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Abstract: In this paper we study the Caputo and Riemann–Liouville nabla (q, h) -fractional difference equation and
obtain the following two main results:

Theorem A Assume 0 < α < 1 and there is a constant b such that c(t) ≤ b < 0, for t ∈ T̃σ(a)

(q,h). Then any solution,

x(t), of the nabla Caputo (q, h) -fractional difference equation

C
a ∇α

(q,h)x(t) = c(t)x(t), t ∈ T̃σ(a)

(q,h) (0.1)

with x(a) > 0 satisfies
lim
t→∞

x(t) = 0.

Theorem B Assume 0 < α < 1 , c(t) ≤ 0 , t ∈ T̃σ2(a)

(q,h) , and x(t) is a solution of the equation

a∇α
(q,h)x(t) = c(t)x(t), t ∈ T̃σ2(a)

(q,h) , (0.2)

satisfying x(σ(a)) > 0 . Then x(t) > 0 , t ∈ T̃σ(a)

(q,h) and

lim
t→∞

x(t) = 0.

Theorem A and Theorem B extend the results in other recent works of the authors.

Key words: Nabla fractional difference, (q, h) -calculus, monotonicity, asymptotic behavior

1. Introduction
In recent years, fractional calculus has attracted increasing interest. Although several results of fractional
differential/difference equations are already published [1–6, 13–16, 22, 23, 25–30, 32, 33, 35, 40–44, 46, 47], the
development of a qualitative theory for fractional difference equations is still in its beginning due to the memory
effects of fractional operators.
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The extension of the basic notions of discrete fractional calculus to the (q, h) -calculus setting appear
in [10, 12]. The (q, h) -calculus reduces to discrete nabla-calculus (see [18, Chapter 3]) when q = 1 = h and
q -difference calculus (quantum-calculus) (see[18, Chapter 4]) when h = 0 . Some interesting results concerning
fractional (q, h) -calculus can be found in [36–38].

In 1996, Matignon [34] gave a classical stability condition for homogeneous linear fractional differential
equations. This criterion was developed by several authors. In [31], Chen et al. proposed a fractional Lyapunov
direct method. Later, Chen et al. [13] used the Schauder fixed point theorem in the asymptotic stability of
nonlinear fractional difference equations. In 2013, �Cerm�ak et al. [11] investigated the stability regions for linear
fractional difference systems using Laplace transform. In 2015, Jia et al. [25] established comparison theorems
to extend the corresponding asymptotic result in [4]. In 2016, Mozyrska et al. [35] presented linearization to
decide the stability of fractional difference systems. In 2017, Jia et al. [20] constructed a Liapunov functional
to decide the stability of fractional (q, h) -difference equations.

Some efforts have been made in stability of nabla fractional q -difference equations [19, 25] and nabla
fractional h -difference equations (see [11, 21], [39, Chapter 6]). Other efforts have been made in stability of
delta fractional difference equations (h = 1) [9]. However, [20] is the only result on the asymptotic behavior
of nabla fractional (q, h) -difference equations. The formal solutions (when c(t) = λ is a constant) of (0.1) and
(0.2) are given through (q, h) -Mittag-Leffler function (see details in [10, 38]),

Es,λ
α,β(t) =

∞∑
k=0

λkĥαk+β−1(t, s),

which converges (absolutely) if |λ| < (ν(t))−α , which means λ only can be zero when q > 1 and h > 0 (since
lim
t→∞

ν(t) = ∞ , t ∈ Tt0
(q,h) ). This illustrates that there are substantial differences between the h -time scale and

q -time scale (or (q, h) -time scale). Thus, we cannot directly use (q, h) -Mittag-Leffler function to study their
asymptotic behavior.

The aim of this paper is to further investigate asymptotic stability of the nabla fractional (q, h) -difference
equations. Theorem A is motivated by Jia et al. [23], who obtained asymptotic results for the nabla Caputo
fractional difference equation

∇ν
a∗x(t) = c(t)x(t), t ∈ Na+1, (1.1)

x(a) > 0,

where 0 < ν < 1 , c(t) ≤ b1 < 0 , and motivated by Baleanu et al. [6], who obtained the solution’s monotonicity
for λ < 0 and asymptotic stability of fractional Caputo-like h -difference equation

C
h∆

ν
au(t) = λu(t+ νh), 0 < ν ≤ 1, t ∈ (hN)a+(1−ν)h, (1.2)

u(a) > 0.

Theorem B is motivated by Jia et al. [25] and Goodrich and Peterson [18], who obtained asymptotic results for
the nabla fractional q -difference equation

∇α
q,px(t) = c(t)x(t), t ∈ qN1 , (1.3)

x(1) > 0,

where p = q−1 , c(t) ≤ 0 .
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This paper is organized as follows. In Section 2, some preliminaries about (q, h) -discrete time scales
are introduced. In Section 3, Theorem A is proved and we show that the solution of the nabla Caputo (q, h) -
fractional difference equation

C
a ∇α

(q,h)x(t) = c(t)x(t), c(t) ≤ b < 0, 0 < α < 1,

has similar asymptotic behavior with the solution of the ordinary nabla Caputo difference equation

C
a ∇α

(1,1)x(t) = c(t)x(t), c(t) ≤ b < 0, 0 < α < 1.

In Section 4, Theorem B is given and we show that the solution of nabla (q, h) -fractional difference equation
a∇α

(q,h)x(t) = cx(t), c < 0, 0 < α < 1, has similar asymptotic behavior with the solution of the first-order

nabla q -difference equation ∇qx(t) = cx(t), c < 0, t ∈ qN1 . Four numerical examples are given in Section 5 and
asymptotic stability of numerical solution is shown to support our the qualitative analysis.

2. Preliminaries
First we introduce some notation used in (q, h) -calculus (see [10] and [12]). For any real number α and
q > 0, q ̸= 1 , we set [α]q := qα−1

q−1 . Then we have the q -analogy of n! in the form [n]q! := [n]q[n − 1]q · · · [1]q
for n = 1, 2, · · · , whereas for n = 0 we put [0]q! := 1 . If q = 1 , then [α]1 := α and [n]1! becomes the standard
factorial. Further, the q -binomial coefficient is introduced by use of relations[

α
0

]
q̃

:= 1,

[
α
n

]
q̃

:=
[α]q̃[α− 1]q̃ · · · [α− n+ 1]q̃

[n]q̃!
, (2.1)

where α ∈ R and n ∈ N0 . The extension of the q -binomial coefficient to noninteger value n is allowed via the
Γq̃(t) function defined for 0 < q̃ < 1 as

Γq̃(t) :=
(q̃, q̃)∞(1− q̃)1−t

(q̃t, q̃)∞
, 0 < q̃ < 1, (2.2)

where (a, q̃)∞ =
∏∞

j=0(1− aq̃j) and t ∈ R \ {0,−1,−2, · · · } . It is easy to check that Γq̃ satisfies the functional
relation Γq̃(t+ 1) = [t]q̃Γq̃(t) and Γq̃(1) = 1 . The q -binomial coefficient was introduced as

[
x
k

]
q̃

=
Γq̃(x+ 1)

Γq̃(k + 1)Γq̃(x− k + 1)
, x ∈ R, k ∈ Z. (2.3)

From (2.1), it is easy to derive the recursion formula

[
x
k

]
q̃

=
1− q̃x+1−k

1− q̃k

[
x

k − 1

]
q̃

,

[
x
0

]
q̃

= 1. (2.4)
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The q -analogue of the power function is introduced as

(t− s)
(α)
q̃ = tα

(s/t, q̃)∞
(q̃αs/t, q̃)∞

, t ̸= 0, 0 < q̃ < 1, α ∈ R.

For α = n , a positive integer, this expression reduces to

(t− s)
(n)
q̃ = tn

n−1∏
j=0

(1− q̃j
s

t
).

We consider here the (q, h) -time scale (for details, see [10] and [12]):

Tt0
(q,h) = {t0qk + [k]qh, k ∈ Z} ∪

{
h

1− q

}
, t0 > 0, q ≥ 1, h ≥ 0, q + h > 1.

Note that if q = 1 then the cluster point h/(1− q) = −∞ is not involved in Tt0
(q,h) . The forward and backward

jump operator is the linear function σ(t) = qt + h and ρ(t) = q−1(t − h) , respectively. Similarly, the forward
and backward graininess is given by µ(t) = (q− 1)t+ h and ν(t) = q−1µ(t) , respectively. We use the standard
notation

σk+1(t) := σk(σ(t)), ρk+1(t) := ρk(ρ(t)), k = 0, 1, · · · .

It is easy to show that

σk(t) = qkt+ [k]qh and ρk(t) = q−k(t− [k]qh).

The relation
ν
(
ρk(t)

)
= q−kν(t)

holds for t ∈ Tt0
(q,h) .

Let a ∈ Tt0
(q,h), a > h/(1− q) be fixed. Then we introduce restrictions of the time scale Tt0

(q,h) by relation

T̃σi(a)
(q,h) = {t ∈ Tt0

(q,h), t ≥ σi(a)}, i = 0, 1, · · · ,

where the symbol σi stands for the ith iterate of σ (analogously, we use the symbol ρi ). To simplify the

notation, we put q̃ = 1/q whenever considering the time scale Tt0
(q,h) or T̃σi(a)

(q,h) .

The nabla (q, h) -derivative of the function f : Tt0
(q,h) → R is defined by

∇(q,h)f(t) :=
f(t)− f(ρ(t))

ν(t)
=

f(t)− f(q̃(t− h))

(1− q̃)t+ q̃h
,

where q̃ = q−1 .

The power functions and the nabla fractional (q, h) -Taylor monomial of degree α on Tt0
(q,h) (see [10]) are

defined by

(t− s)
(α)
(q̃,h) := ([t]− [s])

(α)
q̃ , (2.5)
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ĥα(t, s) :=
(t− s)

(α)
(q̃,h)

Γq̃(α+ 1)
, α ∈ R, (2.6)

respectively, where the square bracket of t , [t] is defined by

[t] := t+ hq̃/(1− q̃). (2.7)

It follows that

ν(t) := [t](1− q̃). (2.8)

The following definitions appear in [10].

Definition 2.1 Assume x : Tσ(a)
(q,h) → R and t = σn(a), n ≥ 1. Then the nabla (q, h)-integral of x from a to t

is defined by ∫ t

a

x(τ)∇τ :=

n∑
i=1

x(σi(a))ν(σi(a))

with the standard convention that
∫ a

a
x(τ)∇τ = 0 . We also define the nabla (q, h)-fractional integral of order

α > 0 by

a∇−α
(q,h)x(t) :=

∫ t

a

ĥα−1(t, ρ(τ))x(τ)∇τ. (2.9)

Definition 2.2 The nabla (q, h)-fractional difference (in the Riemann–Liouville sense) of order α > 0 is
defined by

a∇α
(q,h)x(t) := ∇m

(q,h) a∇−(m−α)
(q,h) x(t),

where m = ⌈α⌉ ; that is, m is the ceiling of α .

Definition 2.3 The nabla (q, h)-fractional difference (in the sense of Caputo) of order α > 0 is defined by

C
a ∇α

(q,h)x(t) := a∇−(m−α)
(q,h) ∇m

(q,h)x(t).

3. Asymptotic behavior for Caputo (q, h)-fractional difference equation

From the definition of the q -gamma function (2.2), it is easy to prove the following lemma.

Lemma 3.1 (Sign of q -gamma function)

1. If x > 0 or x ∈ (−2n− 2,−2n− 1), n ∈ N0 , then Γq̃(x) > 0 .

2. If x ∈ (−2n− 1,−2n), n ∈ N0 , then Γq̃(x) < 0.

The following Figure 1 illustrates the above lemma.
The following lemma gives a very nice form of the Taylor monomials on Tt0

(q,h) (see [10]).
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Figure 1. The q -gamma function on interval (−3, 3) , q̃ = 0.5.

Lemma 3.2 Let α ∈ R, s, t ∈ Tt0
(q,h) and n ∈ N0 such that t = σn(s) Then:

ĥα(t, s) = (ν(t))α
[
α+ n− 1
n− 1

]
q̃

. (3.1)

Lemma 3.3 Let α ∈ R, s, t ∈ Tt0
(q,h) and n ∈ N0 such that t = σn(s) . Then:

( i) ĥα(t, t) = 0, α ̸= 0.

( ii) ĥ0(t, s) = 1 , for n ∈ N0 .
( iii) for k ∈ N1 ,

ĥ−k(t, s) =


(ν(t))−k, n = 1,

(ν(t))−k [n− 1− k]q̃[n− 2− k]q̃ · · · [1− k]q̃
Γq̃(n)

, n ∈ N2,
(3.2)

when 1 ≤ k ≤ n− 1 and n ∈ N2 , ĥ−k(t, s) = 0.

Proof (i) If α ̸= 0,−1,−2, · · · , then

ĥα(t, t) = (ν(t))α
[
α+ 0− 1
0− 1

]
q̃

= (ν(t))α
Γq̃(α+ 0)

Γq̃(0)Γq̃(α+ 1)

= (ν(t))α
1

Γq̃(0)[α]q̃

= 0.
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If α = −1,−2, · · · , then

ĥα(t, t) = lim
δ→α

(ν(t))δ
[
δ + 0− 1
0− 1

]
q̃

= lim
δ→α

(ν(t))δ
Γq̃(δ + 0)

Γq̃(0)Γq̃(δ + 1)

= lim
δ→α

(ν(t))
δ 1

Γq̃(0)[δ]q̃

= lim
δ→α

0 = 0.

(ii) If n = 0 , then

ĥ(t, t) = (ν(t))
0

[
−1
−1

]
q̃

= lim
γ→−1

(ν(t))
0

[
γ
γ

]
q̃

= 1.

If n ∈ N1 , then

ĥ0(t, s) = (ν(t))0
[
0 + n− 1
n− 1

]
q̃

= (ν(t))0
Γq̃(0 + n)

Γq̃(n)Γq̃(1)

= 1.

(iii) If n = 1 , then

ĥ−k(t, s) = lim
α→k

ĥ−α(t, s)

= lim
α→k

(ν(t))−α

[
−α+ n− 1

n− 1

]
q̃

= lim
α→k

(ν(t))−α Γq̃(−α+ n)

Γq̃(n)Γq̃(1− α)

= lim
α→k

(ν(t))−α

= (ν(t))−k.
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If n ∈ N2 , then

ĥ−k(t, s) = lim
α→k

ĥ−α(t, s)

= lim
α→k

(ν(t))−α

[
−α+ n− 1

n− 1

]
q̃

= lim
α→k

(ν(t))−α Γq̃(−α+ n)

Γq̃(n)Γq̃(1− α)

= lim
α→k

(ν(t))−α [n− 1− α]q̃[n− 2− α]q̃ · · · [1− α]q̃
Γq̃(n)

= (ν(t))−k [n− 1− k]q̃[n− 2− k]q̃ · · · [1− k]q̃
Γq̃(n)

.

Note that if 1 ≤ k ≤ n− 1 and n ∈ N2 , then ĥ−k(t, s) = 0. 2

Next we give nabla power rule formulas as an extension of results that appear in [24] and [25].

Lemma 3.4 Assume q > 1 , q̃ = q−1, α ∈ R , and let t = σn(s) , n ∈ N0, where s ∈ Tt0
(q,h) . Then:

1. The nabla (q, h)-difference of the function ĥ−α(t, s) with respect to t is given by

t∇(q,h)ĥ−α(t, s) = ĥ−α−1(t, s).

2. The nabla (q, h)-difference of the function ĥ−α(t, s) with respect to s is given by

s∇(q,h)ĥ−α(t, s) = −ĥ−α−1(t, ρ(s)).

Proof These results follow easily from Lemma 2.2 in [17]. 2

Lemma 3.5 Assume c(t) < (ν(t))−α, 0 < α < 1. Then any solution of

C
a ∇α

(q,h)x(t) = c(t)x(t), t ∈ T̃σ(a)
(q,h) (3.3)

satisfying x(a) > 0 is positive on T̃a
(q,h).

Proof Using integration by parts and

s∇(q,h)ĥ−α(t, s) = −ĥ−α−1(t, ρ(s)),
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we have
C
a ∇α

(q,h)x(t)
Def.2.3
= a∇−(1−α)

(q,h) ∇(q,h)x(t)

Def.2.1
=

∫ t

a

ĥ−α(t, ρ(s))∇(q,h)x(s)∇s

= ĥ−α(t, s)x(s)|ts=a +

∫ t

a

ĥ−α−1(t, ρ(s))x(s)∇s

= −ĥ−α(t, a)x(a) +

k∑
i=1

ĥ−α−1(t, σ
i−1(a))x(σi(a))ν(σi(a)).

Taking t = σk(a), k ≥ 1 , we have

C
a ∇α

(q,h)x(t) =
C
a ∇α

(q,h)x(σ
k(a))

= −ĥ−α(t, a)x(a) + ĥ−α−1(σ
k(a), σk−1(a))x(σk(a))ν(σk(a))

+

k−1∑
i=1

ĥ−α−1(t, σ
i−1(a))x(σi(a))ν(σi(a))

= −ĥ−α(t, a)x(a) + x(σk(a))(ν(σk(a)))−α

+

k−1∑
i=1

ĥ−α−1(t, σ
i−1(a))x(σi(a))ν(σi(a)).

Using x(t) as a solution of (3.3), we get

x(σk(a)) =
1

(ν(σk(a)))−α − c(σk(a))

{
ĥ−α(t, a)x(a)

−
k−1∑
i=1

ĥ−α−1(t, σ
i−1(a))x(σi(a))ν(σi(a))

}
.

Note that
ĥ−α(t, a) =

(
ν(t)

)−α
[
−α+ k − 1

k − 1

]
q̃

(3.4)

=
(
ν(t)

)−α Γq̃(−α+ k)

Γq̃(k)Γq̃(1− α)

> 0,

for k ≥ 1.

ĥ−α−1(t, σ
i−1(a)) =

(
ν(t)

)−α−1
[
−α− 1 + k − i

k − i

]
q̃

(3.5)

=
(
ν(t)

)−α−1 Γq̃(−α+ k − i)

Γq̃(k − i+ 1)Γq̃(−α)

< 0,

for 1 ≤ i ≤ k − 1.
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Using the strong induction principle, (3.4), (3.5), and x(a) > 0 , it is easy to see that x(σi(a)) > 0 for

i ∈ N0, where we use the convention
∑k−1

i=1 ĥ−α−1(t, σ
i−1(a))x(σi(a))ν(σi(a)) = 0 for k < 2. 2

The following comparison theorem plays an important role in proving our main results.

Theorem 3.6 Assume c2(t) ≤ c1(t) < (ν(t))−α, 0 < α < 1, and x(t), y(t) are solutions of the equations

C
a ∇α

(q,h)x(t) = c1(t)x(t), (3.6)

and
C
a ∇α

(q,h)y(t) = c2(t)y(t), (3.7)

respectively, for t ∈ T̃σ(a)
(q,h) satisfying x(a) ≥ y(a) > 0. Then

x(t) ≥ y(t),

for t ∈ T̃a
(q,h) .

Proof Similar to the first part of the proof of Lemma 3.5, taking t = σk(a), k ≥ 1 , we have

x(σk(a)) =
1

(ν(σk(a)))−α − c1(σk(a))

{
ĥ−α(t, a)x(a) (3.8)

−
k−1∑
i=1

ĥ−α−1(t, σ
i−1(a))x(σi(a))ν(σi(a))

}
.

y(σk(a)) =
1

(ν(σk(a)))−α − c2(σk(a))

{
ĥ−α(t, a)y(a) (3.9)

−
k−1∑
i=1

ĥ−α−1(t, σ
i−1(a))y(σi(a))ν(σi(a))

}
.

We will prove x(σk(a)) ≥ y(σk(a)) for k ∈ N0 by using the principle of strong induction. By assumption
x(a) ≥ y(a) > 0 , so the base case holds. Now assume that x(σi(a)) ≥ y(σi(a)) , for i = 0, 1 · · · , k − 1.

Since c2(t) ≤ c1(t) < (ν(t))−α,

ĥ−α(t, a) > 0

and
ĥ−α−1(t, σ

i−1(a)) < 0, for 1 ≤ i ≤ k − 1.

From (3.8) and (3.9) we have

x(σk(a)) ≥ y(σk(a)) > 0.

This completes the proof. 2

The following result appears in [38].
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Lemma 3.7 ( [38]) Let α ∈ R and n ∈ Z+ so that n− 1 < α ≤ n . Then

a∇−α
(q,h)

C
a ∇α

(q,h)x(t) = x(t)−
n−1∑
k=0

ĥk(t, a)∇k
(q,h)x(a). (3.10)

Since ĥ0(t, a) = 1 we get the following Lemma.

Lemma 3.8 Assume that 0 < α < 1 and x(t) is a solution of the fractional equation

C
a ∇α

(q,h)x(t) = c(t)x(t), t ∈ T̃σ(a)
(q,h) (3.11)

satisfying x(a) > 0. Then x(t) satisfies the integral equation

x(t) = x(a) +

∫ t

a

ĥα−1(t, ρ(s))c(s)x(s)∇s. (3.12)

Remark 3.9 Letting t = σk(a), k ∈ N0 , (3.12) can be rewritten explicitly as

x(σk(a)) =
x(a) +

∑k−1
i=1 ĥα−1

(
σk(a), σi−1(a)

)
c(σi(a))ν

(
σi(a)

)
x(σi(a))

1− (ν(σk(a)))αc(σk(a))
(3.13)

=

x(a) +
∑k−1

i=1 (ν(σ
k(a)))α−1

[
α− 1 + k − i

k − i

]
q̃

c(σi(a))ν
(
σi(a)

)
x(σi(a))

1− (ν(σk(a)))αc(σk(a))
,

for k ≥ 1, where we used formula (3.1).

Lemma 3.10

lim
n→∞

Γq̃(n+ α)

Γq̃(n)
= (1− q̃)−α, 0 < q̃ < 1, α ∈ R. (3.14)

Proof From Lemma 3.1, we know that if α ∈ R, a, t ∈ Tt0
(q,h) and n ∈ N0 such that t = σn(a) , then

ĥα(t, a) = (ν(t))α
[
α+ n− 1
n− 1

]
q̃

= (ν(t))α
Γq̃(α+ n)

Γq̃(α+ 1)Γq̃(n)

= [t]α(1− q̃)α
Γq̃(α+ n)

Γq̃(α+ 1)Γq̃(n)
.
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On the other hand, from (2.6),

ĥα(t, a) =
(t− a)

(α)
(q̃,h)

Γq̃(α+ 1)

=
([t]− [a])

(α)
q̃

Γq̃(α+ 1)

= [t]α
([a]/[t], q̃)∞

(q̃α[a]/[t], q̃)∞Γq̃(α+ 1)

= [t]α
(q̃n, q̃)∞

(q̃α+n, q̃)∞Γq̃(α+ 1)

= [t]α
(1− q̃α+1) · · · (1− q̃α+n−1)

(1− q̃) · · · (1− q̃n−1)Γq̃(α+ 1)

∏∞
j=0(1− q̃j+1)∏∞

j=0(1− q̃j+α+1)

= [t]α
(1− q̃α+1) · · · (1− q̃α+n−1)

(1− q̃) · · · (1− q̃n−1)Γq̃(α+ 1)

Γq̃(α+ 1)

(1− q̃)−α
,

so
Γq̃(α+ n)

Γq̃(n)
=

(1− q̃α+1) · · · (1− q̃α+n−1)

(1− q̃) · · · (1− q̃n−1)
Γq̃(α+ 1).

Letting n tend to infinity, we have

lim
n→∞

Γq̃(α+ n)

Γq̃(n)
= lim

n→∞

(1− q̃α+1) · · · (1− q̃α+n−1)

(1− q̃) · · · (1− q̃n−1)
Γq̃(α+ 1)

=

∏∞
j=0(1− q̃j+α+1)∏∞
j=0(1− q̃j+1)

Γq̃(α+ 1)

=
(q̃α+1, q̃)∞
(q̃, q̃)∞

Γq̃(α+ 1)

= (1− q̃)−α.

2

Remark 3.11 Note that

lim
n→∞

Γq̃(α+ n)

Γq̃(n)
= (1− q̃)−α

= lim
n→∞

(
1− q̃n

1− q̃

)α

= lim
n→∞

([n]q̃)
α.

It follows that

lim
n→∞

Γq̃(n+ α)

Γq̃(n)[n]αq̃
= 1,
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so this limit can be regarded as the q -analogue of the Stirling formula (see [45])

lim
x→∞

Γ(x+ α)

Γ(x)xα
= 1.

Considering the monotonicity of the solution for the following linear Caputo fractional difference equation,
C
a ∇α

(q,h)x(t) = cx(t), c < 0, (3.15)

we have the following result.

Lemma 3.12 If x(t) is a solution of equation (3.15), x(a) > 0 and c < 0 , then ∇(q,h)x(t) < 0 for t ∈ T̃σ(a)
(q,h) .

Proof Letting t = σ(a) , from (3.12), we get

x(σ(a)) = x(a) + ĥα−1(σ(a), a)cx(σ(a))ν(σ(a))

= x(a) + cx(σ(a))να(σ(a))

< x(a),

where we use ĥα−1(σ(a), a) =
(
ν(σ(a))

)α−1

, x(σ(a)) > 0 (from Lemma 3.5), and c < 0 .

If ∇(q,h)x(t) < 0 , for t ∈ T̃σ2(a)
(q,h) , this completes the proof.

If not, we assume that there exists two points t1 = σn(a), t2 = σm(a), t1 < t2, 1 ≤ n < m such that
∇(q,h)x(σ

i(a)) < 0 for 1 ≤ i ≤ n < m and ∇(q,h)x(σ
i(a)) > 0 for n+ 1 ≤ i ≤ m.

C
a ∇α

(q,h)x(t1)−
C
a ∇α

(q,h)x(t2)

=

∫ t1

a

ĥ−α(t1, ρ(s))∇(q,h)x(s)∇s−
∫ t2

a

ĥ−α(t2, ρ(s))∇(q,h)x(s)∇s

=

∫ t1

a

(
ĥ−α(t1, ρ(s))− ĥ−α(t2, ρ(s))

)
∇(q,h)x(s)∇s

−
∫ t2

t1

ĥ−α(t2, ρ(s))∇(q,h)x(s)∇s

=

n∑
i=1

(
ĥ−α(σ

n(a), σi−1(a))− ĥ−α(σ
m(a), σi−1(a))

)
∇(q,h)x(σ

i(a))ν(σi(a))

−
m∑

i=n+1

ĥ−α(σ
m(a), σi−1(a))∇(q,h)x(σ

i(a))ν(σi(a)).

Since

ĥ−α(σ
m(a), σi−1(a)) =

(
ν(σm(a))

)−α
[
−α+m− i

m− i

]
q̃

=
(
ν(σm(a))

)−α Γq̃(−α+m− i+ 1)

Γq̃(m− i+ 1)Γq̃(1− α)

> 0,
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for i ≤ m, similarly, we have

ĥ−α(σ
n(a), σi−1(a)) > 0, for i ≤ n.

Note that

ĥ−α(σ
n(a), σi−1(a))

ĥ−α(σm(a), σi−1(a))

=
(ν(t1))

−α

(ν(t2))−α
· Γq̃(−α+ n− i+ 1)

Γq̃(n− i+ 1)Γq̃(1− α)
· Γq̃(m− i+ 1)Γq̃(1− α)

Γq̃(−α+m− i+ 1)

=
(ν(t1))

−α

(ν(t2))−α
· Γq̃(−α+ n− i+ 1)

Γq̃(−α+m− i+ 1)
· Γq̃(m− i+ 1)

Γq̃(n− i+ 1)

=

(
ν(t1)

ν(t2)

)−α
[m− i]q̃[m− i− 1]q̃ · · · [n− i+ 1]q̃

[−α+m− i]q̃[−α+m− i− 1]q̃ · · · [−α+ n− i+ 1]q̃
.

Hence,

ĥ−α(σ
n(a), σi−1(a))

ĥ−α(σm(a), σi−1(a))

=

(
ν(t1)

ν(t2)

)−α

· 1− q̃m−i

1− q̃−α+m−i

1− q̃m−i−1

1− q̃−α+m−i−1
· · · 1− q̃n−i+1

1− q̃−α+n−i+1

=

(
(q − 1)t1 + h

(q − 1)t2 + h

)−α

· 1− q̃m−i

1− q̃−α+m−i

1− q̃m−i−1

1− q̃−α+m−i−1
· · · 1− q̃n−i+1

1− q̃−α+n−i+1

> 1,

for 1 ≤ i ≤ n < m.

Thus,

ĥ−α(σ
n(a), σi−1(a))− ĥ−α(σ

m(a), σi−1(a)) > 0, for 1 ≤ i ≤ n < m.

We can derive that
C
a ∇α

(q,h)x(t1)−
C
a ∇α

(q,h)x(t2) < 0.

On the other hand, due to c < 0 and x(t1) < x(t2) , we have

C
a ∇α

(q,h)x(t1)−
C
a ∇α

(q,h)x(t2) = c(x(t1)− x(t2)) > 0,

which is a contradiction. 2

From Corollary 4.8 in [38], we know that

x(t) = x(a)Ea,c
α,1(t)

is the solution of (3.15). As an application of Lemma 3.12, we have the following corollary.
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Corollary 3.13 The (q, h)-Mittag–Leffler function

Ea,c
α,1(t) =

∞∑
k=0

ckĥαk(t, a)

is monotonically decreasing if c < 0 .

When c(t) = c is a negative constant, we can give a simpler proof for Lemma 3.5.

Lemma 3.14 Assume c < 0 and x(t) is a solution of equation (3.15) satisfying x(a) > 0. Then x(t) > 0 for

t ∈ T̃σ(a)
(q,h).

Proof Let t = σk(a), k ≥ 1 . Note that

ĥ−α(σ
k(a), σi−1(a)) =

(
ν(σk(a))

)−α
[
−α+ k − i

k − i

]
q̃

=
(
ν(σk(a))

)−α Γq̃(−α+ k − i+ 1)

Γq̃(k − i+ 1)Γq̃(1− α)

> 0,

for 1 ≤ i ≤ k . From Lemma 3.12, we have ∇(q,h)x(σ
i(a)) < 0, i = 1, 2, · · · , k. Hence,

C
a ∇α

(q,h)x(t) =

∫ t

a

ĥ−α(t, ρ(s))∇(q,h)x(s)∇s

=

k∑
i=1

ĥ−α(σ
k(a), σi−1(a))∇(q,h)x(σ

i(a))ν(σi(a))

< 0.

As a result, x(t) of the RHS of (3.15) should be positive when c < 0 . 2

Theorem 3.15 If c < 0 and x(t) is a solution of equation (3.15) satisfying x(a) > 0, then

lim
t→∞

x(t) = 0.

Proof From Lemma 3.12 and Lemma 3.14, we know the limit exits. Arguing by contradiction, we assume
lim
t→∞

x(t) = A > 0. By Lemma 3.12 we get that x(t) is decreasing. Then, by equation (3.12), we have

x(t)− x(a) =

∫ t

a

ĥα−1(t, ρ(s))cx(s)∇s (3.16)

< cx(t)

∫ t

a

ĥα−1(t, ρ(s))∇s

= −cx(t)ĥα(t, s)
∣∣t
s=a

= cx(t)ĥα(t, a).
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Letting t tend to infinity, the LHS of (3.16) becomes

lim
t→∞

x(t)− x(a) = A− x(a) < 0,

while the RHS gives for t = σk(a) , k ≥ 1,

lim
t→∞

cx(t)ĥα(t, a) = cA lim
t→∞

ĥα(t, a)

= cA lim
t→∞

(
ν(t)

)α

lim
t→∞

[
α+ k − 1
k − 1

]
q̃

= cA lim
t→∞

(
ν(t)

)α

lim
k→∞

[
α+ k − 1
k − 1

]
q̃

(2.8)
= cA lim

t→∞
[σk(a)]α(1− q̃)α lim

k→∞

Γq̃(α+ k)

Γq̃(k)Γq̃(α+ 1)

= cA · (+∞)
1

Γq̃(α+ 1)

= −∞,

where we use
lim
k→∞

[σk(a)]α = lim
k→∞

[
qka+ [k]qh

]α
= lim

k→∞

(
qka+ [k]qh+ h

q̃

1− q̃

)α

= lim
k→∞

(
qka+

1− qk

1− q
h+

h

q − 1

)α

= lim
k→∞

(
qk(a+

h

q − 1
)

)α

= +∞

and

lim
k→∞

Γq̃(α+ k)

Γq̃(k)

(3.14)
= (1− q̃)−α.

This yields a contradiction and we conclude that lim
k→∞

x(t) = 0. 2

Theorem A. Assume 0 < α < 1 and there is a constant b such that c(t) ≤ b < 0, for t ∈ T̃σ(a)
(q,h). Then any

solution, x(t), of the nabla Caputo (q, h) -fractional difference equation

C
a ∇α

(q,h)x(t) = c(t)x(t), t ∈ T̃σ(a)
(q,h) (3.17)

with x(a) > 0 satisfies
lim
t→∞

x(t) = 0.

Proof Assume y(t) is the solution of Caputo nabla fractional equation
C
a ∇α

(q,h)y(t) = by(t), t ∈ T̃σ(a)
(q,h)
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satisfying y(a) = 2x(a) > 0. From Theorem 3.6, we have

0 < x(t) < y(t),

for t ∈ T̃σ(a)
(q,h) . From Theorem 3.15, we get that

0 ≤ lim
t→∞

x(t) ≤ lim
t→∞

y(t) = 0.

This completes the proof. 2

Remark 3.16 (see Example 5.2) If c(t) in Theorem A is not a negative constant, then the solution of the
equation (3.17) may not be monotonically decreasing.

4. Asymptotic behavior for Riemann–Liouville (q, h)-fractional difference equation

From the Leibniz rule on time scales in [7, 8], it is easy to get the following nabla (q, h) -difference Leibniz rule.

Lemma 4.1 (Leibniz rule) Assume f : T̃a
(q,h) × T̃a

(q,h) → R . Then

∇(q,h)

∫ t

a

f(t, s)∇s =

∫ t

a
t∇(q,h)f(t, s)∇s+ f(ρ(t), t)

for t ∈ T̃σ(a)
(q,h) , where it is understood that the expression t∇(q,h)f(t, s) in the last integral means the (partial)

(q, h)-difference of f with respect to t .

Theorem 4.2 Assume 0 < α < 1 , c(t) ≤ 0 , and t ∈ T̃σ2(a)
(q,h) . Then any solution of the equation

a∇α
(q,h)x(t) = c(t)x(t), t ∈ T̃σ2(a)

(q,h) (4.1)

satisfying x(σ(a)) > 0 is positive on T̃σ(a)
(q,h).

Proof Since m = ⌈α⌉ = 1, we have that

a∇α
(q,h)x(t)

Def. 2.2
= ∇(q,h) a∇−(1−α)

(q,h) x(t)

(2.9)
= ∇(q,h)

∫ t

a

ĥ−α

(
t, ρ(τ)

)
x(τ)∇τ

Lem. 4.1
=

∫ t

a

ĥ−α−1

(
t, ρ(τ)

)
x(τ)∇τ + ĥ−α(ρ(t), ρ(t))x(t)

=

∫ t

a

ĥ−α−1

(
t, ρ(τ)

)
x(τ)∇τ.

Letting t = σk(a), k ≥ 2 , we get that
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a∇α
(q,h)x(t) =

k∑
i=1

ĥ−α−1

(
t, σi−1(a)

)
x
(
σi(a)

)
ν
(
σi(a)

)
.

Using that x(t) is a solution of (4.1), we get that for t = σk(t) , k ≥ 2 ,

(
ĥ−α−1

(
t, σk−1(a)

)
ν(t)− c(t)

)
x
(
σk(a)

)
= −

k−1∑
i=1

ĥ−α−1

(
tσi−1(a)

)
x
(
σi(a)

)
ν
(
σi(a)

)
.

(4.2)

We now show that since 0 < α < 1 , ĥ−α−1

(
t, σi−1(a)) < 0 for 1 ≤ i ≤ k − 1 . First note that

ĥ−α−1

(
t, σi−1(a)

) (3.1)
= (ν(t))−α−1

[
−α− 1 + k − i

k − i

]
q̃

(2.3)
= (ν(t))−α−1 Γq̃(−α+ k − i)

Γq̃(k − i+ 1)Γq̃(−α)
.

Also, since Γq̃(−α+ k − i) > 0,Γq̃(k − i+ 1) > 0, for k − i ≥ 1 and Γq̃(−α) < 0 , we have

ĥ−α−1

(
t, σi−1(a)

)
< 0,

for 1 ≤ i ≤ k − 1 .
Note that from Lemma 3.2 we have that

ĥ−α−1

(
t, σk−1(a)

)
> 0.

Since c(t) ≤ 0, ν(t) > 0 and ĥ−α−1

(
t, σk−1(a)

)
> 0 , the coefficient of x(t) = x(σk(a)) on the left hand side of

(4.2) is positive. Since ĥ−α−1

(
t, σi−1(a)

)
< 0 and ν(t) > 0 for 1 ≤ i ≤ k− 1 , and x(σ(a)) > 0 , it follows from

(4.2) and the strong induction principle that x(t) = x(σk(a)) > 0 , for t ∈ T̃σ2(a)
(q,h) .

This completes the proof. 2

Remark 4.3 In the above theorem we proved that if x(t) is a solution of the IVP

a∇α
(q,h)x(t) = c(t)x(t), x(σ(a)) = A, (4.3)

then x(t) is a solution of the summation equation (4.2) satisfying the initial condition x(σ(a)) = A. Since
the steps in this calculation are reversible we have that if x(t) is a solution of the summation equation (4.2)
satisfying the initial condition x(σ(a)) = A , then x(t) is a solution of the IVP (4.3). Hence, we say the IVP
(4.3) is equivalent to the summation equation (4.2) along with the initial condition x(σ(a)) = A. Now solving
the summation equation (4.2) for x(σk(a)) , we obtain the summation equation

x(σk(a)) = −
∑k−1

i=1 ĥ−α−1

(
σk(a), σi−1(a)

)
x
(
σi(a)

)
ν
(
σi(a)

)
ĥ−α−1

(
σk(a), σk−1(a)

)
ν(σk(a))− c(σk(a))

(4.4)

= −

∑k−1
i=1 (ν(σ

k(a)))−α−1

[
−α− 1 + k − i

k − i

]
q̃

x
(
σi(a)

)
ν
(
σi(a)

)
(ν(σk(a)))−α − c(σk(a))

,
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for k ≥ 2 , where we used formula (3.1). Hence, the IVP (4.3) and the summation equation (4.4) with the initial
condition x(σ(a)) = A are equivalent. Note that if x(σ(a)) = A , then by the summation equation (4.4) with
k = 2 we get that x(σ2(a)) is uniquely determined, and then when k = 3 the values of x(t) at σ(a) and σ2(a)

uniquely determine the value of x(σ3(a)) . Hence, it follows by strong mathematical induction that the solution

of the IVP (4.3) exists and is unique on T̃σ(a)
(q,h). Since the IVP (4.3) and the summation equation with the the

initial condition x(σ(a)) = A have a unique solution, we have that the IVP (4.3) has a unique solution and this

solution exists on T̃σ(a)
(q,h) . Furthermore, it is easy to see that the nabla (q, h)-fractional equation has just one

linearly independent solution x1(t) on T̃σ(a)
(q,h) and x(t) := αx1(t) is a general solution of the nabla fractional

equation (4.1).

Lemma 4.4 Assume that α ∈ R , 0 < q̃ < 1 . Then for [t] ̸= 0,

ν(σ(a))ĥ−α−1(t, a) + ĥ−α(t, σ(a)) = ĥ−α(t, a). (4.5)

Proof
On the one hand,

s∇(q,h)ĥ−α(t, σ(a)) =
ĥ−α(t, σ(a))− ĥ−α(t, a)

ν(σ(a))
.

On the other hand, using Lemma 3.4 (2) ,

s∇(q,h)ĥ−α(t, σ(a)) = −ĥ−α−1(t, a).

Thus,

ĥ−α(t, σ(a))− ĥ−α(t, a)

ν(σ(a))
= −ĥ−α−1(t, a).

Hence, (4.5) holds. 2

Lemma 4.5 Assume f : T̃σ(a)
(q,h) → R , 0 < α < 1 , q > 1 . Then

σ(a)∇
−(1−α)
(q,h) ∇(q,h)f(t) = ∇(q,h) σ(a)∇

−(1−α)
(q,h) f(t)− f(σ(a))ĥ−α(t, σ(a)) (4.6)

= σ(a)∇α
(q,h)f(t)− f(σ(a))ĥ−α(t, σ(a)) (4.7)

and

σ(a)∇
−(1−α)
(q,h) ∇(q,h)f(t) = ∇(q,h) a∇−(1−α)

(q,h) f(t)− f(σ(a))ĥ−α(t, a) (4.8)

= a∇α
(q,h)f(t)− f(σ(a))ĥ−α(t, a). (4.9)
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Proof Integrating by parts and using the Leibniz rule (Lemma 4.1), we have

σ(a)∇
−(1−α)
(q,h) ∇(q,h)f(t)

=

∫ t

σ(a)

ĥ−α(t, ρ(τ))∇(q,h)f(τ)∇τ

=
(
ĥ−α(t, τ)f(τ)

)∣∣∣t
τ=σ(a)

+

∫ t

σ(a)

ĥ−α−1(t, ρ(τ))f(τ)∇τ

=σ(a)∇α
(q,h)f(t)− f(σ(a))ĥ−α(t, σ(a)),

and hence (4.7) holds. By the Leibniz rule (Lemma 4.1) we get that

∇(q,h)σ(a)∇
−(1−α)
(q,h) = σ(a)∇α

(q,h)f(t). (4.10)

Using (4.10) and (4.7), we see that (4.6) holds.
Next we will show that (4.8) holds.

∇(q,h)a∇
−(1−α)
(q,h) f(t)

=∇(q,h)

∫ t

a

ĥ−α(t, ρ(s))f(s)∇s

=

∫ t

a

ĥ−α−1(t, ρ(s))f(s)∇s+ ĥ−α(ρ(t), ρ(t))f(t)

=

∫ t

a

ĥ−α−1(t, ρ(s))f(s)∇s

=

∫ σ(a)

a

ĥ−α−1(t, ρ(s))f(s)∇s+

∫ t

σ(a)

ĥ−α−1(t, ρ(s))f(s)∇s

=ĥ−α−1(t, a)f(σ(a))ν(σ(a)) +

∫ t

σ(a)

ĥ−α−1(t, ρ(s))f(s)∇s.

Subtracting f(σ(a))ĥ−α(t, a) from both sides of this last equation we get

∇(q,h)a∇
−(1−α)
(q,h) f(t)− f(σ(a))ĥ−α(t, a)

=ĥ−α−1(t, a)f(σ(a))ν(σ(a)) +

∫ t

σ(a)

ĥ−α−1(t, ρ(s))f(s)∇s− f(σ(a))ĥ−α(t, a)

=

∫ t

σ(a)

ĥ−α−1(t, ρ(s))f(s)∇s+ f(σ(a))
(
ν(σ(a))ĥ−α−1(t, a)− ĥ−α(t, a)

)
(4.5)
=

∫ t

σ(a)

ĥ−α−1(t, ρ(s))f(s)∇s− f(σ(a))ĥ−α(t, σ(a))

(4.7)
= σ(a)∇

−(1−α)
(q,h) ∇(q,h)f(t).
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Hence, (4.8) holds. Since by the Leibniz rule ∇(q,h) a∇−(1−α)
(q,h) = a∇α

(q,h)f(t) , we have that (4.8) implies (4.9)
holds. 2

Replacing α by 1− α in Lemma 4.5, we get the following corollary, which will be used later.

Corollary 4.6 Assume f : T̃σ(a)
(q,h) → R , 0 < α < 1 , q > 1 . Then:

σ(a)∇−α
(q,h)∇(q,h)f(t) = ∇(q,h) σ(a)∇−α

(q,h)f(t)− f(σ(a))ĥα−1(t, σ(a)), (4.11)

σ(a)∇−α
(q,h)∇(q,h)f(t) = ∇(q,h) a∇−α

(q,h)f(t)− f(σ(a))ĥα−1(t, a). (4.12)

Lemma 4.7 Assume f : T̃σ(a)
(q,h) × T̃σ(a)

(q,h) → R , 0 < α < 1 . Then we have that

∫ t

a

∫ t

ρ(ξ)

f(η, ξ)∇η∇ξ =

∫ t

a

∫ η

a

f(η, ξ)∇ξ∇η. (4.13)

Proof Let

ϕ(t) :=

∫ t

a

∫ t

ρ(ξ)

f(η, ξ)∇η∇ξ −
∫ t

a

∫ η

a

f(η, ξ)∇ξ∇η,

F1(t, ξ) :=

∫ t

ρ(ξ)

f(η, ξ)∇η, and F2(t, η) :=

∫ η

a

f(t, η)∇ξ.

From Lemma 4.1, we have

∇(q,h)ϕ(t) = ∇(q,h)

∫ t

a

F1(t, ξ)∇ξ −∇(q,h)

∫ t

a

F2(t, η)∇η

=

∫ t

a

∇(q,h)F1(t, ξ)∇ξ + F1(ρ(t), t)−
∫ t

a

f(t, ξ)∇ξ

=

∫ t

a

∇(q,h)F1(t, ξ)∇ξ +

∫ ρ(t)

ρ(t)

f(η, t)∇η −
∫ t

a

f(t, ξ)∇ξ

=

∫ t

a

f(t, ξ)∇ξ −
∫ t

a

f(t, ξ)∇ξ = 0,

and since ϕ(a) = 0 , we see that ϕ(t) ≡ 0 . This completes the proof. 2

The following lemma is from [10, page 14].

Lemma 4.8 Let α > 0, β ∈ R and t ∈ T̃σ(a)
(q,h) . Then

a∇−α
(q,h)ĥβ(t, a) = ĥα+β(t, a). (4.14)

A special case of the composition rule in the next lemma is Theorem 3.107 [18]. Also, �Cerm�ak and Nechv�atal
[12] pointed out that this composition rule follows from a very general formula that they proved. With the
aid of Lemma 4.6 and Lemma 4.7 we now give a straightforward proof of this result for the convenience of the
reader.
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Lemma 4.9 Let α, β ∈ R+ and f : T̃a
(q,h) → R. Then

a∇−α
(q,h) a∇−β

(q,h)f(t) = a∇−(α+β)
(q,h) f(t).

Proof For t ∈ T̃σ(a)
(q,h) we have that

a∇−α
(q,h) a∇−β

(q,h)f(t)
Def. 2.1
=

∫ t

a

ĥα−1

(
t, ρ(s)

)
a∇−β

(q,h)f(s)∇s

=

∫ t

a

ĥα−1

(
t, ρ(s)

) ∫ s

a

ĥβ−1(s, ρ(τ))f(τ)∇τ∇s

=

∫ t

a

∫ s

a

(
ĥα−1

(
t, ρ(s)

)
ĥβ−1(s, ρ(τ))f(τ)

)
∇τ∇s

(4.13)
=

∫ t

a

∫ t

ρ(τ)

(
ĥα−1

(
t, ρ(s)

)
ĥβ−1(s, ρ(τ))f(τ)

)
∇s∇τ

=

∫ t

a

f(τ)

∫ t

ρ(τ)

(
ĥα−1

(
t, ρ(s)

)
ĥβ−1(s, ρ(τ))

)
∇s∇τ

=

∫ t

a

f(τ)

(
ρ(τ)∇−α

(q,h)ĥβ−1(t, ρ(τ))

)
∇τ

(4.14)
=

∫ t

a

f(τ)ĥα+β−1(t, ρ(τ))∇τ

= a∇−(α+β)
(q,h) f(t).

Also,

a∇−α
(q,h) a∇−β

(q,h)f(a) = a∇−(α+β)
(q,h) f(a).

2

Theorem B. Assume 0 < α < 1 , c(t) ≤ 0 , t ∈ T̃σ2(a)
(q,h) , and x(t) is a solution of the equation

a∇α
(q,h)x(t) = c(t)x(t), t ∈ T̃σ2(a)

(q,h) (4.15)

satisfying x(σ(a)) > 0 . Then
lim
t→∞

x(t) = 0.

Proof Applying the operator σ(a)∇−α
(q,h) to each side of equation (4.15), we obtain

σ(a)∇−α
(q,h) a∇α

(q,h)x(t) = σ(a)∇−α
(q,h)c(t)x(t),

which can be written in the form

σ(a)∇−α
(q,h)∇(q,h) a∇−(1−α)

(q,h) x(t) = σ(a)∇−α
(q,h)c(t)x(t).

2235



DU et al./Turk J Math

Using (4.12), we get that

∇(q,h) a∇−α
(q,h)a∇

−(1−α)
(q,h) x(t)− ĥα−1(t, a)

(
a∇−(1−α)

(q,h) x(t)
∣∣∣
t=σ(a)

)
= σ(a)∇−α

(q,h)c(t)x(t).

Using

a∇−(1−α)
(q,h) x(t)

∣∣∣
t=σ(a)

=

∫ σ(a)

a

ĥ−α(σ(a), ρ(s))x(s)∇s

= ĥ−α(σ(a), a)x(σ(a))ν(σ(a))

= (ν(σ(a)))−α

[
−α
0

]
q̃

x(σ(a))ν(σ(a))

= [σ(a)]1−α(1− q̃)1−αx(σ(a)),

we see that

∇(q,h)a∇−α
(q,h)a∇

−(1−α)
(q,h) x(t) =ĥα−1(t, a)[σ(a)]

1−α(1− q̃)1−αx(σ(a))

+ σ(a)∇−α
(q,h)c(t)x(t).

It is easy to see for t ≥ s , letting t = σn(s) = σn+1(ρ(s)) , for n ≥ 0. Using the composition rule (Lemma 4.9),
we have

a∇−α
(q,h) a∇−(1−α)

(q,h) x(t) = a∇−1
(q,h)x(t)

and

∇(q,h) a∇−1
(q,h)x(t) = ∇(q,h)

∫ t

a

ĥ0(t, ρ(s))x(s)∇s

= ∇(q,h)

∫ t

a

x(s)∇s

= x(t),

where we used

ĥ0(t, ρ(s)) = (ν(t))0
[
0 + n+ 1− 1

n

]
q̃

= 1.

Hence, we get that

x(t) =ĥα−1(t, a)[σ(a)]
1−α(1− q̃)1−αx(σ(a)) (4.16)

+

∫ t

σ(a)

ĥα−1(t, ρ(s))c(s)x(s)∇s.
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Since x(σ(a)) > 0, 0 < α < 1, c(t) ≤ 0, and from Theorem 4.2, we have x(t) > 0, for t ∈ T̃σ(a)
(q,h) . Then

ĥα−1(t, ρ(s)) = (ν(t))α−1

[
α− 1 + n

n

]
q̃

= (ν(t))α−1 Γq̃(α+ n)

Γq̃(n)Γq̃(α)
.

Note that Γq̃(α+ n) > 0, Γq̃(α) > 0, and Γq̃(n+ 1) > 0 , so ĥα−1(t, ρ(s)) > 0 . It follows that∫ t

σ(a)

ĥα−1(t, ρ(s))c(s)x(s)∇s < 0.

Since c(s) ≤ 0 and from (4.16), we get that (taking t = σk(a))

0 < x(σk(a)) ≤ ĥα−1(σ
k(a), a)[σ(a)]1−α(1− q̃)1−αx(σ(a)). (4.17)

Note that

ĥα−1(σ
k(a), a) = (ν(σk(a)))α−1

[
α− 1 + k − 1

k − 1

]
q̃

(4.18)

= (ν(σk(a)))α−1Γq̃(α− 1 + k)

Γq̃(k)Γq̃(α)

= [σk(a)]α−1(1− q̃)α−1Γq̃(α− 1 + k)

Γq̃(k)Γq̃(α)

→ 0,

where we used

lim
k→∞

[σk(a)]α−1 = lim
k→∞

[
qka+ [k]qh

]α−1

= lim
k→∞

(
qka+ [k]qh+ h

q̃

1− q̃

)α−1

= lim
k→∞

(
qka+

1− qk

1− q
h+

h

q − 1

)α−1

= lim
k→∞

(
qk(a+

h

q − 1
)

)α−1

= 0,

and

lim
k→∞

Γq̃(α− 1 + k)

Γq̃(k)
=

(
1

1− q̃

)α−1

(using(3.14)).

From (4.17) and (4.18), we have the desired result:

lim
k→∞

x
(
σk(a)

)
= 0.

2
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Remark 4.10 (see Example 5.4) If c(t) in Theorem A is not a constant, then there are solutions of the
equation (4.15) satisfying x(σ(a)) > 0 that are not monotonically decreasing.

We end this section by considering solutions x(t) of the αth order nabla fractional (q, h) -difference
equation

a∇α
(q,h)x(t) = c(t)x(t), t ∈ T̃σ2(a)

(q,h)

satisfying x(σ(a)) < 0 . By making the transformation x(t) = −y(t) and using Theorem A, we get the following
theorem.

Theorem C. Assume 0 < α < 1 , c(t) ≤ 0 , t ∈ T̃σ2(a)
(q,h) , and x(t) is a solution of the equation

a∇α
(q,h)x(t) = c(t)x(t), t ∈ T̃σ2(a)

(q,h)

satisfying x(σ(a)) < 0 . Then x(t) < 0 for t ∈ T̃σ(a)
(q,h) and

lim
t→∞

x(t) = 0.

5. Examples
In this section we give four examples to illustrate Lemma 3.5, Theorem 3.15, Theorem A, Remark 3.16, Theorem
4.2, Theorem B, and Remark 4.10.

Using the recursion formula (2.4), we can get the corresponding numerical solutions through formulae
(3.13) and (4.4) using MATLAB. For the sake of convenience in plotting figures, letting xk = x(σk(a)) , we plot
the points (k, xk) instead of the points (t, x(t)) .

Example 5.1 Consider the initial value problem in the form

C
1 ∇0.3

(1.2,0.5)x(t) = −2x(t), t ∈ T̃σ(1)
(1.2,0.5),

x(1) = 0.1.

The solution x(t) is given in Figure 2. Note that x(t) monotonically tends to zero as t → ∞ .

Example 5.2 Consider the initial value problem in the form

C
1 ∇0.3

(1.2,0.5)x(t) = −(0.1 + sin2 t) · x(t), t ∈ T̃σ(1)
(1.2,0.5),

x(1) = 0.1.

There is a constant b = −0.1 such that

c(t) = −(0.1 + sin2 t) ≤ b.

It is evident that the solution x(t) is asymptotically stable from Theorem A.
We plot the solution x(t) in Figure 3. Note that x(t) tends to zero as t → ∞, but is not monotonically

decreasing.
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Figure 2. Asymptotic behavior of x(t) for a = 1, ν =
0.3, q = 1.2, h = 0.5, x(a) = 0.1, c(t) = −2.

Figure 3. Asymptotic behavior of x(t) for a = 1, ν =
0.3, q = 1.2, h = 0.5, x(a) = 0.1, c(t) = −(0.1 + sin2 t) .

Example 5.3 Consider the initial value problem in the form

1∇0.7
(1.2,0.5)x(t) = −0.00001x(t), t ∈ T̃σ2(1)

(1.2,0.5),

x(σ(1)) = 0.1.

We plot the solution x(t) in Figure 4. Note that x(t) monotonically tends to zero as t → ∞ .

Example 5.4 Consider the initial value problem in the form

1∇0.9
(1.2,0.5)x(t) = − 1

100
sin10 t · x(t), t ∈ T̃σ2(1)

(1.2,0.5),

x(σ(1)) = 0.1.
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Figure 4. Asymptotic behavior of x(t) for a = 1, ν =
0.7, q = 1.2, h = 0.5, x(σ(1)) = 0.1, c(t) = −0.00001.

Figure 5. Asymptotic behavior of x(t) for a = 1, ν =
0.9, q = 1.2, h = 0.5, x(σ(1)) = 0.1, c(t) = − 1

100
sin10 t .
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It is easy to check that

c(t) = − 1

100
sin10 t ≤ 0.

Hence, the solution x(t) is asymptotically stable according to Theorem B.
We plot the solution x(t) in Figure 5. Note that x(t) tends to zero as t → ∞, but is not monotonically

decreasing.

6. Conclusions
In this paper, we present two asymptotic results on linear nabla fractional difference equations originating from
the recent papers as well as their new extensions on the (q, h) -time scale. Furthermore, the fractional difference
equations’ numerical solutions are given to support the established theories. It remains to discuss the asymptotic
stability of (0.1) and (0.2) with c(t) > 0 , which is still an open problem.
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