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Abstract: We investigate when different graphs associated to commutative rings are chordal. In particular, we
characterize commutative rings R with each of the following conditions: the total graph of R is chordal; the total
dot product or the zero-divisor dot product graph of R is chordal; the comaximal graph of R is chordal; R is semilocal;
and the unit graph or the Jacobson graph of R is chordal. Moreover, we state an equivalent condition for the chordality
of the zero-divisor graph of an indecomposable ring and classify decomposable rings that have a chordal zero-divisor
graph.
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1. Introduction
In this paper all rings are commutative with identity and R denotes a ring. Recently many researchers have
tried to study the algebraic structure of R by associating some graphs to R , such as zero-divisor graphs, total
graphs, or unit graphs; see [1–4, 6, 9–11, 16–19]. The interrelation of graph theoretic properties of these graphs
and the algebraic structure of R has been the focus of research on this topic. In particular, many have tried
to find graph theoretic invariants of these graphs, such as diameter, girth, and chromatic number, from the
algebraic structure of R . Some have also investigated when these graphs have some specific graph theoretic
properties, such as being connected, bipartite, or Eulerian.

On the other hand, some algebraic properties and invariants of R can be found from these graphs. For
example, it is proved that if R and S are two finite reduced rings (that is, without any nilpotent elements),
then R and S are isomorphic if and only if their zero-divisor graphs are isomorphic [2, Theorem 4.1]. Also,
[3, Theorem 1.1] shows that the number of minimal prime ideals of a Noetherian reduced ring can be deduced
from its compressed zero-divisor graph. Another interesting result is [11, Theorem 5.1], which states that an
atomic integral domain R is a unique factorization domain if and only if for each nonzero nonunit x ∈ R the
irreducible divisor graph of x is connected.

In this paper, we try to characterize when some of these graphs associated to R are chordal. A simple
graph G is called chordal when it has no induced cycle with length greater than 3. In other words, if C is a
cycle in G with length greater than 3, then there is an edge of G not in C that connects two vertices of C

(this edge is called a chord of C ). Chordal graphs are long and well studied in graph theory and have nice
properties and many applications in optimization and computation; see, for example, [13, 14, 20].
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Chordal graphs also play an important role in combinatorial commutative algebra. Assume that G is a
finite simple graph with vertex set {1, . . . , n} and edge set E . Let K be a field and S = K[x1, . . . , xn] . The
ideal I(G) of S generated by {xixj |{i, j} ∈ E} is called the edge ideal of G . By a theorem of Fröberg [12],
the minimal free resolution of this ideal is linear if and only if G = the complement of G is a chordal graph.
Also, if G is chordal, there are known combinatorial conditions equivalent to Cohen–Macaulayness of S/I(G) .
To see these conditions and more on edge ideals of chordal graphs, see [15, Chapter 9].

Here, in Section 2, we investigate the chordality of some of the graphs that are constructed based on the
structure of maximal ideals of a ring. In particular, we characterize all rings that have a chordal comaximal
graph and also rings that are semilocal (for example, finite rings) and have chordal Jacobson or unit graphs.

Then, in Section 3, we pay attention to graphs that are constructed from the zero-divisor structure of a
ring. Particularly, we classify all rings with chordal total graphs, chordal total dot product graphs, or chordal
zero-divisor dot product graphs. We also characterize reduced or decomposable rings that have a chordal zero-
divisor graph and state a condition equivalent to chordality of the zero-divisor graph of an indecomposable ring,
which reduces the classification of chordal zero-divisor graphs to that of chordal compressed zero-divisor graphs.

All graphs considered in this paper are undirected and do not have multiple edges, but some of the
graphs have loops. If G is a graph with some loops, then by saying that G is chordal, we mean that the simple
graph obtained by deleting all loops from G is chordal. Also, for convenience, we assume that a graph with no
vertices is chordal. We denote the set of vertices of G with V(G) , and if x, y ∈ V(G) are adjacent, we write
x ∼ y . Moreover, if V ⊆ V(G) , we denote the subgraph of G with vertex set V , which has all edges of G with
endpoints in V by G[V ] , and call it the induced subgraph of G on V . Furthermore, by U(R) , J(R) , N(R) , and
Z(R) we mean the set of units of R , the Jacobson radical of R , the nilradical of R , and the set of zero-divisors
of R , respectively. In addition, for any set A ⊆ R , we denote A \ {0} by A∗ . Any undefined notation is as in
[8] or [21].

2. Chordality of graphs based on maximal ideals

In this section, we investigate chordality of unit graphs, comaximal graphs, and Jacobson graphs of R ,
which are based on the structure of maximal ideals of R . First we consider the comaximal graph of R .
In [18], a graph G(R) is assigned to the ring R , where V(G(R)) = R and the set of edges of G(R) is
{{a, b}|a, b ∈ R,Ra + Rb = R} . Let CG(R) = G(R)[R \ (U(R) ∪ J(R))] be the graph obtained by deleting all
unit elements and all elements of J(R) from the vertex set of G(R) . Since unit elements are adjacent to all
vertices in G(R) and elements in J(R) are adjacent exactly to the vertices representing the unit elements, and
as mentioned in [16], we see that the structure of G(R) is determined by the structure of CG(R) . For example,
it is easy to see that G(R) is chordal if and only if CG(R) is chordal (recall that a graph with no vertices is
considered chordal). Consequently, we study CG(R) , and following [16], we call it the comaximal graph of R .

Theorem 2.1 The comaximal graph of R is chordal if and only if R satisfies one of the following:

(i) R is a local ring.

(ii) R ∼= Z2 × F , for a field F .

(iii) R ∼= Z3
2 .
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Proof (⇒): First assume that R ∼=
∏4

i=1 Ri . Then we have the chordless cycle (1, 1, 0, 0) ∼ (0, 0, 1, 1) ∼
(1, 1, 1, 0) ∼ (0, 1, 1, 1) ∼ (1, 1, 0, 0) with length 4 in CG(R) . From this contradiction, we deduce that the longest
decomposition of R as a product of rings has length at most 3. Therefore, R has a decomposition R =

∏n
i=1 Ri

with each Ri an indecomposable ring and n ≤ 3 . Assume that CG(R1) is not chordal and a1 ∼ · · · ∼ am ∼ a1

is a chordless cycle in CG(R1) with m > 3 . Then, setting R′ =
∏n

i=2 Ri , (a1, 1R′) ∼ · · · ∼ (am, 1R′) ∼ (a1, 1R′)

is an induced cycle in CG(R) , against its chordality. Thus, every CG(Ri) is chordal.
Suppose that R1 is not local and M1 ̸= M2 are two maximal ideals of R1 . Then as M1 +M2 = R1 ,

there are m1 ∈ M1 and m2 ∈ M2 such that R1m1 + R1m2 = R1 . Note that m1,m2 /∈ J(R1) ∪ U(R1) and in
particular they are nonzero and not equal to 1R1 . By [8, Proposition 1.16] we see that for each pair of positive
integers i, j we have R1m

i
1 + R1m

j
2 = R1 . If m1 ̸= m2

1 and m2 ̸= m2
2 , then we get the following chordless

cycle in CG(R1) : m1 ∼ m2 ∼ m2
1 ∼ m2

2 ∼ m1 . Thus, mi = m2
i for i = 1 or 2, but then mi is a nontrivial

idempotent in R1 and R1
∼= R1m1 × R1(1−m1) , contradicting the indecomposability of R1 . Hence, R1 and

similarly every Ri are local rings.
If n = 1 , then R is local. Thus, assume 1 < n and M ̸= M′ are two maximal ideals of R . Choose

m ∈ M and m′ ∈ M′ such that Rm+ Rm′ = R . If 0 ̸= j ∈ J(R) , then m ∼ m′ ∼ m+ j ∼ m′ + j ∼ m is an
induced cycle with length 4 in CG(R) , a contradiction. Therefore, J(R) = 0 and hence J(Ri) = 0 for each i .
Since each Ri is a local ring, this means that each Ri is in fact a field.

Suppose that we can find 1 ≤ i ̸= j ≤ n such that 2 < |Ri|, |Rj | , say i = 1, j = 2 . Then there are
0, 1 ̸= a ∈ R1 and 0, 1 ̸= b ∈ R2 . Now the following induced cycle in CG(R) shows that CG(R) is not chordal
(if n = 2 , drop the last component in each vertex): (a, 0, 1) ∼ (0, 1, 1) ∼ (1, 0, 1) ∼ (0, b, 1) ∼ (a, 0, 1) . We
deduce that each Ri is isomorphic to Z2 except for possibly one i , that is, either R ∼= Z2 × F or Z2 × Z2 × F

where F is a field. To complete the proof, we just need to show that in the latter case, F ∼= Z2 . Suppose not
and 0, 1 ̸= a ∈ F . Then the chordless cycle (1, 0, a) ∼ (0, 1, a) ∼ (1, 0, 1) ∼ (0, 1, 1) ∼ (1, 0, a) provides the
required contradiction, and the result is established.

(⇐): Easy. 2

Next we consider the unit graph of R . The unit graph of R is the graph with vertex set R in which distinct
vertices x, y ∈ R are adjacent if and only if x + y ∈ U(R) ([6]). We denote this graph by UG(R) . It should
be mentioned that UG(R) is a subgraph of G(R) defined above, though not an induced subgraph. Thus, it is
possible that G(R) is chordal but UG(R) is not. In fact, this is the case for any local ring R that is not a field,
according to 2.1 and 2.4. To classify chordal unit graphs we need the following lemmas.

Lemma 2.2 Assume that F is a field with |F | > 5 or |F | = 4 ; then there are distinct nonzero elements
a, b, c ∈ F such that a ̸= −b,−c and b ̸= −c .

Proof Easy and left to the reader. 2

Lemma 2.3 If UG(R) is a chordal graph, then J(R) = 0 .

Proof Else if 0 ̸= j ∈ J(R) , then the following is a cycle of length > 3 in UG(R) : 0 ∼ 1 ∼ j ∼ 1+ j ∼ 0 . By
chordality, this cycle should have a chord and hence we have 1 ∼ 1 + j , that is, 2 + j ∈ U(R) or equivalently
2 ∈ U(R) . However, then 1 ̸= −1 and the cycle 0 ∼ 1 ∼ j ∼ −1 ∼ 0 has no chords, a contradiction. 2

Recall that a semilocal ring means a ring with finitely many maximal ideals.
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Theorem 2.4 Suppose that R = R/J(R) is a product of fields (for example, if R is finite or, more generally,
semilocal). Then UG(R) is chordal if and only if R is isomorphic to one of the following:

(i) (Z2)
I for some index set I ;

(ii) a field with characteristic 2;

(iii) Z3 .

Proof (⇒): According to 2.3 we can assume that R = R =
∏

i∈I Fi , where each Fi is a field and I is an index
set. Suppose that |I| > 1 . Assume Fi ≇ Z2 for some i , say i = 1 , and set R′ =

∏
1 ̸=i∈I Fi . If |F1| = 4 or |F1| >

5 and a, b, c are elements of F1 provided by 2.2, then the cycle (a, 0R′) ∼ (b, 1R′) ∼ 0R ∼ (c,−1R′) ∼ (a, 0R′) is
a chordless cycle of length > 3 in UG(R) . If F1

∼= Z5 , then (1, 1R′) ∼ (2, 0R′) ∼ (4,−1R′) ∼ (3, 0R′) ∼ (1, 1R′)

is such a cycle. If F1
∼= Z3 , then we have the following chordless cycle: 0R ∼ 1R ∼ (1, 0R′) ∼ (0,−1R′) ∼

(2, 0R′) ∼ (2, 1R′) ∼ 0R . Thus, in all cases we get a contradiction and it follows that if |I| > 1 , then R ∼= (Z2)
I .

Now assume that |I| = 1 and R is a field with characteristic ̸= 2 . If |R| ≥ 5 , then there is an a ∈ R

with a ̸= 0,−1, 1 , but then 1 ∼ a ∼ −1 ∼ −a ∼ 1 is an induced cycle of length > 3 , against chordality. Thus,
we should have R ∼= Z3 , as claimed.

(⇐): Just note that UG(ZI
2) is a matching (that is, a set of edges, no two of which have a common

endpoint) and the unit graph of a field with characteristic 2 is complete. 2

It is easy to see that rings such as Z or Z× Z2 also have chordal unit graphs. Thus, the assumption on
R in 2.4 is necessary. The last graph that we study in this section is the Jacobson graph of R defined in [9].
The Jacobson graph JG(R) of R has vertex set R \ J(R) and two (not necessarily distinct) vertices x, y are
adjacent when 1 − xy /∈ U(R) . Note that in the definition of Azimi et al. [9], adjacency was defined only for
distinct vertices and loops were not allowed. We allow loops so that we can have the following lemma. It should
be noted that in the following lemma, if x = y , then the result follows from parts (2) and (3) of [9, Lemma 2.1],
and if x ̸= y , then (⇐) is proved in part (1) of that lemma. We give a simple proof for completeness.

Lemma 2.5 Suppose that R = R/J(R) and x denotes the image in R of an x ∈ R . Then for all
x, y ∈ V(JG(R)) , we have x ∼ y if and only if x ∼ y in JG(R) .

Proof We have x ∼ y if and only if there is a maximal ideal M of R such that 1 − xy ∈ M if and only if
there exists a maximal ideal M of R such that 1− x̄ȳ ∈ M if and only if x ∼ y . 2

This lemma shows that we can construct JG(R) form JG(R) and |J(R)| , where R = R/J(R) . Indeed, we put
|J(R)| vertices instead of each vertex of JG(R) and then draw the edges according to the above lemma. Using
this, we get the following theorem on the chordality of JG(R) .

Theorem 2.6 Suppose that R = R/J(R) is a product of fields (for example, if R is finite or, more generally,
semilocal). Then JG(R) is chordal if and only if either R is a field or R is isomorphic to one of the following:
Z2 , Z3 , Z2 × Z2 , Z2 × Z3 , Z2 × Z2 × Z2 .

Proof (⇒): If V1 is an irredundant set of representatives of cosets of J(R) in R (that is, V1 contains
exactly one element from each coset x + J(R)), then by 2.5, we see that the induced graph JG(R)[V1] is
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isomorphic to JG(R) . Thus, JG(R) is chordal. Assume that R =
∏

i∈I Fi . If |I| > 3 , then we can assume

that {1, 2, 3, 4} ⊆ I . Set R′ =
∏

i∈I\{1,2,3,4} Fi . Then, viewing R as the product
∏4

i=1 Fi×R′ , the following is

a cycle in JG(R) that has no chords: (1, 1, 0, 0, 0) ∼ (0, 1, 1, 0, 0) ∼ (0, 0, 1, 1, 0) ∼ (1, 0, 0, 1, 0) ∼ (1, 1, 0, 0, 0) .
This contradicts the chordality of JG(R) ; hence, we must have n = |I| ≤ 3 .

Suppose that n = 1 (that is, R is local) and R is not a field. Then there exists a 0 ̸= j ∈ J(R) . If

R ≇ Z2 and R ≇ Z3 , then there is an f ∈ R \J(R) such that 1 ̸= f
2 . Now we get the following cycle in JG(R)

without any chords, a contradiction: f ∼ f−1 ∼ f + j ∼ f−1 + j ∼ f . Consequently, if n = 1 , then either R

is a field or R is isomorphic to Z2 or Z3 .
Next assume that n > 1 and R ∼=

∏n
i=1 Fi . If, for example, |F1| > 3 , then there is a 0 ̸= f ∈ F1

such that f2 ̸= 1 . Setting R′′ =
∏n

i=2 Fi and viewing R as F1 × R′′ , we get the following induced cycle in
JG(R) , a contradiction: (f, 0) ∼ (f−1, 0) ∼ (f, 1) ∼ (f−1, 1) ∼ (f, 0) . From this contradiction we deduce
that all Fi s are either Z2 or Z3 . If R ∼= Z2

3 , then the following cycle shows that JG(R) is not chordal:
(1, 1) ∼ (1, 2) ∼ (2, 2) ∼ (2, 1) ∼ (1, 1) . A similar cycle rules out the cases R ∼= Z3

3 or Z2
3 × Z2 and the

cycle (1, 0, 1) ∼ (1, 1, 0) ∼ (2, 1, 0) ∼ (2, 0, 1) ∼ (1, 0, 1) rules out the case R ∼= Z3 × Z2 × Z2 . Thus, the only
possibilities for R are those claimed in the statement of the theorem.

(⇐): If R is a field, then JG(R) is union of some loops and a matching, hence chordal. Therefore,
assume that R is one of the rings stated in the theorem. By drawing JG(R) we see that in all cases JG(R) is
chordal and all of its vertices have a loop. Suppose that C : x0 ∼ · · · ∼ xn−1 ∼ x0 is a cycle with length > 3

in JG(R) without any chords. If xi = xj for some i ̸= j ± 1 (mod n) , then as every vertex of JG(R) has a
loop and by 2.5, we have that xi ∼ xj is a chord for C , a contradiction. If xi = xj with i = j + 1 (mod n)
and if k = j − 1 (mod n) , then xi = xj ∼ xk because xj ∼ xk and by 2.5 xi ∼ xk , against C being chordless.
Consequently, xi ̸= xj for each i ̸= j and hence, by 2.5, the image of C in JG(R) is a chordless cycle, against
chordality of JG(R) . Thus, we conclude that such a C cannot exist and JG(R) is chordal. 2

Again simple examples such as R = Z show that the assumption of the previous theorem on R is
necessary.

3. Chordality of graphs based on zero-divisors

In this section, we study chordality of some of the graphs associated to R that are constructed based on the
structure of Z(R) , such as the zero-divisor graph, the total graph, or the dot product graph of R . We start with
the total graph TG(R) of R , which has R as its vertex sets and distinct vertices x, y are adjacent in TG(R)

if and only if x + y ∈ Z(R) . This graph was introduced in [1]. Also, in [7], commutative rings whose total
graph (or its complement) is in some known classes of graphs are characterized. In particular, they answered
the question when TG(R) is a cycle. We need a lemma in order to classify rings with chordal total graph.

Lemma 3.1 (i) If x ̸= ±y are two elements of R such that x ∼ y in TG(R) and TG(R) is chordal, then
x ∼ −y in TG(R) .

(ii) If a ∈ Z∗(R) and TG(R) is chordal, then a− 2b ∈ Z(R) for all b ∈ R .
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Proof (i): If x = −x , then as x ∼ y , we have x+ (−y) = −(y + x) ∈ Z(R) and the claim follows. Thus, we
can assume x ̸= −x and similarly y ̸= −y . By chordality of TG(R) , the cycle y ∼ x ∼ −x ∼ −y ∼ y has a
chord. Thus, either y ∼ −x or −y ∼ x and in both cases (which are indeed equivalent) the result follows.

(ii): Since a ̸= 0 , we have a − b ̸= −b . If a − b = b , then a − 2b = 0 ∈ Z(R) . Thus, we may
assume a − b ̸= ±b and apply (i) with x = a − b and y = b to see that x ∼ −y in TG(R) . From this,
a− 2b = x− y ∈ Z(R) . 2

In what follows Kα,β denotes the complete bipartite graph with partition sizes α and β for cardinal
numbers α, β (that is, the graph in which the vertex set can be partitioned into two parts A and B , such that
|A| = α , |B| = β , every vertex of A is adjacent to every vertex of B , and no pair of vertices in one part are
adjacent).

Theorem 3.2 The graph TG(R) is chordal if and only if Z(R) is an ideal of R and either char R
Z(R) = 2 or

Z(R) = 0 .

Proof First we show that if TG(R) is chordal, then Z(R) is an ideal. As Rz ⊆ Z(R) for all z ∈ Z(R) , we
have to show that if x, y ∈ Z(R) , then x + y ∈ Z(R) . This holds clearly if x = 0 or y = 0 or x = ±y . Thus,
assume x ̸= 0 ̸= y and x ̸= ±y . By 3.1(ii), it follows that both x+2y and 2x+ y are zero-divisors. Hence, we
have the following cycle of length 4 in TG(R) : 0 ∼ x ∼ x+ y ∼ y ∼ 0 . By chordality of TG(R) , this cycle has
a chord and either x ∼ y or 0 ∼ x+ y . In both cases x+ y ∈ Z(R) , and Z(R) is an ideal of R .

Now, according to [1, Theorem 2.2], if R = R/Z(R) has characteristic 2, then TG(R) is a disjoint union
of complete graphs and hence is chordal. Also by the same theorem, if charR ̸= 2 , then TG(R) is a disjoint
union of some copies of Kα,α , where α = |Z(R)| . If α > 1 then this graph has an induced cycle of length 4, so
in the case that charR ̸= 2 , TG(R) is chordal if and only if α = 1 if and only if Z(R) = 0 . 2

In [10], the dot product graphs were introduced and studied. Let n be a positive integer and consider
the dot product · : Rn → R defined by (ri) · (r′i) =

∑n
i=1 rir

′
i . Construct a graph by letting every nonzero

element of Rn be a vertex and joining two vertices x and y by an edge when x · y = 0 . This graph is called
the n th total dot product graph of R and we denote it by TDn(R) . Also, ZDn(R) is the induced subgraph of
TDn(R) on the set Z∗(Rn) and is called the n th zero-divisor dot product graph of R .

In the case that n = 1 , the graph ZDn(R) equals the usual zero-divisor graph of R with vertex set Z∗(R) ,
in which, two distinct vertices x and y are adjacent if and only if xy = 0 . Moreover, TD1(R) is the disjoint
union of ZD1(R) and a set of isolated vertices. Thus, the dot product graphs can be viewed as generalizations
of the zero-divisor graph. The zero-divisor graph of R is denoted by Γ(R) . We will investigate chordality of
Γ(R) later in this section. Here we consider the case n ≥ 2 .

Theorem 3.3 Let n ≥ 2 be a positive integer.

(i) ZDn(R) is chordal if and only if R = Z2 and n = 2 or 3.

(ii) TDn(R) is chordal if and only if R = Z2 and n = 2 .

Proof (i): For (⇐) just draw the graphs and observe that they are chordal. (⇒): If R ≇ Z2 , then we
have the following induced cycle of length 4 in ZDn(R) : (0, 1, 0, 0, . . .) ∼ (1, 0, 0, 0, . . .) ∼ (0, a, 0, 0, . . .) ∼
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(a, 0, 0, 0, . . .) ∼ (0, 1, 0, 0, . . .) , where 0, 1 ̸= a ∈ R . Thus, R ∼= Z2 . If n ≥ 4 , then the following cycle shows
that ZDn(R) is not chordal: (1, 0, 0, 1) ∼ (0, 1, 1, 0) ∼ (1, 0, 0, 0) ∼ (0, 0, 1, 0) ∼ (1, 0, 0, 1) (if n > 4 , add zeros
at the end of the vertices of this cycle).

(ii): Note that if TDn(R) is chordal, then its induced subgraph ZDn(R) is also chordal, so R ∼= Z2 and
n = 2 or 3 , but TD3(Z2) is not chordal: (1, 1, 1) ∼ (0, 1, 1) ∼ (1, 0, 0) ∼ (0, 0, 1) ∼ (1, 1, 0) ∼ (1, 1, 1) is an
induced cycle of length 5. 2

As mentioned above, one can view ZDn(R) as a generalization of Γ(R) and use it to study the zero-
divisor structure of R . However, when n ≥ 2 the entries of elements in Z∗(Rn) are not necessarily in Z(R) .
Thus, it seems rational to restrict the vertices to those elements of Rn with all entries in Z(R) . We study the
subgraphs of ZDn(R) induced by Z(R)n \ {(0, . . . , 0)} and (Z∗(R))n , which are denoted by Γn(R) and Γ′

n(R) ,
respectively. Note that Γ1(R) = Γ′

1(R) = ZD1(R) = Γ(R) . To characterize all R and n ≥ 2 with the property
that Γn(R) or Γ′

n(R) is chordal, we need a couple of lemmas.

Lemma 3.4 Let n and k be two positive integers and assume that Z(R) ̸= 0 . Then Γ′
n(R) is isomorphic to

an induced subgraph of Γn(R) and also an induced subgraph of Γ′
n+2k(R) . Moreover, if R is not reduced, then

Γ′
n(R) is isomorphic to an induced subgraph of Γ′

m(R) for all m ≥ n .

Proof By definition, Γ′
n(R) is an induced subgraph of Γn(R) . Now let a ∈ Z∗(R) and V be the set of vertices

x = (x1, . . . , xn+2) of Γ′
n+2(R) with the property that x1 = a and x2 = −a . If we set x = (x3, . . . , xn+2)

for such an x , then x ∼ y in Γ′
n+2(R) if and only if x ∼ y in Γn(R) , for all pairs x,y ∈ V . Therefore,

Γn(R) is isomorphic to Γ′
n+2(R)[V ] . By induction, we see that Γ′

n(R) is isomorphic to an induced subgraph
of Γ′

n+2k(R) . Now assume that R has a nonzero nilpotent element and m ≥ n . Then there is 0 ̸= a ∈ R with
a2 = 0 . If we set V ′ to be the set of vertices of Γ′

m(R) that have a on their first m − n coordinates, then
Γn(R) is isomorphic to Γn(R)[V ′] , as required. 2

Lemma 3.5 Let R be a commutative ring.

(i) For each a, b ∈ Z∗(R) with a ̸= ±b we have ab = 0 if and only if either Z(R)2 = 0 or R is isomorphic
to one of the following: Z2 × Z2 , Z2 × Z3 , Z3 × Z3 .

(ii) Suppose that R is reduced. For each a, b ∈ Z∗(R) with a ̸= ±b we have ab = 0 or Ann(a)Ann(b) = 0 if
and only if R is an integral domain or is isomorphic to one of the following: Z2 ×Z2 , Z2 ×Z3 , Z3 ×Z3 .

Proof (i)(⇐) and (ii)(⇐): Clear. (i)(⇒): Assume that Z(R)2 ̸= 0 and aa′ ̸= 0 for some a, a′ ∈ Z(R) . Then
by assumption 0 ̸= a = ±a′ and hence a2 ̸= 0 . If a ̸= ±a2 , then the hypothesis gives us a3 = 0 . On the other
hand, a+ a2 ̸= a and a+ a2 ̸= 0 . Applying the hypothesis on a, a+ a2 we get a2 = −a3 = 0 , a contradiction.
Thus, we must have a = ±a2 . If a = −a2 , then (−a)2 = −a and thus by replacing a with −a if necessary, we
can assume that 0 ̸= a = a2 . Let x ∈ Ra , say x = ra . If x ̸= ±a , then 0 = xa = ra2 = ra = x . Therefore,
Ra = {0, a,−a} is isomorphic to either Z2 or Z3 as a ring. Since a is an idempotent, R ∼= Ra × R(1 − a) .
Note that 1− a is also a nonzero idempotent in Z(R) and by a similar argument R(1− a) is isomorphic to one
of Z2 and Z3 and the result follows.

(ii)(⇒): Assume that there are a, b ∈ Z∗(R) such that a ̸= ±b and ab ̸= 0 . If both a = ±ab and
b = ±ab , then a = ±b , against our assumption. We can assume that, for example, a ̸= ±ab . Therefore,
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by hypothesis we should have a2b = 0 or Ann(a)Ann(ab) = 0 . In the former case, (ab)2 = 0 , and as R is
reduced, ab = 0 , a contradiction. In the latter case, since Ann(a) ⊆ Ann(ab) , we get Ann(a)2 = 0 and hence
Ann(a) = 0 , again a contradiction. Consequently, for each a, b ∈ Z∗(R) with a ̸= ±b we have ab = 0 , and the
claim follows from (i). 2

Suppose that R = Z2 × Z2 . We write elements of R and vertices of TDn(R) as strings of elements of
Z2 and vectors with entries in R , respectively. For example, (10, 01) ∈ V(Γ′

2(R)) and (00, 01) ∈ V(Γ2(R)) \
V(Γ′

2(R)) and (10, 01) · (11, 01) = 11 ∈ R . We use similar notations for other decomposable rings.

Proposition 3.6 (i) If R = Z2 × Z3 or R = Z3 × Z3 , then for all n ≥ 2 , neither Γn(R) is chordal nor
Γ′
n(R) .

(ii) If R = Z2 × Z2 , then all Γn(R)s and Γ′
n(R)s are not chordal except for Γ′

2(R) .

Proof (i): In Γ′
2(R) we have the cycle (01, 01) ∼ (01, 02) ∼ (02, 02) ∼ (02, 01) ∼ (01, 01) and Γ′

3(R) has
the induced cycle C : (10, 10, 10) ∼ (01, 01, 01) ∼ (01, 10, 02) ∼ (10, 01, (−1)0) ∼ (10, 10, 10) , which show that
these graphs are not chordal. Now the claim follows from 3.4.

(ii): It is straightforward to check that Γ2(R) is not chordal but Γ′
2(R) is chordal. Also, if we change

the only 2 in cycle C of (i) to 1, then we get an induced cycle of length 4 in Γ′
3(R) . Moreover, Γ′

4(R) is not
chordal because we have (01, 10, 10, 10) ∼ (10, 01, 01, 01) ∼ (01, 01, 10, 01) ∼ (10, 10, 01, 10) ∼ (01, 10, 10, 10) .
Now the proof is concluded by 3.4. 2

Theorem 3.7 Suppose that R is not isomorphic to Z2 × Z2 . Then the following are equivalent.

(i) There exist an n ≥ 2 such that either Γn(R) or Γ′
n(R) is chordal.

(ii) Z(R)2 = 0 .

(iii) For all n ≥ 2 , both Γn(R) and Γ′
n(R) are chordal.

Proof If R ∼= Z2 × Z3 or R ∼= Z3 × Z3 , then according to 3.6, all of (i)–(iii) are incorrect. Assume that
R ≇ Z3 × Z3 and R ≇ Z2 × Z3 . Since (ii) ⇒ (iii) ⇒ (i) is trivial, we give the proof of (i) ⇒(ii).

Suppose that (i) holds. According to 3.4, we can assume that Γ′
n(R) is chordal for some n ≥ 2 . If R is

not reduced, then by 3.4, Γ′
2(R) is chordal. If R is reduced, then by the same lemma, either Γ′

2(R) is chordal
or Γ′

3(R) is. First assume that R is reduced and Γ′
3(R) is chordal. Let a, b ∈ Z∗(R) be such that a ̸= ±b and

ab ̸= 0 . We show that Ann(a)Ann(b) = 0 and then the result, in this case, follows by 3.5(ii).
If a′b′ ̸= 0 for some a′ ∈ Ann(a) and b′ ∈ Ann(b) , then in Γ′

3(R) we have C : (b′, a, a) ∼ (a,−b′, a′b′) ∼
(a′,−b, b) ∼ (b, a′, a′b′) ∼ (b′, a, a) . Because R is reduced and ab ̸= 0 , we must have a ̸= a′, b′ and b ̸= a′, b′ .
Thus, it follows that all of the vertices in C are distinct and C is a cycle of length 4 in the chordal graph
Γ′
3(R) . Hence, either we have (b′, a, a) ∼ (a′,−b, b) or (a,−b′, a′b′) ∼ (b, a′, a′b′) . The former case means that

a′b′ = (b′, a, a) · (a′,−b, b) = 0 , against the choice of a′ and b′ . It follows that (a,−b′, a′b′) ∼ (b, a′, a′b′) , that
is, ab − a′b′ + (a′b′)2 = 0 . Consequently, (ab)2 = ab(a′b′ − (a′b′)2) = 0 and hence ab = 0 , for R is reduced.
However, this is a contradiction, from which the claim follows.

Now suppose that Γ′
2(R) is chordal (and R is not necessarily reduced). By 3.5(i), we just need to

show that ab = 0 for each a, b ∈ Z∗(R) with a ̸= ±b . Assume that this does not hold for some a, b . If
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Ann(a) ⊆ {0, a} and Ann(b) ⊆ {0, b} , then 0 ̸= ab ∈ Ann(a) ∩ Ann(b) , which forces a = b , against the
choice of a, b . We can assume that Ann(a) ̸⊆ {0, a} , say a ̸= a′ ∈ Ann∗(a) . Also let b′ ∈ Ann∗(b) . Note
that a /∈ {±b, a′,±b′} and b ̸= ±a′ . These relations guarantee distinctness of vertices of the following cycle in
Γ′
2(R) : (b′, a) ∼ (a,−b′) ∼ (a′,−b) ∼ (b, a′) ∼ (b′, a) . Since this cycle has length > 3 in a chordal graph, it

must have a chord that is either (a′,−b) ∼ (b′, a) or (a,−b′) ∼ (b, a′) . In both cases, we deduce that ab = a′b′

and hence a2b = ab2 = 0 . Thus, ab ∈ Ann(a) ∩ Ann(b) and either a ̸= ab or b ̸= ab .
Notice that in the above paragraph, we indeed proved that if a, b ∈ Z∗(R) , a ̸= ±b , a′a = 0 = b′b for

nonzero a′ and b′ such that either a ̸= a′ or b ̸= b′ , then ab = a′b′ . Applying this with a′ = b′ = ab , we get
ab = (ab)2 = 0 , a contradiction. From this contradiction, it follows that ab = 0 for each a, b ∈ Z∗(R) with
a ̸= ±b and the result is established. 2

Summing up the results on Γn(R) and Γ′
n(R) , we get the following:

Corollary 3.8 Suppose that n ≥ 2 is an integer.

(i) Γn(R) is chordal if and only if Z(R)2 = 0 .

(ii) Γ′
n(R) is chordal if and only if either R ∼= Z2 × Z2 and n = 2 or Z(R)2 = 0 .

The last graph we study in this article is the zero-divisor graph Γ(R) . First we consider the case where R is
decomposable; that is, R decomposes as a product of nontrivial rings.

Proposition 3.9 Assume that R is decomposable. The zero-divisor graph of R is chordal if and only if
R ∼= Z2 ×R′ where R′ ∼= Z2

2 or Z(R′)2 = 0 .

Proof (⇒): Suppose that R ∼= R1 ×R2 for nontrivial rings R1 and R2 . If both |R1| ≥ 3 and |R2| ≥ 3 and
1 ̸= ai ∈ R∗

i , then in Γ(R) we have (1, 0) ∼ (0, 1) ∼ (a1, 0) ∼ (0, a2) ∼ (1, 0) , which forms an induced cycle
of length 4. Thus, at least one of the Ri s, say R1 , is isomorphic to Z2 . Suppose that R2

∼= R′
2 × R′

3 is itself
decomposable. Then R ∼= (R1 × R′

2) × R′
3 and since |R1 × R′

2| ≥ 4 and by the above argument, we see that
R′

3
∼= Z2 . Similarly, R′

2
∼= Z2 and R′ ∼= Z2

2 .
Now assume that R′ is indecomposable but not an integral domain (note that a domain satisfies

Z(R′)2 = 0). If Z(R′)2 ̸= 0 , then by [5, Remark 2.9(a)] Γ(R′) is not a complete graph, but it is known
that Γ(R′) is a connected graph (see [4, Theorem 2.3]). Thus, there are vertices r1, r2 and r3 of Γ(R′) , such
that r1 ∼ r2 ∼ r3 but r1 ≁ r3 in Γ(R′) . It follows that (0, r1) ∼ (1, 0) ∼ (0, r3) ∼ (1, r2) ∼ (0, r1) is a chordless
cycle in Γ(R) , a contradiction. Therefore, Z(R′)2 = 0 .

(⇐): Set A = {1}×Z(R′) , B = {0}×Z∗(R′) and C = {0}× (R′ \Z(R′)) . Then V(Γ(R)) = A∪B ∪C .
It is easy to see that in all cases, the vertices in C are adjacent only to (1, 0) and are not contained in any
cycle. Also, Γ(R)[A] has no edges and Γ(R)[B] is complete. Consequently, any induced cycle with length > 3

should have at least one vertex from A , say a . Then the neighbors of a in this cycle should be from B , say b1

and b2 , but b1 ∼ b2 , a contradiction. Thus, Γ(R) is chordal. 2

Next we present a condition on an indecomposable ring R , equivalent to chordality of Γ(R) . For this we
need a lemma.
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Lemma 3.10 Suppose that R is indecomposable, Γ(R) is chordal, and y, y′ ∈ Z∗(R) with yy′ ̸= 0 . Then
(Ann(y) ∩ Ann(y′))2 = 0 .

Proof Let x, z ∈ (Ann(y) ∩ Ann(y′))∗ . If x ̸= z , then the cycle x ∼ y ∼ z ∼ y′ ∼ x in Γ(R) has a chord
by assumption. As yy′ ̸= 0 , we must have zx = 0 . Therefore, we just need to show that x2 = 0 . Suppose
this is not the case. Note that x ̸= x2 because R is indecomposable. By applying the above argument with x2

instead of z , we deduce that x3 = 0 . If x+ x2 = 0 , then (−x)2 = −x is a nonzero idempotent in Z(R) , which
means that R is decomposable, against our hypothesis. Hence, x ̸= x+ x2 ∈ (Ann(y) ∩ Ann(y′))∗ , and by the
above argument, x(x+ x2) = 0 . Then x2 = −x3 = 0 , a contradiction, from which the result follows. 2

The following theorem reduces chordality of Γ(R) to chordality of ΓE(R) , the compressed zero-divisor
graph of R defined in [17] and further studied in [3]. The vertices of ΓE(R) are equivalence classes of elements
of Z∗(R) under the relation x ≃ y if and only if Ann(x) = Ann(y) and two vertices [x] and [y] are adjacent if
and only if xy = 0 .

Theorem 3.11 Assume that R is indecomposable. Then Γ(R) is chordal if and only if ΓE(R) is chordal and
for each y ∈ Z∗(R) either y2 = 0 or (Ann(y))2 = 0 .

Proof (⇒): Let V be an irredundant set of representatives of vertices of ΓE(R) . By definition, x ∼ y in
Γ(R) if and only if [x] ∼ [y] in ΓE(R) . Hence, ΓE(R) is isomorphic to the induced subgraph Γ(R)[V ] of Γ(R)

and is chordal. Now let y ∈ Z∗(R) with y2 ̸= 0 . Consider y′ = y + y2 ̸= y . If y′ = 0 , then (−y)2 = −y is a
nontrivial idempotent in R , against indecomposablity of R , so y′ ̸= 0 . If yy′ = 0 , then y2 = −y3 , from which
y4 = y2 and y2 is a nontrivial idempotent in R . Thus, yy′ ̸= 0 , and as Ann(y) ⊆ Ann(y′) , the result follows
from 3.10.

(⇐): Let C : x0 ∼ · · · ∼ xn−1 ∼ x0 be an induced cycle of length n > 3 in Γ(R) . If [xi] ̸= [xj ] for all
i ̸= j , then [x0] ∼ · · · ∼ [xn−1] ∼ [x0] is an induced cycle of the same length in ΓE(R) , against the hypothesis.
Thus, there are i ̸= j with [xi] = [xj ] . If x2

i = 0 , then xi ∈ Ann(xi) = Ann(xj) and xi ∼ xj , from which xi

and xj must be two consecutive vertices in C , say j = i+ 1 (mod n) , but then xk ∈ Ann(xi) = Ann(xj) for
k = i − 1 (mod n) and xk ∼ xj is a chord for C , a contradiction. Consequently, we can assume x2

i ̸= 0 , so
xi ≁ xj , or else xi ∈ Ann(xj) = Ann(xi) . If n ≥ 5 , then there is a vertex of C adjacent to xi but not xj , which
is impossible because [xi] = [xj ] . Thus, n = 4 , and if we assume i = 0 , then j = 2 . Now x1, x3 ∈ Ann(xi)

and by the assumption of the theorem Ann(xi)
2 = 0 , so x1 ∼ x3 is a chord for C , a contradiction. Therefore,

no such cycle C exists and Γ(R) is chordal. 2

Thus, to characterize rings with chordal zero-divisor graphs, it suffices to characterize rings with chordal
compressed zero-divisor graphs. Although we could not achieve this goal, in some cases we can utilize 3.11 to
characterize chordal zero-divisor graphs for some classes of rings. For example, if R is reduced and y ∈ Z∗(R) ,
then neither y2 = 0 nor (Ann(y))2 = 0 . Hence, we get the following corollary of 3.9 and 3.11.

Corollary 3.12 Suppose that R is reduced. Then Γ(R) is chordal if and only if either R is an integral domain
or R ∼= Z3

2 or R ∼= Z2 ×D for an integral domain D .

At the end of the paper, we present some examples of rings R with chordal Γ(R) . Some simple examples
are Z4 and Z2[x]/⟨x2⟩ or more generally any local ring (R,M) with M2 = 0 . Another class is presented in
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the following example. Note that in this example, we may have (Ann(y))2 = 0 for some y ∈ Z∗(R) and y2 = 0

for some other y ∈ Z∗(R) .

Example 3.13 Let R be a special principal ideal ring (SPIR), that is, a principal ideal ring with exactly one
prime ideal ⟨p⟩ such that pn = 0 for some positive integer n . For example, R = Zpn for a prime number p .
Then ΓE(R) has n − 1 vertices [p], . . . , [pn−1] and [pi] ∼ [pj ] if and only if i + j ≥ n . It is routine to check
that this graph is chordal. Also, if y ∈ ⟨pi⟩ \ ⟨pi+1⟩ for some 0 < i < n , then Ann(y) = ⟨pn−i⟩ . Thus, either
y2 = 0 or (Ann(y))2 = 0 . Therefore, by 3.11, Γ(R) is chordal.

We can extend this example to get non-Noetherian rings with chordal zero-divisor graphs.

Example 3.14 Let X = {xi|i ∈ I} be a family of indeterminates, where I is an arbitrary indexing set. Then

R = D[X]
Mk has a chordal zero-divisor graph, where D is an integral domain, M is the ideal of D[X] generated

by all xi s, and k is a positive integer.

Proof Let 0 ̸= f, g ∈ D[X] and set Ord(f) to be the smallest degree of a term present in f . Then fg ∈ Mk

if and only if Ord(f) + Ord(g) = Ord(fg) ≥ k . It follows that Ann(f) = M
k−Ord(f) for each f /∈ Mk . Thus,

either Ann(f)2 = 0 or f
2
= 0 . Also, the vertices of ΓE(R) are [x1], [x1

2], . . . , [x1
k−1] and ΓE(R) is isomorphic

to the compressed zero-divisor graph of the SPIR D[x1]

⟨xk
1⟩

and is chordal. Thus, by 3.11, Γ(R) is chordal. 2
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