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Abstract: In this paper, an integral representation is given for special bounded solutions of pseudoparabolic equations

of the form

Lw ::%(waJranrbﬁ)Jrcmrdw

by means of a generating pair of the corresponding class of the generalized @Q-holomorphic functions in L, 2(C), for

p > 2, where a, b, ¢, d are functions of z alone.
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1. Introduction
An analogue of analytic function theory was developed by Douglis [4] for a more general elliptic system in the

plane while the Cauchy—Riemann equations assume the complex form
Wy + 1wy + aFw, + bEw, = 0.

Later Bojarskii [3] extended the function theory of Douglis to a more general system, which was written in
following form:

Duw(z) := wz(z) — Q(2)w,(z) = 0, (1.1)
where w is an m x 1 vector and @ is an m x m quasidiagonal matrix. He also presumed that all of eigenvalues
of @ are less than 1. Subsequently, Hile [6] took into consideration Eq. (1.1), taking @ as an m X m complex

matrix and w as an m X s complex matrix. If @ (z) satisfies the property

Q(21) Q (22) = Q (22) Q (21)

for any two points z1, z2 in the domain Qg of @, we say that @Q (z) is self-commuting. More generally, if A

and B are matrix valued functions defined in €y and satify the condition
A(z1) B(z2) = B(22) A(z1), for all 21, 25 in Q,

then we say that A and B commute in Q. If Q (z) is self-commuting and has no eigenvalues of magnitude 1 for

each z in g, then Hile called the system (1.1) a generalized Beltrami system and the solutions of such a system
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were called (Q-holomorphic functions, which have properties similar to those of the complex analytic functions.
Following Douglis and Bojarskii, Hile introduced the concept of the generating solution for the investigated
@-holomorphic functions. He referred to the matrix valued function ¢ (z) := ¢ (2) + N (z) defined in a domain
Qo for a generating solution of (1.1), where N is the nilpotent part of ¢ and ¢ is the main diagonal term of

¢ satisfying the Beltrami equation

0o _ 9%

- - =0.

az "o

Moreover, if a function ® (z) satisfies the equation D® (z) = 0, then it is called a @-holomorphic function and
may be written merely as an analytic function of a generating solution, namely ® (z) = f (¢ (z)) [6]. Hence,

this relation proposes defining differentiation formally with respect to ¢ as

9 _ S
= ($.s — ¢:0.) 1[¢

o — 0
oo ]

z% - (b?%

and differentiation with respect to the conjugate of ¢ as

1o} — — -1
(976 = (¢z¢7_ ¢E¢z) ¢.D.

From the above equation, we may write (1.1) in the following form:

ow _
¢

Later in [8, 9], by means of the techniques of Vekua and Bers, a theory of functions was given for the equation

§;+aw+bw:0, (1.2)

where the unknown w(z) = {w;;(z)} is an m x s complex matrix, Q(z) = {¢;;(2)} is a self-commuting complex
matrix with dimensions m x m, and gi -1 # 0 for k =2,...m. The matrices a = {a;;(2)} and b = {b;;(2)},
which belong to L,(£2y), commute with Q). Solutions of such an equation were called generalized Q -holomorphic

functions. The results obtained in the case of equation (1.2) closely resemble those in the classical theory of
Vekua [10] and Bers [2].

Integral representations of analytic functions appeared in the early phases of the development of mathe-
matical analysis and function theory mainly as proper devices for the explicit representation of analytic solutions
of differential equations. Gilbert and Schneider investigated pseudoparabolic equations in [5] by making use of

the generalized analytic function theory of Vekua [10], which have the following form:

Lw:= %[wg—&—flw—i—éw] + Cw + Dw,

where A, B, C', D are functions of z only and belong to L, 2(C), p > 2. L, (C) is the space of functions w

that satisfies the following conditions: w(z) is defined in C and
w(z) € Ly(Co), w® (2) :=[2]w(1/2) € Ly(Co).
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Here, Cp :={z: |2| < 1}. The validity of integral representations reminiscent of representations of generalized

analytic functions was shown. This helps in solving initial-boundary value problems.

In this work, by utilizing a generating pair of the corresponding class of generalized Q-holomorphic

functions, the general solution is given for a pseudoparabolic equation of the form
L{w] := EJw] + Alw] =0, (1.3)

where FE is an elliptic operator

Elw] = wg(z,t) + a(z)w(z, 1) + b(2)w(z, )

and A is an algebraic operator that has the following form:

Alw] == c(2)w(z,t) + d(z)w(z, t),

where the unknown w(z,t) = {w;;(z,t)} is an m x s complex matrix. The coefficients a, b, ¢, and d are mxm

complex matrices commuting with ¢ and do not depend on the time variable ¢. They vanish identically in the

unbounded component of C\D where D C C is a bounded domain.

2. Representations of solutions via fundamental solutions

By means of the Pompeiu operator (see [8], p. 433 ), the pseudoparabolic equation (1.3) may be formulated as

the integral equation

w(z,t)+J(a(z)w(z,t)+b(2)m) +J(/Ot (c(z)w(z,THd(z)m) d7>

= w(z0)+J (a (2)w (2,0) + b (2)w (2, 0)) U (2,0) (2.1)
where
(IF) () = P [ d0(Oda0) (60 = () FIO
and % = 0, where the constant matrix P is defined by

P = / (2] +2Q)~ " (Idz + Qdz),
|z|=1
called the P-value for the generalized Beltrami system ([6], p. 107). Here
U(z,t) =Y ¢"(2)ar(t) (2€C,teR), ¥(z0)=0,
k=0

and VU (z,t) is a differentiable function of ¢ for an m x s matrix function ay of t. A @-holomorphic version of

Liouville’s theorem can be proven in the same way as in the complex case as we know that

d”u}(Z) :n!P_l d B . _n_lw
i L OO — ) (o)
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for all n and for any r > 0 ([6], p. 115).

For each t € R, ¥ (z,t) is a bounded @-holomorphic function in C provided that w (z,t) is a bounded
function in C. Thus, ¥ (z,t) is a function of only ¢. This means that ¥ (z,¢) = U (¢) by the help of Liouville’s

theorem. In Eq. (2.1), when 2z goes to co, we easily obtain
U (t) = w(00,t) —w (00,0), ie. ¥(0)=0.

Therefore, (1.3) is equivalent to the following equation:
_— t —_—
1uao+J(M@w@¢y+M@w@¢g::_J(/(d@w@my+aawuﬂ{yh>+may+¢@) (2.2)
0
for bounded solutions. Here
v(z):=w(z,0)+J (a (2)w(2,0) +b(z)w (z,O)) . (2.3)
If w is a continuous solution of (2.2), which is bounded in z € C for each ¢ € R, then

U e C(R), ¢eC(C).

Now we consider (2.2) for given ¥ € C(R) and ¢ € C(C) and show that the space of bounded functions in
z € C for each t € R is Bc(C x R).

Lemma 2.1 Let ¥ € C(R), ¢ € C(C), and the coefficients a,b satisfy the inequality

dedn 1, (2.4)

/Q(HG(C)IH-IIJ(C)I)lC S

Then equation (2.2) has a unique solution in Bc(C x R), where the standard norm of a matriz M = (my;) is

given by

M2 =" mi .

%

Proof Suppose that two solutions of Eq. (2.2) are w; and ws, which have the same initial data and the same
asymptotic behavior when z — co. In that case, the difference w := w; — ws is a solution of the homogeneous

equation

w=Tw:=—-J (a(z)w(z,t) + b(z)M)
—-J </0t (c(z)w(z,T) + d(z)m) d7> .

In addition to the inequality provided by the coefficients a and b, we find an upper bound of

dédn
¢ — 2]

J/(HC(CNI+*Hd(CHB
C
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in terms of 8 and if we define

lwlly :== sup [lw(z, )],
z€C,[t[<1

then after some simple calculations, we get

[Twlly < (e + Blt] [l

Thus, as
l-«a
|t| < min{l, ——},
5
we conclude that T is a contractive operator. Therefore, w = Tw has only the trivial solution
. 11—«
w(z,t) =0 for ze€C, |[t|<tp:=min{l, 5

The above statement is true as well for |t| =ty by virtue of continuity. This conclusion can be extended to read

w(z,t)=0 (z€C, teR)

since the equation (1.3) is an autonomous differential equation with respect to t.

O

Let us denote the class of functions having real derivatives up to order p, which are continuous and

bounded with B?(C).

Corollary 2.2 Let w(oo,t) € C(R), and w(z,0) € B%(C). If the inequality (2.4) is fulfilled, then equation

(1.3) has a unique solution in Bc(C x R).

Lemma 2.3 Let ¥ € CY(R), ¢ € BY(C), and let the inequality (2.4) hold. Then integral equation (2.2) is

solvable.

Proof This lemma will be proved using iteration. We can rewrite (2.2) in the following form:

w—Tw =T+ .
To solve this equation, by the help of iteration method, let us put

wy = Y4
wy = VYA4¢+Twi_1, k€N

Then the solution of (2.2) can be obtained as

= i =) TF(U .
w= lim wy ST + )

k=0
The series converges because of the estimates
T+ o N (R rergltl
[ ol < 30 (Vo
1=0
(llwolly = sup lwo (2, 7)),
z€C,|T|<[t]
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and
“

oGl > g (25) Il cecen.
k=0 "

1—-« 11—«
O
Next we deal with special solutions of (1.3) that are bounded. If the function ¢ given by (2.3) is a
bounded @-holomorphic function in C, then ¢ must be a constant, namely

¢ (2) = w(0,0),

so that
U (t)+ ¢ (2) =w(oo,t).

Therefore, we can consider the equation
w — Tw = 1, (2.5)

where 9 is a differentiable function of ¢ in R.

(i) ¢ is a real matrix function: the unique solution of (2.5) is represented by

oo (oo}
> T =) at
k=0 k=0
where oy is an m x m complex matrix valued function of z only, and ), are defined by means of

Yo ==, Py () 12/0 Y1 (7)dr (k€N).

The functions «j in solutions of (2.5) are determined using the coefficient functions a, b, ¢, d of the operator
L. They do not depend on . Since a, b, ¢, d € L,2(C), p > 2, J is a compact operator (see [8], p. 445),

and the following recursive system can be solved for k=1, 2, ...:

ao (2) + J (a(2)ao (2) + b(2) ag (z)) —1

. . 2.6
an (2) + J (a(2) ax (2) + b (2) an (z)) =—J (c (2) o1 (2) + d (2) ap_ (z)) . (26)

Let (F,G) be the generating pair corresponding to the functions (a,b), and then ag has to be the function F
on the left ([9], p. 944), and «ys, denoted by F}, are obtained recursively by solving the system. For a given
real matrix v, it can be seen that the solution of (2.5) is given by the following:
oo
Fo:=F, (FY)(zt):=) Fc(2)r(t) (z€CteR). (2.7)

k=0

(ii) ¢ is a pure imaginary matrix function: this case is similar to the case (i). A solution of (2.5) can be

obtained as

Go := G, (G’Q/J) (Zﬂf) = i Gy (Z) ’(/)k (t) R (Z S C,t € R) (28)
k=0
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where G is the function on the right-hand side of the generating pair (F,G) and the Gjs are the solutions of
the following system:

Go () +J (a () Go () +b(2) Go (2)) = il

Gr(2) +J (a(2) Gy (2) + b (2) Ga (z)) = J (c (2) Gror (2) + d (2) Gos (z)) .

The coefficients Fy, and Gy, which appeared in (2.7) and (2.8), respectively, are normalized at oo by
Fy(o) =1, Go(oo)=1l, Fi(o0)=0, Gi(o0)=0, (keN).

(iii) ¢ = 1 + iy is a complex matrix function: let w be a solution of

w — Tw = 1 + ity
where 1, and - are real, differentiable functions of ¢. Then

w:=w — Fy; — Gy
is a solution of the homogeneous equation

w — Tw = 0.

This is evident from the iterated integration of v at initial data

(Fy + Gipa) (2,0) = Fo (2) 1 (0) + Go (2) 2 (0)

and because of the properties of Fj and Gy, k € Ny, we have
(Fyp1 + Gapa) (00,t) = 91 (t) +irha (t) = ¢ (1)

when z — co. By using the first equations in (2.6) and (2.9) and the corresponding function ¢ given by (2.3),

we have
©(2) = (0).
As a conclusion, w is identically zero. Hence, we have the following representation for the required solution in

the case of 1 being a complex matrix function as
w = Fy1 + Gahs.

Let T' be a rectifiable boundary of bounded domain D and denote the closure of D with D.
Remark 2.4 We introduce a fundamental system x*) (2,8;¢,7) commuting with Q as a pair of solutions of
(1.3). This system has the power series representation

)’U+1

t—T
X(k) (2,t;¢,7) ZX — N

TR k=12, (2.10)

such that the pair {x(()l)(z,C)7x(()2)(z,C)} is a fundamental system for the equation E[w] = 0 obtained in a

similar way to the Vekua system as in [1, 5, 10], where
67 (2,0 = 5 (- 6(0) ~ 9(2) ! explw®(2) — M ()]
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Here, X(()k) € B, a=(p—2)/p, and w® (2) = O(|2|%) as |z| = oo , k=1,2 (see [7]). Substituting this series

into equation (1.3) and equating powers of (t — T), we obtain the recursive system

k
Bl (2,0)] =0
E™® A ® =0,(k=1,2,0=0,1,2
[XU+1(ZaC)] + [Xv (Z7C)] ’( y 4,V ) a)
From the system of integral equations obtained above, by utilizing the Pompeiu operator we can compute the
k)

following expression for XE;H , (v=0,1,2,...):

k k k k k
X (2, ¢) + TaxT +0x ) = —T(ex® + dd™) + 18 (2,0, v=0,1,2,...,

where the Tfjﬁl are arbitrary Q-holomorphic functions. We normalize the Xq(jfgl by setting Tq(jfgl =0.

Definition 2.5 The fundamental kernels Q) of L are

QW (z,t:¢,7) = xV (2, t:¢, 1) + (1) Hix® (2, 15¢, 1), k=1,2 (2.11)

) )

where XV and x® are the fundamental solutions. Also, from the properties of the matriz norm, the local

behavior of Q%) can be obtained similarly to [7] as

oW . tm) = (=) (6 = 67 =0 (I =7 F 1t 71).

for{—z—>0,t—7'—>0,ﬁ:%<1,

. (2.12)
19® (2,56, 7)| =0 (]2 = ¢l F |t =71) (¢ =2 >0t =7 = 0,8 =2 < 1),

10® ¢, =0 (1217 e =71) . (2= 00, k=1,2).

Definition 2.6 The associated operator, corresponding to operator L given in (1.3), is defined by

5 P — —
Lv:a[vd;—cw—b bu] + cv + b*dv

where b* is given by b* = ¢, .

Theorem 2.7 Let w be a solution of (1.3) in D x R and have zero initial data w(z,0) = 0. If QM and Q3

are the fundamental kernels for the associated equation Lv =0, then

—wy (2,t),2 € D

0 7Z¢ﬁ ,t € R.

P_l/F {d¢(0 QW (¢, iz, ) wy (1) — dd (O o® (¢, 732, t) wr (CJ)} dr — {

Proof The proof is based on a variant of Morera’s theorem. Let w and v be the solutions of (1.3) and

associated equation Lv=0, respectively. If for ¢t =0, we have w =0 and v =0, then

we(s [ ] 46(Q) vr (G 7Y wr (G17) ir) =0
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The remaining part of the proof can be obtained as in ([7], Theorem 2.7), so we omit the remaining part of the

proof. O

Now, if we use the property between the fundamental kernels of (1.3) and the fundamental kernels of the

associated equation, which can be shown by using Definition 2.5 above and Theorem 2.8 given in [7], we have
QW (z,4;¢,7) = =QN (¢, 735 2,1)
0 (z,t:¢,71) = —QF (¢, 7 2,1).

Thus, we obtain the following theorem.

Theorem 2.8 A solution of (1.3) in D x R, which vanishes identically at initial data, has the following form:

Pl/ot/F [d¢(4)9§1> (z,t: ¢, 7wy (C,7) — dop (O)Q?) (z,t;m)m} dT_{ g}(z,t) Zzll)) teR

Let us denote the Riemann sphere by C and give the following theorem:

Theorem 2.9 If w(z,t) is Q-holomorphic in C\f) for each t € R, w wvanishes identically at infinity, and
wy (z,t) is continuous in C\D X Ryw (2,0) =0, and a=b=c=d =0 in @\f), then

P [0 et ¢ (€ 1) = TP (2 ¢, e Gor)) dT:{ w20 g

, 2z€D

Proof Let Gg := {¢:|¢| < R} such that 2|z| < R and D C Gg. Let us take z € C\D, which belongs to
Gr. By hypothesis, the coefficients a, b, ¢, d vanish outside D. w is a solution of (1.3) in (Gz\D) x R. Since

the conditions of Theorem 2.8 are fulfilled, the solution w can be written as
t
we) =P [ [ a0 b nw (G - B (56 ) G
0 Jo(Gr—D)

In the case of z — oo, w(z,t) = O <|z|_1) , we(z,t) =0 (\z|_1) If we consider the above integral in two

parts, the part of the integral taken over |(| = R, i.e. on the OGg, tends to zero as asymptotic behavior of
fundamental kernels (2.12) as R tends to infinity. If z € D, then the left-hand side of the last equation has to
be replaced by 0 by Theorem 2.8. O

Theorem 2.10 Let w (z,0) =0 and the coefficients a, b, ¢, d are equal to zero outside D. Then a continuous

solution of (1.3) in D x R may be represented in the form

t
w(zt) =P / / {d6 (000 e t:¢. ) W, (€1 = dB (O (5 :¢, )T, (G fdr, (213)
o JI
where z € D, t € R and

(2 1) = P / d6(0) (6 () — 6 ()" w (1) (2.14)

s a Q-holomorphic function of z in D, continuous in ﬁ, and a continuously differentiable function of t in R.
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Proof Let us rewrite the equation (2.1) in the subsequent form:
w=Tw+ ¥, (2.15)

and take into consideration that Tw is a ()-holomorphic function of z in @\[) and continuously differentiable

with respect to ¢ in R. By the help of the following calculations,
(Tw)(o0,8) =0, (Tw)(2,0) =0,

it is shown that the hypothesis of Theorem 2.9 is fulfilled and as a conclusion of this theorem we have

Pl/ot/r{dgb(o QW (z,t;¢,7) (Tw), (¢, 7)

—d¢ (NP (2,t;¢,7) (Tw), (¢, 7) }dT —0.

U is continuous in D x R since w and Tw are continuous functions there and furthermore ¥ is continuously
differentiable with respect to ¢t € R and @-holomorphic in z € D.

Let us substitute Tw + ¥ into w in (2.13) in Theorem 2.8 and use the last equality to obtain (2.13).

Additionally, (2.14) can be found from the Cauchy integral formula for @-holomorphic functions by
substituting w — Tw into ¥ where Tw is considered to be @-holomorphic in C\ﬁ for every t € R and
(Tw)(o0,t) = 0. O

Now let us give another representation of solutions of (1.3) using (2.13) and (2.14).

Theorem 2.11 Ewvery solution of (1.3) with a=b=c=d =0 outside D, vanishing identically at t = 0, may

be represented as

wiet) = e+ [ [ aO@0{rd e een . o)

TP (2,:6,7) U, ((,7) jdr

where U is given in (2.14) and T®) | k = 1,2, are given with the help of fundamental kernels as

T (2 ¢,7) = =P (z,6:¢,7),
r® (z,t;¢,7) = —P_IQ((;) (z,8¢, 7).

Proof Applying Green’s identity for @-holomorphic functions (see [6], p. 113) to the right-hand side of the
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relation (2.13), we may write
w(zt) = timeo{ = PV fy [, do(O)dQ) (A (2,t:¢,7) ¥ (G, 7)
+00) (2,4:¢,7) Ur (¢ 7)) dr }
+ lim. ¢ {P—l Jo Siesiee (d¢ QO (2,8:¢,7) U, (C,7)
~d3 (O (,6:¢,1) ¥, (1) )dr },

where D, is the intersection of the domains D and | — z| > e. Taking into account the formulae (2.12), the

proof is completed. O
Since the x*) for & = 1, 2, which are functions of (¢,7), for a fixed (z,t), are solutions of the

pseudoparabolic Eq. (1.3), it is clear that Q) are solutions of the following equations:

Q((ng) (Za t; Ca T) —a (C) Q'(rl) (Zv t; C, T) - b* (C)b (4)99) (Za t; Ca T)
+c(Q) QW (2,5¢,7) +b*(Q)d ()P (2, t,¢,7) = 0,
O (2,t:¢,7) = a(QQP) (2,t:¢,7) — 0 (Ob () D (2,;¢,7)

+c (O (2,4,¢,7) + b*(Q)d () QW (2,8 ¢, 7)

[
=

and one can rewrite the above equations as

PrY (z,:¢,7) = —a(Q) OV (2,:¢,7) — b (OB (O (2, ;¢ 7)

+c(Q) QW (2,4:¢,7) +b*(Q)d (O)QP (2,4,¢,7),
(2.16)

Pr'? (z,t:¢,7) = —a QY (2,t;¢,7) — (b () O (2,8 ¢, )

+c ()P (2,8;¢,7) + b*(Q)d (¢) QW (2,4, ¢, 7),

where b* = ¢ 16, .

3. Integral representation of the second-kind solutions

In the previous section, we supposed that the inequality (2.4) holds and got the result under this assumption.
However, unlike preceding considerations, without this restriction, a similar approach can be done. To obtain

another integral formulation, the fundamental kernels Q) (z,¢) (k = 1,2) of the equation
wg +aw + bw =0

can be used as given in [7]. Similarly to the complex case (see [10], p. 187), taking into account the equations

(2.16), it is easily seen that the special solutions of (1.3) satisfy the following integral equation:

w207 [ [ Q@00 6.0 [ uw(c) + a1 w )

+0® (2,0) [ QG r) + dQu (¢ 7) | far = w(z,1), (3.1)
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where VU is a solution of
\I/&t —+ CL\Ijt —+ b@t = 0

To show this, we split the integral over D into two integrals such that one is over D. and the other one is over

|¢ — 2| < ¢ as above. (3.1) can be differentiated with respect to ¢ and ¢.

We deal with bounded solutions of (1.3) again in C x I where I is an interval in R. Let w be a bounded

solution satisfying (3.1) for some ¥. Thus, for each ¢ in R, ¥(z,t) must be a bounded solution of
wg + aw +bw =0

in C. As before, provided that (Fp, Go) is a generating pair of the last equation (see Section 2), every bounded

solution can be written as
Fod+ Gop

where A and p are real constant matrices. Thus, ¥(z,t) is of the form below:
U(z,1) = Fo(2)\(B) + Go(2)u(d),
where A and p are real differentiable matrix functions of ¢ in R.
Now let us investigate the general solution according to A\ and pu.
(i) Let A = =0. Let us show the integral operator in (3.1) by P. The problem to be solved is
w—Pw=0. (3.2)

Let us consider the following bound:

122 | [lasc)@at] il + 1 (]2 .0 + 2 o) dsdn < x < .

and define
[wll, == sup Jw(z1)]
z€C,k|t|<1
Thus, for z € C and x|t| < 1, the inequality
lw (2, 8)[| < & [Jwl|, 2]

holds by (3.2). It can easily be seen that w vanishes identically in z € C and x|¢t| < 1. As above, by

virtue of autonomity of L, w must vanish identically in C x R, so (3.2) has only a trivial solution.
(ii) Let p = 0. In this case we search for the solution of
w — Pw = Fy.

To obtain the solution, we use the iteration method, i.e.

wp := AFy, wg:i=wo+Pwip_y (k€N), w:= lerl;owk = ZPkwo.
k=0
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If the series

iPkFO)\ = iFk)\k, (k € Np)
k k

is convergent where
t
o i=h A(t) = / Mer(F)dr (kE€N,t €R),
0

Fe=2iP™ [ ao(Q@0{2 (2.0 (¢(0) Pt (0 + (O Fra (©)

+99 (2,0 (OB O +dOF-1 ()} (keN),
then the function w is uniquely defined. Taking into consideration the following estimates,

[¢[*
1Bl < & TFol Il < S Doll, (k€ No),

where

1%l = sup [[Fx ()1, Akl == sup [Ak(T)],
zeC |7<|t]

the convergence is obtained such that
(oo}
(FA)(z,¢) == ZFk(z))\k(t), (z € C,t eR) (3.3)
k=0

is the solution and A; and F}j have the properties

Me(0) =0, Fr(oo) =0 (keN), Fy(oo) = 1.

(iii) Let A =0. If uy and Gy are defined in the same way as in (4i) like Ay and Fy, respectively, the unique

solution of
w—Pw = Gop

is
Gu)(,t) = 3 Gr(=)(t), (€ C,teR). (3.4)
k=0
Moreover, pr and Gy have the following properties:

1e(0) =0, Gi(o0) =0 (ke N), Go(oo) = il.

(iv) Let A and p be arbitrary. The equation is

w —Pw = FoA + Gop
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and the solution of this equation is given by
w=TF\+ Gp.

It is clear that the operators F and G are the same as in (2.7) and (2.8) since the Fjs in (3.3) are special
solutions of the system (2.6) and similarly the G s in (3.4) are special solutions of the system (2.9). Let
us take the difference of two solutions of the kth equation of (2.6) or (2.9). This difference is a bounded
solution of

wg +aw +bw =0
and vanishes at infinity. Since this only can be the zero solution, it is obtained that w is a trivial solution.
Because of these considerations, without the restriction (2.4), a similar approach can be done for a and

b, as well as the coefficients ¢ and d, which only have to be in L, +(C).

To illustrate that the equation (3.1) is not homogeneous, let us take WU(z,t) = f(z)t. In this case, equation
(3.1) has the form below:

(w - Pw)(zvt) = f(Z)t, (f € Lp,?((c)vp > 2)a

where f is a function of z only. After the same calculations as above, the uniquely defined solution can
be given in the form

o gkt
w(z,t) = kzzomfk(z),
fO = fa

fie) = 2P [doOBR{O (2.0 (¢(0) fir (O + O Fr )
C

+Q® (2,¢) (c (€) fr—1(Q) +d () fr— (C)) }
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