). Let
us take the difference of two solutions of the k th equation of (2.6) or (2.9). This difference is a bounded
solution of

ωϕ̄ + aω + bω̄ = 0

and vanishes at infinity. Since this only can be the zero solution, it is obtained that w is a trivial solution.
Because of these considerations, without the restriction (2.4), a similar approach can be done for a and
b , as well as the coefficients c and d , which only have to be in Lp,2(C) .

(v) To illustrate that the equation (3.1) is not homogeneous, let us take Ψ(z, t) = f(z)t . In this case, equation
(3.1) has the form below:

(w − Pw)(z, t) = f(z)t, (f ∈ Lp,2(C), p > 2),

where f is a function of z only. After the same calculations as above, the uniquely defined solution can
be given in the form

w (z, t) =

∞∑
k=0

tk+1

(k + 1)!
fk (z) ,

f0 := f,

fk (z) := 2iP−1

∫
C

dϕ(ζ)dϕ(ζ)
{
Ω(1) (z, ζ)

(
c (ζ) fk−1 (ζ) + d (ζ) fk−1 (ζ)

)

+Ω(2) (z, ζ)
(
c (ζ) fk−1 (ζ) + d (ζ)fk−1 (ζ)

)}
.
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