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Abstract: A Chlodowsky variant of generalized Szdsz-type operators involving Boas—Buck-type polynomials is con-
sidered and some convergence properties of these operators by using a weighted Korovkin-type theorem are given. A
Voronoskaja-type theorem is proved. The convergence properties of these operators in a weighted space of functions de-
fined on [0, c0) are studied. The theoretical results are exemplified choosing the special cases of Boas-Buck polynomials,

namely Appell-type polynomials, Laguerre polynomials, and Charlier polynomials.

Key words: Szisz operators, modulus of continuity, rate of convergence, weighted space, Boas—Buck-type polynomials

1. Introduction and preliminaries

In recent years, there is an increasing interest to study linear positive operators based on certain polynomials,
such as Appell polynomials, Laguerre polynomials, Charlier polynomials, Sheffer polynomials, and Hermite
polynomials. In 1969, Jakimovski and Leviatan [16] introduced Szész-type operators by using Appell polyno-

mials, as follows:

i) = Sy omf (1) (1)

where pg(z), k > 0, are the Appell polynomials defined by g(u)e®® = Y72 pi(z)uf and

g(u) = > re, apu® is an analytic function in the disk | v |[< R, R > 1 and g(1) # 0. If g(u) = 1, then
k

pr(z) = % (see [9]) and we obtain Szasz—Mirakjan operators:

(oo}
_ (nz)* [k
Sn(fix)=e"" - .
w(frm)=e""y e f (s
k=0
Very recently, the detailed approximation properties of the Szdsz-type operators were studied in [1, 2, 17].
The Stancu-type generalization of operators (1.1) was introduced by Atakut and Biiyiikyazici [5]. Ismail [14]
obtained another generalization of the Szasz operators (1.1) by means of Sheffer polynomials. The bivariate

Chlodowsky—Szész operators involving Appell polynomials were studied by Sidharth et al. [23]. Recently, Sucu
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et al. [25] constructed positive linear operators with the help of Boas—Buck-type polynomials.The Boas—Buck-

type polynomials [15] have generating functions of the form
AWB(H(1) =Y ()", (1.2)
k=0

where A, B, and H are analytic functions:

A(t) = iaﬁr, ap # 0, (1.3)
r=0

B(t) = ibrtr, by £0 (r > 0), (1.4)
r=0

H(t) = i het”,  hy #0. (1.5)
r=1

We will restrict ourselves to the Boas—Buck-type polynomials satisfying:
i) A1)#0, H'(1)=1, pg(z)>0, £k=0,1,2,...,
ii) B:R — (0,00),
iii) The power series (1.2)—(1.5) converging for [t| < R (R > 1).

Sucu et al. [25] introduced the following positive linear operators involving the Boas-Buck-type polyno-

mials
1 = k
B, (f;) = A Bz H(D)) kzz()pk(n@f(n), (1.6)

where z > 0 and n € N.

Let H(t) = t. Then operators (1.6) reduce to the operators given by Varma et al. [27]. If B(t) = e,
operators (1.6) reduce to the operators given by Ismail [14]. For H(t) =t and B(t) = e', one can get operators
(1.1). In addition, if we choose A(t) =1, we get the Szdsz—Mirakjan operators [26].

In this paper, we consider the Chlodowsky [8] variant of Szdsz-type operators given by (1.6), involving

the Boas—Buck-type polynomials, as follows:

1 > n k
B (f;x) = — —by |, 1.7
05 = gy 2 () (o) (1.7)
where (b,,) is a positive increasing sequence such that

bn
lim b,, = oo, lim — =0.
n—o00 n—oo n

The rest of the paper is organized as follows. In the next section some local approximation results by the

generalized Szdsz operators are obtained. Furthermore, in Section 3, a Voronovskaja-type asymptotic theorem
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will be proved. Section 4 is devoted to studying some convergence properties of these operators in weighted
spaces with weighted norm on the interval [0,00) by using the weighted Korovkin-type theorems [11, 12]. In

order to show the relevance of the results, in the last section some numerical examples are given.

Note that throughout the paper we will assume that the operators B are positive and we use the
following test functions:
ei(x) =2', ie€{0,1,2,3,4}.

Also, we consider

(k)
lim B (y)
y—oo  B(y)

=1, for k€ {1,2,3,...,7},r € N. (1.8)

Some recent papers on the topic dealing with different classes of polynomials as well as Korovkin-type approxi-

mation theorems and Voronovskaja-type approximation theorems can be consulted by readers (cf. [6, 7, 10, 18—
21, 24]).

2. Local approximation properties of B}

We denote by C(Rg) the set of all continuous functions f on R{ = [0, 00) with the property that |f(z)| < Be®®
for all # > 0 and some positive finite o and B. For a fixed r € N, we denote C(R}) = {f € Cp(R]) :

o f@ . f e Cp(RE)}. Using equality (1.2) and the fundamental properties of the B} operators, one
can easily get the following lemmas:

Lemma 2.1 For all x € [0,00), we have

B (eg;x) =1,
B'(fzH(1)) b, A(1)
B* . _ bn i
n(e1;2) B(ZzH(1) T Ay

- )
B B®(£zH(1)) , b, B (ZxH(1)) [A(1) +24'(1) + H®) (1) A(1)] b2 A'(1) + AP (1)

Br(eai@) = B(E«HD) © ' n A()B(ZzH(1)) TTwTAm
. BO(gzH()) , ) B (geeHQ)) by ,
Brlenia) = —pon s o+ (34/(1) + 3HO (1) AQ) +34(1)) ADB(Er )

+ (A1) + 349 (1) + 4(1)) Far
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B (ea;7) = wx‘* + (4A’(1) FEHP(1)A(1) + 6A(1)) AI?S)B(( m}%))) o
+(6A<2>(t)+12H<2>(1)+A’(1)+4H<3>(1)A(1)+3H<2>(1)2A(1)+18A'(1)+18H<2>(1)A(1)+7A(1))
~Al?1(j;(< x}%))) 24+ (4A<3>(1)+6A<2>(1)H<2>(1)+4A'( YH®) (1) + AQ)H® (1) + 1842 (1)
+ 18H@ (D) A'(1) + 6H® (1) A(1) + 14A' (1) + THP (1) A(1) +A(1)) A(l);( mH()l)) b
+ (A<4>(1) +6AB (1) +7AD (1) + A’(l)) A(Zf;#.

Proof From the generating functions of the Boas—Buck-type polynomials given by (1.2), we obtain
S m <b£1:> - A(1)B(bﬁxH(1)),
k=0 " "

i kpi (bﬁx) = A/(1)B(bﬁa;H(1)) + bﬁxA(l)B’(bﬁzH(l)),
k=0 n n n n

oo

S K (bﬁx) - :—szA(l)B@) (bﬁxﬂa)) + bﬁx(A(n F2A(1) + H<2>(1)A(1))B'(bﬁxH(1))

Zkffpk(bﬁx) - %jx3A(1)B(3)(£xH<1)) + Zj 2(34'(1) + 3H (1) A(1) +3A(1))B<2>(bﬁxH(1))

n L n

+bﬁx(3A<2( )+3H® (1)A'(1 )+H<3>(1)A(1)+6A’(1)+3H<2>(1)A(1)+A(1))B'(bﬁxﬂu))
+ (AP (1) + 342 (1) + A’(1))B(bﬂxH(1)),
0 n4 3

Zk%k(ax) b—4x4A() (ExH(1)> 23 (4A’()+6H<2>(1)A(1)+6A(1))B<3>(bﬁxH(1))

n

- b—sz (6A® (1) +12H® (1)+A'(1)+4H® (1) A(1)+3H P (1) A(1) + 184’ (1) +18H P (1) A(1)

n

+TA(1))B® (bﬁx

n

H(U)+(4A(3)(1)+6A(2)(1)H(2)(1)]+4A’(1)H(3 (1) +AH ( )+184 2)( )
+I8HO (1)A'(1) + 6HP (1) AQL) + 144°(1) + THO (1) A1) + A(1)) bﬁxB'(bﬁ”fH(D)

+ (AD(1) + 64 (1) + 7A@ (1) + A/(1))B(bﬁmH(1))-

In view of these equalities, we get our desired results. O
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Lemma 2.2 The operators (1.7) verify:

B'(f£zH(1)) = B(ZxH(1)) b, A(1)
B(f-xH(1)) n A(1)’

BZ((el - x),x) =

" 0.y _ B (GEaH() — 2B (aH(1)) + B(gaH(1)
B ((e1 —2)%2) = B(ﬁbe(l)) b x
N by (A1) +24'(1) + AMHP (1)B' (£xH(1)) — 24 (1)B(ZxH(1)) N
n A()B(fxH(1))
b2 A'(1) + A@(1)
n? A1)
4
(o) —a)hiz) = ——_ |B@ [ Ly _4g® (M, @ (",
B (( )% @) B(ZaH D) [B (bn H(l)) 4B (n H(1)>+6B (n H(1)>

g o ()] o
: {(2A/( )+ 3A(1)HP(1) + 34(1 )) B® <” (
. B® (:an(l)> +3 (2A’(1) +AMHD (1) + A(l)) B (bnana))

/ n z*b;, 2 ’ 2
—24'(1)B (ban(l))] + AE (2 0) (64 (1) + 124' (1) H) (1)

+4A)H® (1) + 21A1)HP (1) 4+ 184’ (1) +7A(1)) B ><be(1))

n

+ (—124@(1) - 124 (1) HD (1) — 4A()HO (1)
—24A'(1) — 12A()H® (1) — 4A(1)) B’ (:xH(1)> +6 (A<2>(1) + A’(l)) B (bnxﬂa))]
zb3

i n3A(1)B (ﬁxH(l))

{(4;1(3)(1) +6AD (N HE (1) + A()HD (1) + 184@(1)

+ 18A/(1)HP (1) + 6A(1)H® (1) + 14A4'(1) + TAQ)HP (1) + A1) + 44" ()HP (1 )) B (ban(l))

+ (—4A<3>(1) —124®(1) - 4A’(1)) B (b"gcﬂ(l))] + n4fl(1) (A<4>(1) +6A@ (1) +7AD (1) + A’(l)) .

Theorem 2.1 Let the condition (1.8) hold for k = 1,2. Then for f € Cr(R{), the operators B} converge

uniformly to f on [0,a], a >0, as n — 0.
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Proof According to Lemma 2.1, taking into account equality (1.8), we find

lim B} (e;;x) =e;i(x), i€ {0,1,2}.

n—oo

The above convergence is verified uniformly in each compact subset of [0,00). Applying the Korovkin theorem

[3], we obtain the desired result.

3. Voronovskaja-type theorem

O

In order to study the Voronovskaja-type theorem for the Chlodowsky variant of Szasz-type operators involving

the Boas—Buck polynomials, we consider the following assumptions on the analytic functions A, B, and H:

n B'(feH(1) - B(EzH())

L B(fzH(1)) )
n B@(ZxzH(1)) — 2B (LxzH(1)) + B(ZzH(1))
lim — = . . = lz(2);

Tim. (;)2 m [3(4) (;;‘lea)) —4B®) (;xH(l)> +6B® <beH(1))

4B (bszu)) +B <:xH(1)>} = I3(2);

n

n

lim — [(2/1’(1) +3A1)H® (1) + 3A(1)> B® (ban(l)> —6(A'(1)

+AMH® 1) + A(l)) B® <b”xH(1)> +3 (2A’(1) +AMH (1) + A(l)) B <an(1)>

n b’ﬂ

—24'(1)B <b”xH(1)ﬂ = ly(z).

n

Using assumptions (3.1)—(3.4) and Lemma 2.2, we can obtain the following result:
Lemma 3.1 The operators (1.7) verify:

. . n *
) Jim B (e - i) = (o),

) lim B (e~ 0)%7) = mo(e),

n—oo n

i) lim (:)232 ((ex —x)%2) = m3(2),

n—oo n

where

m(z) =zl (x) +

 ma(e) = () + o (14 HP (1)),
ns(x) = 2l3(x) + 2% (x) + 322 (H<2>(1)2 F2HP (1) + 1) .

2248
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Theorem 3.1 (Voronovskaja-type theorem) For every f € Cr(RY) such that f', f?) € Cp(R{), we have

i 2 153(752) - £(0)] = (sa(o) + G ) £10) 4 5 (o) + 01+ HOW) £20),

uniformly with respect to x € [0,a], a > 0, where l;(x), i = 1,2, are defined in (3.1) and (3.2).
Proof Using the classical Taylor expansion of f yields
1
f@) = f@) + f(z)(t —2) + §f(2)($)(t —a)? +e(t,x)(t —x)°, (3.5)

where £(t,z) € Cp(R{) and tlim e(t,z) =0.
—z

Applying the operator B (-,x) on both sides of (3.5), we have

. E * . _ I I ﬁ * e / : E * _ 2. f(2)($)
Aim = (B, (f;x) = f(z)] = lim_ B (e z;x) f'(2) + lim. an((el )% 1)
+ lim EB:;(E(t,Q?)(t —2)% ). (3.6)
n—o0 by,
Using the Cauchy—Schwarz inequality in the last term of the right side of (3.6), we get
n n\>
b—B:(e(t,x)(t —x)%z) < \/Br(e2(t,x); 2) (b> B, ((e1 — z)%; 2).
Since e(t,z) — 0 as t — x, it follows from Theorem 2.1 that
. * 2 . 2 _
nh_)rrolo By ((t,z);2) = *(z,2) =0,
uniformly with respect to = € [0, a]. Now, from (3.6) and Lemma 3.1, we have the required result. O

4. Approximation properties in weighted spaces

Since the uniform norm is not valid to compute the rate of convergence in the case of a boundless function
defined on the noncompact interval [0,00), in this section we give approximation properties of the operators
B} on the weighted spaces of continuous functions with exponential growth on [0,00). In order to obtain
this result, we consider the following weighted spaces of functions that are defined on [0,00). Let p(x) be the

weighted function and My be a positive constant. Considering the following sets of functions,
B,(Ry) ={f : Ry = R:|f(x)] < Msp(x)},
C,(RF) = {f € B,(R}) : f is continuous},

G
nl;rrolop(z)—Kf<oo},

O3 (RY) = {f € Co(RY) -

it is obvious that C%(Rf) C C,(RY) C B,(Ry ). The space B,(R{) is a normed linear space with the following

norm:

1 (C)]
£, = sup o) (4.1)

IERJ
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Lemma 4.1 ([11, 12]) The sequence of positive linear operators (By)n>1 act from C,(R{) to B,(RY) if and

only if there exists a positive constant k such that
Bn(p;x) < kp(z), e

1B (ps )], < k-

Theorem 4.1 ([11, 12]) Let (By)n>1 be the sequence of positive linear operators that act from C,(R{) to
B,(R{) such that

lim ||B,(t5;z) — 2, =0, i€{0,1,2}.

n—oo

Then for any function f € Cf’f(Rg) ,
Tim B, f — £, =0.
Lemma 4.2 Let p(z) =1+ 2% be a weight function. If f € C,(Ry), then
1B (o3 @)l <1+ M,
under the equality (1.8) for k=1,2.

Proof Using Lemma 2.1, one has

o BY(faH() bi(A(l)+2A’(1)+H(2)(1)A(1))B’(ﬁxH(1)) b2 A1)+ AP (1)
Balpio) =1+ B(EaH(1) © ' n A B(EH(1)) T AW
o B 1 BE(fzH(1)) , b, (A1) +24(1) + HO(1) A1) B (£=H(1))
”BnW)'P—ig%{sz (H B(raH(1) o A()B(ZzH(1)) v
b2 A'(1) + AP (1)
TR AN )}
_ L BOGRHM) b, (AQ) +24°(0) + HOMAW) B'(eH1) 82 A1) + A1)
= T TB(EeHQ) T n 2A()B(ZH(1) w2 AL

b
Since lim — = 0 and using condition (1.8), there exists a positive M such that
n—oo N

1B (px) ]|, <1+ M.

This completes the proof. O

By using Lemma 4.2, we can easily see that the operators B} defined by (1.7) act from C,(R{]) to
By(Ry).

Theorem 4.2 Let B} be the sequence of positive linear operators defined by (1.7) that verify the conditions
(1.8) for k =1,2, and p(z) = 1+ 2%. Then, for each f € C[’,C(Ra'),

lim By (f:2) ~ f(@)], = 0.
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Proof It is enough to prove that the conditions of the weighted Korovkin-type theorem given by Theorem 4.1

are satisfied. From Lemma 2.1, it follows immediately that

lim ||B;(eo;x) — eo(z)]|, = 0. (4.2)

n—roo

Using Lemma 2.1 and condition (1.8), we have

1 B'(£xH(1)) bn | A(1)
Bl (ey;x) — < n -1 on
1 B'(f=aH(1)) s b |A'(1)
2| B(£xH(1)) n | A1) |’
which implies that
lim [[B(exsz) — er(@)], = 0. (4.3)
By means of Lemma 2.1, we get
1B, (e2;x) — ex(z)|»
) B (xH(1)) 22 b, | (A1) +24(1) +H(2)(1)A(1))B’(g:xH(1))‘ z
S I B(EeHM)  |THa2 T A()B(ZzH(1)) 1+ a2
N 2A(D)+A@ ) 1
n? A1) 1+ a2
_ B®) (f£zH(1)) s b (A1) +24'(1) + HA (1) A1) B' (= H(1)) b2 A1)+ AP(1)
B(ﬁxH(l)) 2n A(l)B(ﬁmH(l)) n2 A1)
Using conditions (1.8), it follows that
i |[By(e2;) — ea(a)]], = 0. (4.4)
From (4.2), (4.3), and (4.4), for 7 € {0,1,2}, we have
Jim [|By (¢ 2) — 2|, = 0.
Applying Theorem 4.1, we obtain the desired result. O
5. Numerical examples
5.1. Appell polynomials
Appell [4] introduced the sequences of n-degree polynomials R,,n =0,1,... satisfying the recursive relation

R () =nRy-1(z),n=1,2,....

There exists a power series A(t) = Z ant™ (ag # 0) such that

n=0

A(t)e'™ = R (a)t™.
n=0
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The Appell polynomials are Boas-Buck-type polynomials with B(t) = e* and H(t) = t. Denote by BX the
Chlodowsky variant of Szasz-type operators involving the Appell polynomials.

Lemma 5.1 For all z € [0,00), we have:

i) BR(eg;x) =1;

!/
ii) BR(ey;x) =2 + bn A1) .

.. 9. by, b2 A'(1) + A®)(1) .
i) BR((e; —z)2;x) P ET7
ii) BR((eq7 —z)42) =3 2V

n
x*— +
n2

oA [6A<2>(1) +104/(1) + A(1)]
by

Sy AD (1) + 643 (1) + 74D (1) + A’(l)} .

Lemma 5.3 The operators BX verify:

. . E R o
i) nh_}rrgo ann (e — x;2)

.. . ﬁ R 2. o
i) nh_{r;o ann ((e1 —x)%;2) = x;

2
oy VR 4., _ 9.2
it) nh_r>n b%B" ((e1 — )% ) = 3z=.

Theorem 5.1 (Voronovskaja-type theorem) For every f € Cr(RY) such that f', f? € Cgp(RY), we have

. n ) B A1) ,, 1 L0
Jim 2 [BR (i) - 1)) = g () + 507D @)

uniformly with respect to x € [0,a], a > 0.

Since the classical modulus of continuity of first order w(f;d), § > 0 does not tend to zero, as 6 — 0 on
[0; 00), we consider the weighted modulus of continuity defined by Yiiksel and Ispir (see [28]). Let p(z) = 1+ 22
be the weighted function. For f € C7 (R{), the weighted modulus of continuity (see [28]) is given by

B |f(x+h)— f(z)]
WU =swp b T T b
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MURSALEEN et al./Turk J Math

The weighted modulus of continuity Q(f,d) satisfies the following properties:

Lemma 5.4 [28] If f € C3(RY), then:
1. Q(f,0) is a monotone increasing function of 0 ;
. lim Q(f,6) =0;
2. lim Q(f,8) =0;
3. for any A € [0,00), Q(f,A5) < (1+ N)Q(f,9).

Theorem 5.2 Let f € C5(Ry). Then,

sup (2o @] (2+K§(n) + \/@) Q(f30n),

z€[0,00) (14 22)3

where 6, = /K (n) and

ba B A1)+ AP (1)

KR(n) = Z% + ?’fngfl(l) [6A<2>(1) +104'(1) + A(l)] + n4i)j(1) [A(‘*)(l) 1 6AG) (1) + 74 (1) + A1) .

Proof For z € (0,00) and ¢ > 0, by the definition of the weighted modulus of continuity and Lemma 5.4, we

get
[f(t) = f(2)] < (1+ (2 + [z —t])%) Qfs [t — )

<201+ 22) (14 (t — 2)2) (1 LI -~ x') Q(f: ).

Applying BR(-;x) for both sides, we can write

IBX(f; %) — f(z)| < 2(1+2%)Q(f;6)

><(1 + BR((t — x)%2) + BF <(1 + (¢ —:Jc)2)|t_6x|;x> >
From Lemma 5.2, it follows that
BZ}((el —z)%z) < Kg)z(n)(l + z?) and BZ}((el — o)t 2) < KR(n)(1 4 2%)2.

Applying the Cauchy—Schwarz inequality in the last term of (5.2), we get

BR <(1 Fe-a)s ‘"”';x) < (BR((e1 - 2)%))

=9
+ % (BR((er — )5 2)) % (BR((e1 — 2)*(2);2)) /7.

Combining the estimates (5.2)—(5.4) and taking & := 6,, = /KX (n), we reach the required result.

The special choices of A(t) give the following well-known polynomials.

(5.2)

(5.4)
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MURSALEEN et al./Turk J Math

5.1.1. Hermite polynomials of variance v

If A(t) = - , then R, (x) = 7Y (x) is the Hermite polynomials of variance v (see [22]), which have the

explicit representation

k 1
(v) — _K - . n—2k
i, (@) (-3) FICETTTR
k=0

where [-] denotes the integer part. Denote by B the Chlodowsky variant of Szész-type operators involving

the Hermite polynomials. Then,
Hip .\ (V) k
B (f;z)=e Bl E H)

Under the assumption v < 0, restrictions i)-iii) and assumptions (1.8) for the operators B are verified.

Theorem 5.3 For every f € Cp(RY) such that f', f?) € Cgl0,00), we have

tim T (B (f12) ~ f(@)] = ~vf(1) + 3o fO)

n—oo n
uniformly with respect to x € [0,a], a > 0.

Theorem 5.4 Let f € C;(Rar). Then,

s s ((ffi;)fw <9 <2+K6H(n) + \/KfI(n)) Q(f:6,), (5.5)

where &, = /K (n) and
b b?
H n n
Ky (n) 2 + " v(v — 2);
302 3V303 b4
H _ n n

Example 5.1 Let b, = ni and flz) = Table 5.1 contains the error estimations of the functions f

x
x2+1°
by the Chlodowsky variant of Szdsz-type operators involving the Hermite polynomials given in (5.5).

5.1.2. Gould—Hopper polynomials
Putting A(t) = e"", then R,(x) = ¢7(z,h) is the Gould-Hopper polynomial (see [13]). The explicit

representation of these polynomials is given as:

W

1
m — ] k—myj
9y (z,h) j!(k:—m])!h ’

I
=)

J
where [] denotes the integer part.
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Table 1. Error of approximation for BY using weighted modulus of continuity.
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n v=-0.0002 | v=-2 v=-3

10 | 1.299038994 | 1.299038994 | 1.299038994
102 | 1.299038994 | 1.299038994 | 1.299038994
103 | 0.811535257 | 1.129470981 | 1.242260837
10* | 0.280046538 | 0.301127918 | 0.318338677
10° | 0.089353761 | 0.090063954 | 0.090681082
105 | 0.028281473 | 0.028304073 | 0.028323844
107 | 0.008944188 | 0.008944904 | 0.008945530
10% | 0.002828426 | 0.002828448 | 0.002828468

Considering h > 0, then restrictions i)—iii) and assumptions (1.8) are verified. Let BY be the Chlodowsky

variant of Szasz-type operators involving the Gould-Hopper polynomials. Then,

P k
B =Y (men) 1 (%)-

Theorem 5.5 For every f € Cr(RY) such that f', f?) € Cg[0,00), we have

n

uniformly with respect to x € [0,a], a > 0.

Theorem 5.6 Let f € C5(R]). Then,

1B (f;z) — ()]

sup

lim 5= [BY(fix) = f(a)] = hm (1)

n— oo

Le)
+ 52 fP(x)

<2 (2+Kg(n) + \/%) Q(f;6n)

veloe)  (1+22)3
where 6, = \/K§(n) and
K3 = 22 4 B2,
2n = n?
K{(n) = z% %% (6h*m? 4+ 6hm® + 4hm + 1) + Z—%Lmn4 (h* +6R° +Th+1).

Example 5.2 Let b, = ni, m = 1.5 and f(z) = Table 5.2 contains the error estimations of the

_r
22 +1°
functions f by the Chlodowsky variant of Szdsz-type operators involving the Gould—Hopper polynomials given
in (5.6).
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Table 2. Error of approximation for Bj using weighted modulus of continuity.
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n

hl =0.002

h2=1.2

h3 =3

10

1.299038994

1.299038994

1.299038994

102

1.299038994

1.299038994

1.299038994

103

0.811568399

1.074960796

1.298635930

10*

0.280047924

0.295853132

0.345655230

10°

0.089353806

0.089881529

0.091729276

106

0.028281475

0.028298253

0.028357704

107

0.008944188

0.008944719

0.008946603

108

0.002828426

0.002828443

0.002828502

5.2. Laguerre polynomials

These polynomials are one of the most important classical orthogonal polynomials. The Laguerre polynomials

1 t
a—per A0 =7

and « is a nonnegative integer. The Laguerre polynomial of degree k is defined as

are Boas—Buck-type polynomials with A(t) = B(t) =e', where 0 <t <1, 2 <0

k 5
(a)x _ Y k+ « .%i
1w =3 )%

In order to ensure restrictions i)-iii) and assumptions (1.8), we modify the generating function of Laguerre

polynomials as follows:

= (-5)

xt k
2(2—t) — N 47
e D~

k=0

tF0<t<2

roles| =

(1= Lyatt

Denote by BE the Chlodowsky variant of Szasz-type operators involving the Laguerre polynomials. Then,

oo (@) P
Lopooy_ 1L ZLk (=3) ,(*
Bulhim) = oo ok I\t )

Theorem 5.7 For every f € Cr(R{) such that f', f?) € Cg[0,00), we have

lim bﬁ [Bﬁ(f,m) _f(x)] _ 22a+1(a+1)f/(1)+ gxf@)(x)

n—oo n

uniformly with respect to x € [0,a], a > 0.

Theorem 5.8 Let f € C5(R). Then,

|Bifi2) — f(2)] <2 (2+K0L(n) - \/Kf(n)) Q(f;6n)

(1+22)2

z€[0,00)
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where 6, = \/KF(n) and

KL(n) _ ?’bn +22a+2(a+1)(a+3)@.
0V o n?’

2162 3303 b
K{(n) = Zn—’; %ﬁ (72-4%0°+496 - 4% + 424 - 4% + 75) +2°° " (o + 1) (o’ +150° +63a+75)

Example 5.3 Let b, = ni and f(z) =

by the Chlodowsky variant of Szdsz-type operators involving the Laguerre polynomials given in (5.7).

Table 3. Error of approximation for B using weighted modulus of continuity.

MURSALEEN et al./Turk J Math

241"

Table 5.3 contains the error estimations of the functions f

n al =0.002 a2 =2 a3 =3

10 | 1.299040568 | 1.299040570 | 1.299040580
102 | 1.299040568 | 1.299040570 | 1.299040580
103 | 1.288882866 | 1.299040570 | 1.299040580
10* | 0.493107972 | 1.079677838 | 1.299040580
10° | 0.155072123 | 0.197421416 | 0.344434710
105 | 0.048994875 | 0.050517126 | 0.058139428
107 | 0.015492121 | 0.015540988 | 0.015805560
108 | 0.004898993 | 0.004900541 | 0.004908996

5.3. Charlier polynomials

These polynomials have generating functions of the form (see [15])
ANEE
t b _ (a) Kk
e <1 a) SO @)tk, ] <a,
k=0
where
Kk J
(a) _ 1y 1 /k . 1
01 (1) -5 (o
and a > 1, z €[0,00), (z)o=1, (z); =x(x+1)...(x+75—1) for j > 1.
Therefore, the Charlier polynomials are the Boas—Buck-type polynomials with A(t) = e*, B(t) = €,

t
H(t) =1In (1 - a)' In order to ensure restrictions i)-ii) and assumptions (1.8), we modify the generating

function of Charlier polynomials as follows:
. o0
ete~ (@ De(1=8) = 3™ 0 (—(a — Da)t*, || < a.
k=0

Let BS be the Chlodowsky variant of Szasz-type operators involving the Charlier polynomials. Then,

n(a

B0 =1 (1- 1) licé” (=127 (£).
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Theorem 5.9 For every f € Cp(RY) such that f', f?) € Cgl0,00), we have

a

lim - [BS(f;2) — f(2)] = £/(1) + 2@ (2)

n—o0 by, 2(a—1)
uniformly with respect to x € [0,a], a > 0.

Theorem 5.10 Let f € C5(RJ). Then,

| By (f;2) = f(2)]
sup n < §2<2+Kcn+ Kcn>Q fi0n), 5.8
o P £+ /KE W) 2756.) 6:5)
where &, = \/K§ (n) and
c, \__ aby @
Ko'(n) = 2(a—1)n + n?’
3(a+2)b2 332 a(17a® — 20a + 9) b
KC(n) = In In 152
r () 4(a — 1) n? 16 n3 (a —1)3 + 5n4

Example 5.4 Let b, = ni and flz) = Table 5./ contains the error estimations of the functions f

x
241"
by the Chlodowsky variant of Szdsz-type operators involving the Charlier polynomials given in (5.8).

Table 4. Error of approximation for BS using weighted modulus of continuity.

Acknowledgment

n al =1.5 a2 =2 a3 =3

10 1.299040568 | 1.299039881 | 1.299039482
102 | 1.299040568 | 1.299039881 | 1.299039482
103 | 1.189062896 | 1.076740303 | 0.990627632
10* | 0.477014557 | 0.393996650 | 0.343471676
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108 | 0.004898975 | 0.003999999 | 0.003464102
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