т ̈̈вітак

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2018) 42: $2270-2278$
© TÜBİTAK
doi:10.3906/mat-1710-86

Generating sets of certain finite subsemigroups of monotone partial bijections

Leyla BUGAY* ${ }^{\text {(®, }}$, Hayrullah AYIK ${ }^{\text {() }}$
Department of Mathematics, Faculty of Science, Çukurova University, Adana, Turkey

Received: 24.10.2017 • Accepted/Published Online: 20.06.2018 \quad • Final Version: 27.09 .2018

Abstract

Let I_{n} be the symmetric inverse semigroup, and let $P O D I_{n}$ and $P O I_{n}$ be its subsemigroups of monotone partial bijections and of isotone partial bijections on $X_{n}=\{1, \ldots, n\}$ under its natural order, respectively. In this paper we characterize the structure of (minimal) generating sets of the subsemigroups $P O D I_{n, r}=\left\{\alpha \in P O D I_{n}:|\operatorname{im}(\alpha)| \leq r\right\}$, $P O I_{n, r}=\left\{\alpha \in P O I_{n}:|\operatorname{im}(\alpha)| \leq r\right\}$, and $E_{n, r}=\left\{\operatorname{id}_{A} \in I_{n}: A \subseteq X_{n}\right.$ and $\left.|A| \leq r\right\}$ where $i d_{A}$ is the identity map on $A \subseteq X_{n}$ for $0 \leq r \leq n-1$.

Key words: Partial bijection, isotone/antitone/monotone map, (minimal) generating set

1. Introduction

Let I_{X} be the semigroup of all partial one-to-one maps on a nonempty set X under usual composition. It is well known that I_{X} is an inverse semigroup; that is, for each element α there exists a unique element α^{\prime} such that $\alpha \alpha^{\prime} \alpha=\alpha$, which is called symmetric inverse semigroup. From the Wagner-Preston theorem, as cited in [4], as the analog of Cayley's theorem for finite groups, every inverse semigroup is isomorphic to a subsemigroup of a suitable symmetric inverse semigroup. Hence, the symmetric inverse semigroups and their subsemigroups have certain important roles in inverse semigroup theory like the symmetric groups in group theory. Moreover, the problem of finding (minimal) generating sets of certain finite transformation semigroups is an important problem for finite semigroup theory and has been much studied over the last 50 years. We examine this problem for certain subsemigroups of I_{n}, the finite symmetric inverse semigroup on $X_{n}=\{1, \ldots, n\}$ under its natural order. Among recent contributions are [1, 4, 5, 9].

Let α be a partial map on X_{n}. If $(\forall x \in \operatorname{dom}(\alpha)) x \alpha=x$ then α is called the partial identity map on $A=\operatorname{dom}(\alpha) \subseteq X_{n}$ and denoted by id A. If $(\forall x, y \in \operatorname{dom}(\alpha)) x \leq y \Rightarrow x \alpha \leq y \alpha(x \leq y \Rightarrow x \alpha \geq y \alpha)$ then α is called isotone (antitone), and if α is isotone or antitone then α is called monotone. Notice that if $|\operatorname{im}(\alpha)| \leq 1$ then α is both isotone and antitone, and so monotone. Let $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ be some monotone partial maps on X_{n} for $k \geq 2$. It is easy to see that the product $\alpha_{1} \cdots \alpha_{k}$ of these maps is isotone if the number of antitone maps in $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ is an even number; otherwise, it is antitone. Then the subsets

$$
\begin{aligned}
P O D I_{n} & =\left\{\alpha \in I_{n}: \alpha \text { is monotone }\right\} \\
P O I_{n} & =\left\{\alpha \in I_{n}: \alpha \text { is isotone, }\right\} \text { and } \\
E_{n} & =\left\{\operatorname{id}_{A}: A \subseteq X_{n}\right\}
\end{aligned}
$$

*Correspondence: ltanguler@cu.edu.tr
2010 AMS Mathematics Subject Classification: 20M20
are subsemigroups of I_{n}, and $E_{n} \leq P O I_{n} \leq P O D I_{n} \leq I_{n}$. For $0 \leq r \leq n$, let

$$
\begin{aligned}
P O D I_{n, r} & =\left\{\alpha \in P O D I_{n}:|\operatorname{im}(\alpha)| \leq r\right\}, \\
P O I_{n, r} & =\left\{\alpha \in P O I_{n}:|\operatorname{im}(\alpha)| \leq r\right\}, \text { and } \\
E_{n, r} & =\left\{\operatorname{id}_{A}: A \subseteq X_{n} \text { and }|A| \leq r\right\},
\end{aligned}
$$

which are clearly subsemigroups of $P O D I_{n}, P O I_{n}$, and E_{n}, respectively. It follows from [3, Proposition 2.2] and [5, Proposition 3.2] that, for $0 \leq r \leq n$,

$$
\begin{gathered}
\left|P O D I_{n, r}\right|=1+n^{2}+\sum_{p=2}^{r} 2\binom{n}{p}^{2}, \quad\left|P O I_{n, r}\right|=\sum_{p=0}^{r}\binom{n}{p}^{2} \text { and } \\
\left|E_{n, r}\right|=\sum_{p=0}^{r}\binom{n}{p} .
\end{gathered}
$$

Let S be any semigroup, and let U be any nonempty subset of S. Then the subsemigroup generated by U, the smallest subsemigroup of S containing U, is denoted by $\langle U\rangle$. The rank of a finitely generated semigroup S, a semigroup generated by a finite subset, is defined by

$$
\operatorname{rank}(S)=\min \{|U|:\langle U\rangle=S\} .
$$

Moreover, the generating set of S with the cardinality $\operatorname{rank}(S)$ is called a minimal generating set of S.
The generating sets and the ranks of the semigroup $P O I_{n}$ were studied by Fernandes in [3] and [4]. Also, the generating sets and the ranks of the semigroup $P O D I_{n}$ were studied by Fernandes et al. in [5] and by Zhao and Fernandes in [10]. From [4, Proposition 2.8] we have $\operatorname{rank}\left(P O I_{n, n-1}\right)=n$ and furthermore rank $\left(P O I_{n}\right)=n$ since $P O I_{n} \backslash P O I_{n, n-1}=\left\{\operatorname{id}_{X_{n}}\right\}$. Let $\lfloor x\rfloor$ be the least integer greater than or equal to x for each $x \in \mathbb{R}$. From [5, Theorem 3.6] we have $\operatorname{rank}\left(P O D I_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor+1$ for $1 \leq r \leq n-1$, and from [10, Theorem 4.12] we have $\operatorname{rank}\left(P O I_{n, r}\right)=\operatorname{rank}\left(P O D I_{n, r}\right)=\binom{n}{r}$. Although some special generating sets were found in these studies, there is no method for deciding if they are or are not generating sets of the mentioned semigroups. Therefore, we examine the necessary and sufficient conditions for any subset of S to be a (minimal) generating set of S where S is one of the semigroups $P O D I_{n, r}, P O I_{n, r}$, and $E_{n, r}$ for $0 \leq r \leq n-1$.

2. Preliminaries

Let $A=\left\{a_{1}, \ldots, a_{r}\right\}$ be a nonempty subset of X_{n} for $2 \leq r \leq n$. For convenience, we write $A=\left\{a_{1}<\cdots<a_{r}\right\}$ if $a_{1}<\cdots<a_{r}$. For $1 \leq p \leq r \leq n-1$, consider any element of $P O D I_{n}$ with domain set $A=\left\{a_{1}<\cdots<a_{r}\right\}$ and image set $B=\left\{b_{1}<\cdots<b_{r}\right\}$. Then there exist two cases: either

$$
\alpha=\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{p} \\
b_{1} & b_{2} & \cdots & b_{p}
\end{array}\right), \text { or shortly } \alpha=\binom{A}{B}
$$

if α is isotone, or

$$
\alpha=\left(\begin{array}{cccc}
a_{1} & a_{2} & \cdots & a_{p} \\
b_{p} & b_{p-1} & \cdots & b_{1}
\end{array}\right), \text { or shortly } \alpha=\binom{A}{B^{R}},
$$

if α is antitone.

For $\alpha, \beta \in P O D I_{n, r}$ or $\alpha, \beta \in P O I_{n, r}(1 \leq r \leq n)$, from the definitions of Green's equivalences it is a routine matter to prove that
(i) $\alpha \mathcal{R} \beta \Leftrightarrow \operatorname{dom}(\alpha)=\operatorname{dom}(\beta)$,
(ii) $\alpha \mathcal{L} \beta \Leftrightarrow \operatorname{im}(\alpha)=\operatorname{im}(\beta)$,
(iii) $\alpha \mathcal{H} \beta \Leftrightarrow \operatorname{dom}(\alpha)=\operatorname{dom}(\beta)$ and $\operatorname{im}(\alpha)=\operatorname{im}(\beta)$, and
(iv) $\alpha \mathcal{D} \beta \Leftrightarrow|\operatorname{im}(\alpha)|=|\operatorname{im}(\beta)|$.

For $0 \leq p \leq r \leq n$ we denote Green's \mathcal{D}-class of all elements in S of height p by D_{p}; that is,

$$
D_{p}=\{\alpha \in S:|\operatorname{im}(\alpha)|=p\}
$$

where S is the subsemigroup $P O D I_{n, r}$ or $P O I_{n, r}$. Then it is clear that there exist $r+1$ many \mathcal{D}-classes, namely $D_{0}, D_{1}, \ldots, D_{r}$, and S is the disjoint union of $D_{0}, D_{1}, \ldots, D_{r}$. Moreover, there exist $\binom{n}{p} \mathcal{R}$-classes and $\binom{n}{p} \mathcal{L}$-classes in D_{p} for each $0 \leq p \leq r$. Notice that for $\alpha \in P O D I_{n, r}$, if $|\operatorname{im}(\alpha)| \geq 2$ then $\left|H_{\alpha}\right|=2$; otherwise, $\left|H_{\alpha}\right|=1$ where H_{α} is the \mathcal{H}-class contains α. Also notice that for each $\alpha \in P O I_{n, r}$ we have $\left|H_{\alpha}\right|=1$. Let $k=\binom{n}{p}$. Then the \mathcal{D}-class D_{p} in $P O D I_{n, r}$ has the following egg box form:

$D_{p}: R_{1}$	L_{1}		L_{k}
	$\binom{A_{1}}{A_{1}},\binom{A_{1}}{A_{1}^{R}}$		$\binom{A_{1}}{A_{k}},\binom{A_{1}}{A_{k}^{R}}$
	!	\cdot.	:
R_{k}	$\binom{A_{k}}{A_{1}},\binom{A_{k}}{A_{1}^{R}}$		$\binom{A_{k}}{A_{k}},\binom{A_{k}}{A_{k}^{R}}$

and the \mathcal{D}-class D_{p} in $P O I_{n, r}$ has the following egg box form:

$D_{p}: R_{1}$	L_{1}		L_{k}
	$\binom{A_{1}}{A_{1}}$		$\binom{A_{1}}{A_{k}}$
	:	.	
R_{k}	$\binom{A_{k}}{A_{1}}$	\ldots	$\binom{A_{k}}{A_{k}}$

where A_{1}, \ldots, A_{k} are all the subsets of X_{n} with cardinality p. Similarly, it is easy to see that on $E_{n, r}$

$$
\mathcal{L}=\mathcal{R}=\mathcal{H}=\mathcal{D}=\left\{\left(\operatorname{id}_{A}, \mathrm{id}_{A}\right): \operatorname{id}_{A} \in E_{n, r}\right\}
$$

for $0 \leq r \leq n$.
For the definitions of Green's equivalences and for the other terms in semigroup theory that are not explained here, we refer to $[6,8]$.

It is known from [4, Proof of Lemma 2.7] that $D_{p-1} \subseteq\left\langle D_{p}\right\rangle$ in $P O I_{n, r}$ for $1 \leq p \leq r \leq n-1$. Now we prove this claim for $P O D I_{n, r}$ and notice that the proof is also effective for $P O I_{n, r}$.

Lemma 2.1 For $1 \leq p \leq r \leq n-1, \quad D_{p-1} \subseteq\left\langle D_{p}\right\rangle$ in $P O D I_{n, r}$.
Proof First of all, notice that the empty map $\emptyset=\binom{1}{1}\binom{2}{2}$. Now we consider the case $2 \leq p \leq r$. If $\alpha \in D_{p-1}$ is isotone then the result follows from [7, Lemma 3.4]. Let $\alpha \in D_{p-1}$ be the antitone map with $\operatorname{dom}(\alpha)=\left\{a_{1}<\cdots<a_{p-1}\right\}$ and $\operatorname{im}(\alpha)=\left\{b_{1}<\cdots<b_{p-1}\right\} ;$ that is, $\alpha=\left(\begin{array}{ccc}a_{1} & a_{2} & \cdots \\ b_{p-1} & b_{p-2} & \cdots\end{array} a_{p-1}, b_{1}.\right)$. Since $n-(p-1) \geq 2$, there exist $x \in X_{n} \backslash \operatorname{dom}(\alpha)$ and $y \in X_{n} \backslash \operatorname{im}(\alpha)$ such that $a_{i-1}<x<a_{i}$ and $b_{j-1}<y<b_{j}$ for $1 \leq i, j \leq p$ where $a_{0}=b_{0}=0$ and $a_{p}=b_{p}=n+1$. Notice that $2 \leq p-i+2 \leq n$ and that there exist two cases according to $p-i+2>j$ or $p-i+2 \leq j$.

First suppose that $p-i+2>j$. Then it is clear that $\beta \gamma=\alpha$, where β is the antitone map with $\operatorname{dom}(\beta)=\operatorname{dom}(\alpha) \cup\{x\}$ and $\operatorname{im}(\beta)=\{1,2, \ldots, p+1\} \backslash\{j\}$, and γ is the isotone map with dom $(\gamma)=$ $\{1,2, \ldots, p+1\} \backslash\{p-i+2\}$ and $\operatorname{im}(\gamma)=\operatorname{im}(\alpha) \cup\{y\}$. Now suppose that $p-i+2 \leq j$. Also notice that if $j=p-i+2$ then $2 \leq p-i+2=j \leq p$. Similarly, $\beta \gamma=\alpha$, where β is the antitone map with $\operatorname{dom}(\beta)=\operatorname{dom}(\alpha) \cup\{x\}$ and $\operatorname{im}(\beta)=\{1,2, \ldots, p+1\} \backslash\{j+1\}$, and γ is the isotone map with $\operatorname{dom}(\gamma)=\{1,2, \ldots, p+1\} \backslash\{p-i+1\}$ and $\operatorname{im}(\gamma)=\operatorname{im}(\alpha) \cup\{y\}$.

It is known from [10, Corollary 4.2] that the semigroup $P O I_{n, r}$ is generated by its elements in D_{r}. Similarly, from [10, Corollary 4.3] (also from Lemma 2.1), the semigroup $P O D I_{n, r}$ is generated by its elements in D_{r}. Then we conclude that a nonempty subset U of $P O D I_{n, r}\left(P O I_{n, r}\right)$ is a generating set of $P O D I_{n, r}$ ($P O I_{n, r}$) if and only if $D_{r} \subseteq\left\langle U \cap D_{r}\right\rangle$. Thus, it is enough to consider only the subsets of D_{r} to examine the structure of any (minimal) generating set of $P O D I_{n, r}\left(P O I_{n, r}\right)$.

For any partial maps α and β it is well known that $\operatorname{dom}(\alpha \beta)=(\operatorname{im}(\alpha) \cap \operatorname{dom}(\beta)) \alpha^{-1}$, and so it is a routine matter to prove the following lemma.

Lemma 2.2 Let $\alpha_{1}, \ldots, \alpha_{k}$ be some elements of D_{p} in $P O D I_{n, r}\left(P O I_{n, r}\right)$ for $2 \leq k$ and $1 \leq p \leq n-1$. Then the product $\alpha_{1} \cdots \alpha_{k}$ is also an element of D_{p} if and only if $\alpha_{i} \alpha_{i+1}$ is an element of D_{p}; equivalently, $\operatorname{im}\left(\alpha_{i}\right)=\operatorname{dom}\left(\alpha_{i+1}\right)$ for each $1 \leq i \leq k-1$.

As a final of this section we give some definitions about digraphs. Let $\Pi=(V(\Pi), \vec{E}(\Pi))$ be a digraph. For two vertices $u, v \in V(\Pi)$, if either $(u, v) \in \vec{E}(\Pi)$ or, for $k \geq 1$, there exist $w_{1}, \ldots, w_{k} \in V(\Pi)$ (they do not have to be distinct) such that $\left(u, w_{1}\right), \ldots,\left(w_{i}, w_{i+1}\right), \ldots,\left(w_{k}, v\right) \in \vec{E}(\Pi)$, then $u \rightarrow w_{1} \rightarrow \cdots \rightarrow w_{k} \rightarrow v$ is called a directed path from u to v. If $u=v$ or there exists a directed path from u to v, then the restricted part from u to v of Π is called a connection from u to v and we say u is connected to v. In particular, for distinct vertices $u_{1}, \ldots, u_{k} \in V(\Pi)$ where $k \geq 1$, the closed directed path $u_{1} \rightarrow \cdots \rightarrow u_{k} \rightarrow u_{1}$ is called a cycle, and a cycle that consists of a unique vertex is called a loop. For any directed path $u_{1} \rightarrow \cdots \rightarrow u_{k}$, the product $u_{1} u_{2} \cdots u_{k}$ where $2 \leq k$ is called a consecutive product. Let U be a nonempty subset of D_{r} in $O D I_{n, r}$ $\left(O I_{n, r}\right)$. Then we define the digraph Γ_{U} as follows:

- the vertex set of Γ_{U}, denoted by $V=V\left(\Gamma_{U}\right)$, is U; and
- the directed edge set of Γ_{U}, denoted by $\vec{E}=\vec{E}\left(\Gamma_{U}\right)$, is

$$
\vec{E}=\left\{(\alpha, \beta) \in V \times V: \alpha \beta \in D_{r}\right\}=\{(\alpha, \beta) \in V \times V: \operatorname{im}(\alpha)=\operatorname{dom}(\beta)\}
$$

3. Generating sets of $P O D I_{n, r}$

Notice that $P O D I_{n, 0}=P O I_{n, 0}=\{\emptyset\}$, where \emptyset is the empty map on X_{n}, and $P O D I_{n, 1}=P O I_{n, 1}$. Therefore, unless otherwise stated, in this section we consider the cases $2 \leq r \leq n-1$.

Lemma 3.1 For $2 \leq r \leq n-1, P O D I_{n, r}=\left\langle D_{r}^{a}\right\rangle$ where

$$
D_{r}^{a}=\left\{\alpha \in P O D I_{n, r}: \alpha \text { is antitone and }|\operatorname{im}(\alpha)|=r\right\}
$$

Proof Let $\alpha \in D_{r}$ in $P O D I_{n, r}$ be an isotone map with $\operatorname{dom}(\alpha)=\left\{a_{1}<\cdots<a_{r}\right\}$ and im $(\alpha)=\left\{b_{1}<\right.$ $\left.\cdots<b_{r}\right\}$; that is, $\alpha=\left(\begin{array}{ccc}a_{1} & \cdots & a_{r} \\ b_{1} & \cdots & b_{r}\end{array}\right)$. Now consider the antitone maps $\beta=\left(\begin{array}{lll}a_{1} & \cdots & a_{r} \\ a_{r} & \cdots & a_{1}\end{array}\right)$ and $\gamma=\left(\begin{array}{ccc}a_{1} & \cdots & a_{r} \\ b_{r} & \cdots & b_{1}\end{array}\right)$. Then it is clear that $\alpha=\beta \gamma$. Thus, $D_{r} \subseteq\left\langle D_{r}^{a}\right\rangle$, and so $P O D I_{n, r}=\left\langle D_{r}^{a}\right\rangle$.

Corollary 3.2 For $2 \leq r \leq n-1$ a nonempty subset U of D_{r} is a generating set of $P O D I_{n, r}$ if and only if $D_{r}^{a} \subseteq\langle U\rangle$.

Theorem 3.3 Let $2 \leq r \leq n-1$, and let $\emptyset \neq U \subseteq D_{r}$ in $P O D I_{n, r}$. Then U is a generating set of $P O D I_{n, r}$ if and only if for each pair of subsets A and B of X_{n} with cardinality r there exist $\alpha, \beta \in U$ such that
(i) $\operatorname{dom}(\alpha)=A$,
(ii) $\operatorname{im}(\beta)=B$, and
(iii) α is connected to β in the digraph Γ_{U}, with the property that the number of antitone maps in the connection is an odd number.

Proof (\Rightarrow) Suppose that $\emptyset \neq U \subseteq D_{r}$ is a generating set of $P O D I_{n, r}$, i.e. $D_{r}^{a} \subseteq\langle U\rangle$. Let A and B be any pair of subsets of X_{n} with cardinality r. Consider the antitone map $\gamma \in D_{r}$ with domain set A and image set B. Then there exist $\alpha_{1}, \ldots, \alpha_{t} \in U$ such that $\alpha_{1} \cdots \alpha_{t}=\gamma$ for $t \geq 1$. From Lemma 2.2 we have $\operatorname{dom}\left(\alpha_{1}\right)=\operatorname{dom}(\gamma)=A$ and $\operatorname{im}\left(\alpha_{t}\right)=\operatorname{im}(\gamma)=B$. Moreover, we have $\alpha_{i} \alpha_{i+1} \in D_{r}$, for each $1 \leq i \leq t-1$, and so α_{1} is connected to α_{t} in the digraph Γ_{U}. Then it is easy to see that the number of antitone maps in this connection must be an odd number since γ is antitone.
(\Leftarrow) Conversely, suppose that the conditions are satisfied, and that $\gamma \in D_{r}$ be any antitone map with domain set A and image set B. Then there exist $\alpha, \beta \in U$ such that $\operatorname{dom}(\alpha)=A=\operatorname{dom}(\gamma)$ and $\operatorname{im}(\beta)=B=\operatorname{im}(\gamma)$, and α is connected to β in the digraph Γ_{U}, with the property that the number of antitone maps in the connection is an odd number. If we denote the consecutive product of all elements in this connection by ξ, then ξ is also an antitone map, and moreover, $\operatorname{dom}(\xi)=\operatorname{dom}(\alpha)=\operatorname{dom}(\gamma)$ and $\operatorname{im}(\xi)=\operatorname{im}(\beta)=\operatorname{im}(\gamma)$ from Lemma 2.2. Hence, $\gamma=\xi \in\langle U\rangle$, and so $D_{r}^{a} \subseteq\langle U\rangle$. Thus, the result is clear from Corollary 3.2.

Lemma 3.4 Let $1 \leq r \leq n-1$, and let $\emptyset \neq U \subseteq D_{r}$. For any subset A of X_{n} with cardinality r, let R_{A} and L_{A} be the \mathcal{R}-class and \mathcal{L}-class, which contain id_{A}, in D_{r}, respectively, and let $H_{A}=R_{A} \cap L_{A}$.
(i) If $R_{A} \cap U \subseteq H_{A}$, then $R_{A} \cap\langle U\rangle \subseteq H_{A}$.
(ii) If $L_{A} \cap U \subseteq H_{A}$, then $L_{A} \cap\langle U\rangle \subseteq H_{A}$.

Proof First of all recall that $H_{A}=\left\{\binom{A}{A},\binom{A}{A^{R}}\right\}$.
(i) If $R_{A} \cap U=\emptyset$ then $R_{A} \cap\langle U\rangle=\emptyset$ since $\operatorname{dom}(\beta) \neq A$ for each $\beta \in\langle U\rangle$. Now let $\emptyset \neq R_{A} \cap U \subseteq H_{A}$, and let $\beta \in R_{A} \cap\langle U\rangle$. Then there exist $\beta_{1}, \ldots, \beta_{t} \in U$ such that $\beta=\beta_{1} \cdots \beta_{t}\left(t \in \mathbb{Z}^{+}\right)$. It follows from Lemma 2.2 that $\operatorname{im}\left(\beta_{i}\right)=\operatorname{dom}\left(\beta_{i+1}\right)$ for each $1 \leq i \leq t-1$, and so $\operatorname{dom}(\beta)=\operatorname{dom}\left(\beta_{1}\right)$. Thus, $\beta_{1} \in R_{A}$, and so $\beta_{1} \in R_{A} \cap U$. Then, from the assumption, we have $\beta_{1} \in H_{A}$. Similarly, since $\operatorname{dom}\left(\beta_{i+1}\right)=\operatorname{im}\left(\beta_{i}\right)=A$ for each $1 \leq i \leq t-1$, it follows that $\beta_{1}, \ldots, \beta_{t} \in H_{A}$, and so $\beta \in H_{A}$, as required.
(ii) It can be proved similarly.

Recall that for $2 \leq r \leq n-1, \operatorname{rank}\left(P O D I_{n, r}\right)=\binom{n}{r}$, and so we have the following theorem.

Theorem 3.5 For $2 \leq r \leq n-1$, let $U \subseteq D_{r}$ with cardinality $\binom{n}{r}$. Then U is a minimal generating set of $P O D I_{n, r}$ if and only if
(i) $|R \cap U|=|L \cap U|=1$ for each \mathcal{R}-class R and \mathcal{L}-class L in D_{r},
(ii) the digraph Γ_{U} is a cycle, and
(iii) the number of antitone maps in U is an odd number.

Proof (\Rightarrow) Suppose that $U \subseteq D_{r}$ is a (minimal) generating set of $P O D I_{n, r}$ with cardinality $\binom{n}{r}$.
(i) The claim is clearly provided from Theorem 3.3.
(ii) First notice that $\binom{n}{r} \geq 2$ for $2 \leq r \leq n-1$, and from the first condition and Lemma 3.4, there is no element in U that has either form $\binom{A}{A}$ or form $\binom{A}{A^{R}}$ for any subset A of X_{n} with cardinality r. Hence, there is no loop in Γ_{U}. Now let α and β be two distinct elements of U. Then consider any map $\gamma \in D_{r}$ such that $\operatorname{dom}(\gamma)=\operatorname{dom}(\alpha)$ and $\operatorname{im}(\gamma)=\operatorname{im}(\beta)$. Notice that α and β are not in the same \mathcal{R}-class and not in the same \mathcal{L}-class in D_{r}, from the first condition, and so $\alpha \neq \gamma, \beta \neq \gamma$, and moreover, $\gamma \notin U$. Since U is a generating set of $P O D I_{n, r}$, there exist $\lambda_{1}, \ldots, \lambda_{t} \in U$ such that $\lambda_{1} \cdots \lambda_{t}=\gamma$ and $t \geq 2$. Then, from Lemma 2.2, we have $\operatorname{dom}\left(\lambda_{1}\right)=\operatorname{dom}(\gamma)=\operatorname{dom}(\alpha)$ and $\operatorname{im}\left(\lambda_{t}\right)=\operatorname{im}(\gamma)=\operatorname{im}(\beta)$, and so $\lambda_{1} \mathcal{R} \alpha$ and $\lambda_{t} \mathcal{L} \beta$. From the first condition $\lambda_{1}=\alpha$ and $\lambda_{t}=\beta$, and so there exists a directed path from α to β; that is, α is connected to β in the digraph Γ_{U}. Moreover, for any $\alpha \in U$, there exists a unique element $\lambda \in(U) \backslash\{\alpha\}$ such that $\operatorname{im}(\alpha)=\operatorname{dom}(\lambda)$ and a unique element $\mu \in U \backslash\{\alpha\}$ such that $\operatorname{dom}(\alpha)=\operatorname{im}(\mu)$ from the first condition. That is, there exists a unique edge from α and a unique edge to α in digraph Γ_{U}. Therefore, Γ_{U} is a cycle.
(iii) Let $U=\left\{\mu_{1}, \ldots, \mu_{k}\right\}$. Without loss of generality suppose that the cycle Γ_{U} is $\mu_{1} \rightarrow \cdots \rightarrow \mu_{k} \rightarrow \mu_{1}$ where $k=\binom{n}{r}$. Since any product of some isotone maps is also an isotone map, U must contain at least one antitone map. Now consider the map

$$
\delta= \begin{cases}\binom{A}{B^{R}} & \text { if } \mu_{1}=\binom{A}{B} \\ \binom{A}{B} & \text { if } \mu_{1}=\binom{A}{B^{R}}\end{cases}
$$

for two different subsets A and B with cardinality r. It is easy to see from Lemma 2.2 that to generate the map δ we have to use the directed path $\mu_{1} \rightarrow \cdots \rightarrow \mu_{k} \rightarrow \mu_{1}$ in Γ_{U}, and δ can be written only as the product $\left(\mu_{1} \cdots \mu_{k}\right)^{t} \mu_{1}$ for some $t \geq 1$. If the number of antitone maps in U is an even number, then the consecutive
product $\mu_{1} \cdots \mu_{k}$ is the partial identity map with domain set $\operatorname{dom}\left(\mu_{1}\right)$, and so $\left(\mu_{1} \cdots \mu_{k}\right)^{t} \mu_{1}=\mu_{1}$ for each $t \geq 1$. Thus, we have $\delta \notin\langle U\rangle$, which is a contradiction, and so the number of antitone maps in U is an odd number.
(\Leftarrow) Suppose that the conditions are satisfied, and let $\gamma \in D_{r}$. Then, from the first condition, there exist a unique $\alpha \in U$ and a unique $\beta \in U \operatorname{such}$ that $\operatorname{dom}(\gamma)=\operatorname{dom}(\alpha)$ and $\operatorname{im}(\gamma)=\operatorname{im}(\beta)$. Moreover, from the other conditions Γ_{U} is a cycle and the number of antitone maps in U is an odd number. If $\gamma \in U$ then $\gamma=\alpha=\beta$, as required. If $\gamma \notin U$ and $\alpha=\beta$, then $\operatorname{dom}(\gamma)=\operatorname{dom}(\alpha), \operatorname{im}(\gamma)=\operatorname{im}(\alpha)$, and $\gamma \neq \alpha$; that is, $H \backslash\{\alpha\}=\{\gamma\}$, where H is the \mathcal{H}-class contains α. Then, without loss of generality, suppose that $U=\left\{\alpha, \lambda_{1}, \ldots, \lambda_{k-1}\right\}$ and that the cycle Γ_{U} has a form

$$
\alpha \rightarrow \lambda_{1} \rightarrow \cdots \rightarrow \lambda_{k-1} \rightarrow \alpha
$$

where $k=\binom{n}{r}$. It is clear that $\alpha \lambda_{1} \cdots \lambda_{k-1}$ is an antitone map, and so

$$
\gamma=\alpha \lambda_{1} \cdots \lambda_{k-1} \alpha \in\langle U\rangle
$$

Finally, if $\gamma \notin U$ and $\alpha \neq \beta$, then, without loss of generality, suppose that $U=\left\{\alpha, \lambda_{1}, \ldots, \lambda_{t}, \beta, \mu_{1}, \ldots, \mu_{l}\right\}$ for $t, l \geq 0$ (notice that $t+l+2=k=\binom{n}{r}$), and that the cycle Γ_{U} has a form

$$
\alpha \rightarrow \lambda_{1} \rightarrow \cdots \rightarrow \lambda_{t} \rightarrow \beta \rightarrow \mu_{1} \rightarrow \cdots \rightarrow \mu_{l} \rightarrow \alpha
$$

If the number of antitone maps in $\left\{\alpha, \lambda_{1}, \ldots, \lambda_{t}, \beta\right\}$ is even, then

$$
\gamma= \begin{cases}\alpha \lambda_{1} \cdots \lambda_{t} \beta & \text { if } \alpha \text { is an isotone map } \\ \alpha \lambda_{1} \cdots \lambda_{t} \beta \mu_{1} \cdots \mu_{l} \alpha \lambda_{1} \cdots \lambda_{t} \beta & \text { if } \alpha \text { is an antitone map }\end{cases}
$$

and so $\gamma \in\langle U\rangle$. If the number of antitone maps in $\left\{\alpha, \lambda_{1}, \ldots, \lambda_{t}, \beta\right\}$ is odd, then

$$
\gamma= \begin{cases}\alpha \lambda_{1} \cdots \lambda_{t} \beta \mu_{1} \cdots \mu_{l} \alpha \lambda_{1} \cdots \lambda_{t} \beta & \text { if } \alpha \text { is an isotone map } \\ \alpha \lambda_{1} \cdots \lambda_{t} \beta & \text { if } \alpha \text { is an antitone map }\end{cases}
$$

and so $\gamma \in\langle U\rangle$. Thus, $D_{r} \subseteq\langle U\rangle$, and so U is a minimal generating set of $P O D I_{n, r}$.

4. Generating sets of $P O I_{n, r}$

First notice that for $P O D I_{n, 0}=P O I_{n, 0}=\{\emptyset\}$ there is nothing to prove. Now consider the subsemigroup $P O D I_{n, 1}=P O I_{n, 1}$, and notice that there exist only two \mathcal{D}-classes, D_{0} and D_{1}, which have the following egg box forms:
respectively. As a particular case of Theorem 3.3 we have the following lemma.

Lemma 4.1 Let $\emptyset \neq U \subseteq D_{1}$ in $P O D I_{n, 1}=P O I_{n, 1}$. Then U is a generating set of $P O D I_{n, 1}$ if and only if, for each $1 \leq i, j \leq n$, there exist $\alpha, \beta \in U$ such that
(i) $\operatorname{dom}(\alpha)=\{i\}$,
(ii) $\operatorname{im}(\beta)=\{j\}$, and
(iii) α is connected to β in the digraph Γ_{U}.

Lemma 4.2 Let $\emptyset \neq U \subseteq D_{1}$ in $P O D I_{n, 1}=P O I_{n, 1}$ with cardinality n. Then U is a minimal generating set of $P O D I_{n, 1}=P O I_{n, 1}$ if and only if
(i) $|R \cap U|=|L \cap U|=1$ for each \mathcal{R}-class R and \mathcal{L}-class L in D_{1}, and
(ii) the digraph Γ_{U} is a cycle.

Proof The proof is similar to the proof of Theorem 3.5.

Theorem 4.3 Let $2 \leq r \leq n-1$, and let $U \subseteq D_{r}$ in $P O I_{n, r}$. Then U is a generating set of $P O I_{n, r}$ if and only if, for each pair of subsets A and B of X_{n} with cardinality r, there exist $\alpha, \beta \in U$ such that dom $(\alpha)=A$, $\operatorname{im}(\beta)=B$, and α is connected to β in the digraph Γ_{U}.

Proof The proof is similar to the proof of Theorem 3.3.

Lemma 4.4 Let $1 \leq r \leq n-1$, and let $\emptyset \neq U \subseteq D_{r}$. For any subset A of X_{n} with cardinality r, let R_{A} and L_{A} be the \mathcal{R}-class and \mathcal{L}-class, which contain id_{A}, in D_{r}, respectively. Moreover, let $H_{A}=R_{A} \cap L_{A}$; that $i s, H_{A}=\left\{\operatorname{id}_{A}\right\}$.
(i) If $R_{A} \cap U \subseteq H_{A}$, then $R_{A} \cap\langle U\rangle \subseteq H_{A}$.
(ii) If $L_{A} \cap U \subseteq H_{A}$, then $L_{A} \cap\langle U\rangle \subseteq H_{A}$.

Proof The proof is similar to the proof of Lemma 3.4.
Recall that, for $2 \leq r \leq n-1, \operatorname{rank}\left(P O I_{n, r}\right)=\binom{n}{r}$, and so we have the following theorem.

Theorem 4.5 For $2 \leq r \leq n-1$, let $\emptyset \neq U \subseteq D_{r}$ with cardinality $\binom{n}{r}$. Then U is a minimal generating set of $\mathrm{POI}_{n, r}$ if and only if
(i) $|R \cap U|=|L \cap U|=1$ for each \mathcal{R}-class R and \mathcal{L}-class L in D_{r}, and
(ii) the digraph Γ_{U} is a cycle.

Proof The proof is similar to the proof of Theorem 3.5 by using the fact that $|H|=1$ for each \mathcal{H}-class H in $P O I_{n, r}$.
5. Generating set of $E_{n, r}$

Let $M_{p}=\left\{\alpha \in E_{n}:|\operatorname{im}(\alpha)|=p\right\}$ for $0 \leq p \leq n$. Then it is clear that $\left|M_{p}\right|=\binom{n}{p}$ and $E_{n, r}$ is a disjoint union of $M_{0}, M_{1}, \ldots, M_{r}$ for $0 \leq r \leq n$.

Lemma 5.1 Let id $_{A} \in M_{p-1}$ for $1 \leq p \leq r \leq n-1$. Then there exist $\emptyset \neq B, C \subseteq X_{n}$ with cardinality p such that $\mathrm{id}_{A}=\mathrm{id}_{B} \mathrm{id}_{C}$; that is, $M_{p-1} \subseteq\left(M_{p}\right)^{2}$.

Proof Let $A=\left\{a_{1}, \ldots, a_{p-1}\right\}$. Then there exist at least two distinct elements a, b of $X_{n} \backslash A$, and it is clear that $\operatorname{id}_{A}=\operatorname{id}_{B} \operatorname{id}_{C}$ where $B=\left\{a_{1}, \ldots, a_{p-1}\right\} \cup\{a\}$ and $C=\left\{a_{1}, \ldots, a_{p-1}\right\} \cup\{b\}$.

As a result of Lemma 5.1, $E_{n, r}$ is generated by elements of M_{r} for $0 \leq r \leq n-1$. Moreover, for $\operatorname{id}_{A}, \operatorname{id}_{B} \in E_{n}$, from the fact $\mathrm{id}_{A} \mathrm{id}_{B}=\mathrm{id}_{A \cap B}$ and that we have $\mathrm{id}_{A} \mathrm{id}_{B} \in M_{p}$ if and only if $A \cap B=A=B$ for $0 \leq p \leq n$. Then we can state the following corollary.

Corollary 5.2 The set M_{r} is the minimum generating set of $E_{n, r}$ for $0 \leq r \leq n-1$. Moreover, it follows from the facts $E_{n} \backslash E_{n, n-1}=\left\{\mathrm{id}_{X_{n}}\right\}$ and that $\mathrm{id}_{X_{n}}$ is an identity map on X_{n} that $\operatorname{rank}\left(E_{n, r}\right)=\binom{n}{r}$ and $\operatorname{rank}\left(E_{n}\right)=\binom{n}{n-1}+1=n+1$.

Remark The free semilattice $\mathcal{S} \mathcal{L}_{A}$ over a set A is the semigroup of all subsets of A with set-theoretic intersection as multiplication. In particular, if A is a finite set with cardinality n it is more common to use the notation $\mathcal{S} \mathcal{L}_{n}$ instead of $\mathcal{S} \mathcal{L}_{A}$ (see, for example, [2]). Let $A=X_{n}$ and consider the subsemigroups $\mathcal{S L}_{n, r}=\left\{Y \subseteq X_{n}:|Y| \leq r\right\}$ of $\mathcal{S} \mathcal{L}_{n}$ for $0 \leq r \leq n-1$. It is clear that $\mathcal{S} \mathcal{L}_{n, r} \cong E_{n, r}$, and so we also have $\operatorname{rank}\left(\mathcal{S} \mathcal{L}_{n, r}\right)=\binom{n}{r}$ for $0 \leq r \leq n-1$ and $\operatorname{rank}\left(\mathcal{S} \mathcal{L}_{n}\right)=n+1$.

References

[1] Ayık H, Bugay L. Generating sets of finite transformation semigroups $P K(n, r)$ and $K(n, r)$. Comm Algebra 2015; 43: 412-422.
[2] Ayık H, Campbell CM, O'Connor JJ, Ruskuc N. Minimal presentations and efficiency of semigroups. Semigroup Forum 2000; 60: 231-242.
[3] Fernandes VH. Semigroups of order preserving mappings on a finite chain. A New class of Divisors. Semigroup Forum 1997; 54: 230-236.
[4] Fernandes VH. The monoid of all injective order-preserving partial transformations on a finite chain. Semigroup Forum 2001; 62: 178-204.
[5] Fernandes VH, Gomes GMS, Jesus MM. Presentations for some monoids of injective partial transformations on a finite chain. Southeast Asian Bulletin of Mathematics 2004;28: 903-918.
[6] Ganyushkin O, Mazorchuk V. Classical Finite Transformation Semigroups. Berlin, Germany: Springer-Verlag, 2009.
[7] Gomes GMS, Howie JM. On the ranks of certain semigroups of order-preserving transformations. Semigroup Forum 1992; 45: 272-282.
[8] Howie JM. Fundamentals of Semigroup Theory. New York, NY, USA: Oxford University Press, 1995.
[9] Yiğit E, Ayık G, Ayık H. Minimal relative generating sets of some partial transformation semigroups. Comm Algebra 2017; 3: 1239-1245.
[10] Zhao P, Fernandes VH. The ranks of ideals in various transformation monoids. Comm Algebra 2015; 43: 674-692.

