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Abstract: Let In be the symmetric inverse semigroup, and let PODIn and POIn be its subsemigroups of monotone
partial bijections and of isotone partial bijections on Xn = {1, . . . , n} under its natural order, respectively. In this paper
we characterize the structure of (minimal) generating sets of the subsemigroups PODIn,r = {α ∈ PODIn : |im (α)| ≤ r} ,
POIn,r = {α ∈ POIn : |im (α)| ≤ r} , and En,r = {id A ∈ In : A ⊆ Xn and |A| ≤ r} where idA is the identity map on
A ⊆ Xn for 0 ≤ r ≤ n− 1 .
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1. Introduction
Let IX be the semigroup of all partial one-to-one maps on a nonempty set X under usual composition. It is
well known that IX is an inverse semigroup; that is, for each element α there exists a unique element α′ such
that αα′α = α , which is called symmetric inverse semigroup. From the Wagner–Preston theorem, as cited in
[4], as the analog of Cayley’s theorem for finite groups, every inverse semigroup is isomorphic to a subsemigroup
of a suitable symmetric inverse semigroup. Hence, the symmetric inverse semigroups and their subsemigroups
have certain important roles in inverse semigroup theory like the symmetric groups in group theory. Moreover,
the problem of finding (minimal) generating sets of certain finite transformation semigroups is an important
problem for finite semigroup theory and has been much studied over the last 50 years. We examine this problem
for certain subsemigroups of In , the finite symmetric inverse semigroup on Xn = {1, . . . , n} under its natural
order. Among recent contributions are [1, 4, 5, 9].

Let α be a partial map on Xn . If (∀x ∈ dom (α)) xα = x then α is called the partial identity map on
A = dom (α) ⊆ Xn and denoted by id A . If (∀x, y ∈ dom (α)) x ≤ y ⇒ xα ≤ yα (x ≤ y ⇒ xα ≥ yα) then α is
called isotone (antitone), and if α is isotone or antitone then α is called monotone. Notice that if |im (α)| ≤ 1

then α is both isotone and antitone, and so monotone. Let {α1, . . . , αk} be some monotone partial maps on
Xn for k ≥ 2 . It is easy to see that the product α1 · · ·αk of these maps is isotone if the number of antitone
maps in {α1, . . . , αk} is an even number; otherwise, it is antitone. Then the subsets

PODIn = {α ∈ In : α is monotone},

POIn = {α ∈ In : α is isotone, } and

En = {id A : A ⊆ Xn}
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are subsemigroups of In , and En ≤ POIn ≤ PODIn ≤ In . For 0 ≤ r ≤ n , let

PODIn,r = {α ∈ PODIn : |im (α)| ≤ r},

POIn,r = {α ∈ POIn : |im (α)| ≤ r}, and

En,r = {id A : A ⊆ Xn and |A| ≤ r},

which are clearly subsemigroups of PODIn, POIn, and En , respectively. It follows from [3, Proposition 2.2]
and [5, Proposition 3.2] that, for 0 ≤ r ≤ n ,

|PODIn,r| = 1 + n2 +

r∑
p=2

2

(
n

p

)2

, |POIn,r| =
r∑

p=0

(
n

p

)2

and

|En,r| =
r∑

p=0

(
n

p

)
.

Let S be any semigroup, and let U be any nonempty subset of S . Then the subsemigroup generated by
U , the smallest subsemigroup of S containing U , is denoted by ⟨U⟩ . The rank of a finitely generated semigroup
S , a semigroup generated by a finite subset, is defined by

rank (S) = min{ |U | : ⟨U⟩ = S}.

Moreover, the generating set of S with the cardinality rank (S) is called a minimal generating set of S .
The generating sets and the ranks of the semigroup POIn were studied by Fernandes in [3] and [4].

Also, the generating sets and the ranks of the semigroup PODIn were studied by Fernandes et al. in [5]
and by Zhao and Fernandes in [10]. From [4, Proposition 2.8] we have rank (POIn,n−1) = n and furthermore
rank (POIn) = n since POIn \ POIn,n−1 = {id Xn} . Let ⌊x⌋ be the least integer greater than or equal to x

for each x ∈ R . From [5, Theorem 3.6] we have rank (PODIn) = ⌊n
2 ⌋ + 1 for 1 ≤ r ≤ n − 1 , and from [10,

Theorem 4.12] we have rank (POIn,r) = rank (PODIn,r) =
(
n
r

)
. Although some special generating sets were

found in these studies, there is no method for deciding if they are or are not generating sets of the mentioned
semigroups. Therefore, we examine the necessary and sufficient conditions for any subset of S to be a (minimal)
generating set of S where S is one of the semigroups PODIn,r, POIn,r , and En,r for 0 ≤ r ≤ n− 1 .

2. Preliminaries
Let A = {a1, . . . , ar} be a nonempty subset of Xn for 2 ≤ r ≤ n . For convenience, we write A = {a1 < · · · < ar}
if a1 < · · · < ar . For 1 ≤ p ≤ r ≤ n−1 , consider any element of PODIn with domain set A = {a1 < · · · < ar}
and image set B = {b1 < · · · < br} . Then there exist two cases: either

α =

(
a1 a2 · · · ap
b1 b2 · · · bp

)
, or shortly α =

(
A
B

)
,

if α is isotone, or

α =

(
a1 a2 · · · ap
bp bp−1 · · · b1

)
, or shortly α =

(
A
BR

)
,

if α is antitone.
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For α, β ∈ PODIn,r or α, β ∈ POIn,r (1 ≤ r ≤ n), from the definitions of Green’s equivalences it is a
routine matter to prove that

(i) αRβ ⇔ dom (α) = dom (β) ,

(ii) αLβ ⇔ im (α) = im (β) ,

(iii) αHβ ⇔ dom (α) = dom (β) and im (α) = im (β) , and

(iv) αDβ ⇔ |im (α)| = |im (β)| .

For 0 ≤ p ≤ r ≤ n we denote Green’s D -class of all elements in S of height p by Dp ; that is,

Dp = {α ∈ S : |im (α)| = p},

where S is the subsemigroup PODIn,r or POIn,r . Then it is clear that there exist r + 1 many D -classes,
namely D0, D1, . . . , Dr , and S is the disjoint union of D0, D1, . . . , Dr . Moreover, there exist

(
n
p

)
R -classes

and
(
n
p

)
L -classes in Dp for each 0 ≤ p ≤ r . Notice that for α ∈ PODIn,r , if |im (α)| ≥ 2 then |Hα| = 2 ;

otherwise, |Hα| = 1 where Hα is the H -class contains α . Also notice that for each α ∈ POIn,r we have
|Hα| = 1 . Let k =

(
n
p

)
. Then the D -class Dp in PODIn,r has the following egg box form:

Dp : R1

Rk

L1 Lk(
A1

A1

)
,

(
A1

AR
1

)
· · ·

(
A1

Ak

)
,

(
A1

AR
k

)
... . . . ...(

Ak

A1

)
,

(
Ak

AR
1

)
· · ·

(
Ak

Ak

)
,

(
Ak

AR
k

) ,

and the D -class Dp in POIn,r has the following egg box form:

Dp : R1

Rk

L1 Lk(
A1

A1

)
· · ·

(
A1

Ak

)
... . . . ...(
Ak

A1

)
· · ·

(
Ak

Ak

) ,

where A1, . . . , Ak are all the subsets of Xn with cardinality p . Similarly, it is easy to see that on En,r

L = R = H = D = {(id A, id A) : id A ∈ En,r}

for 0 ≤ r ≤ n .
For the definitions of Green’s equivalences and for the other terms in semigroup theory that are not

explained here, we refer to [6, 8].
It is known from [4, Proof of Lemma 2.7] that Dp−1 ⊆ ⟨Dp⟩ in POIn,r for 1 ≤ p ≤ r ≤ n− 1 . Now we

prove this claim for PODIn,r and notice that the proof is also effective for POIn,r .
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Lemma 2.1 For 1 ≤ p ≤ r ≤ n− 1, Dp−1 ⊆ ⟨Dp⟩ in PODIn,r .

Proof First of all, notice that the empty map ∅ =

(
1
1

)(
2
2

)
. Now we consider the case 2 ≤ p ≤ r .

If α ∈ Dp−1 is isotone then the result follows from [7, Lemma 3.4]. Let α ∈ Dp−1 be the antitone map with

dom (α) = {a1 < · · · < ap−1} and im (α) = {b1 < · · · < bp−1} ; that is, α =

(
a1 a2 · · · ap−1

bp−1 bp−2 · · · b1

)
.

Since n − (p − 1) ≥ 2 , there exist x ∈ Xn \ dom (α) and y ∈ Xn \ im (α) such that ai−1 < x < ai and
bj−1 < y < bj for 1 ≤ i, j ≤ p where a0 = b0 = 0 and ap = bp = n+ 1 . Notice that 2 ≤ p− i+ 2 ≤ n and that
there exist two cases according to p− i+ 2 > j or p− i+ 2 ≤ j .

First suppose that p − i + 2 > j . Then it is clear that βγ = α , where β is the antitone map with
dom (β) = dom (α) ∪ {x} and im (β) = {1, 2, . . . , p + 1} \ {j} , and γ is the isotone map with dom (γ) =

{1, 2, . . . , p + 1} \ {p − i + 2} and im (γ) = im (α) ∪ {y} . Now suppose that p − i + 2 ≤ j . Also notice
that if j = p − i + 2 then 2 ≤ p − i + 2 = j ≤ p . Similarly, βγ = α , where β is the antitone map
with dom (β) = dom (α) ∪ {x} and im (β) = {1, 2, . . . , p + 1} \ {j + 1} , and γ is the isotone map with
dom (γ) = {1, 2, . . . , p+ 1} \ {p− i+ 1} and im (γ) = im (α) ∪ {y} . 2

It is known from [10, Corollary 4.2] that the semigroup POIn,r is generated by its elements in Dr .
Similarly, from [10, Corollary 4.3] (also from Lemma 2.1), the semigroup PODIn,r is generated by its elements
in Dr . Then we conclude that a nonempty subset U of PODIn,r (POIn,r ) is a generating set of PODIn,r

(POIn,r ) if and only if Dr ⊆ ⟨U ∩Dr⟩ . Thus, it is enough to consider only the subsets of Dr to examine the
structure of any (minimal) generating set of PODIn,r (POIn,r ).

For any partial maps α and β it is well known that dom (αβ) = (im (α) ∩ dom (β))α−1 , and so it is a
routine matter to prove the following lemma.

Lemma 2.2 Let α1, . . . , αk be some elements of Dp in PODIn,r (POIn,r) for 2 ≤ k and 1 ≤ p ≤ n − 1 .
Then the product α1 · · ·αk is also an element of Dp if and only if αiαi+1 is an element of Dp ; equivalently,
im (αi) = dom (αi+1) for each 1 ≤ i ≤ k − 1 .

As a final of this section we give some definitions about digraphs. Let Π = (V (Π),
−→
E (Π)) be a digraph.

For two vertices u, v ∈ V (Π) , if either (u, v) ∈
−→
E (Π) or, for k ≥ 1 , there exist w1, . . . , wk ∈ V (Π) (they do

not have to be distinct) such that (u,w1), . . . , (wi, wi+1), . . . , (wk, v) ∈
−→
E (Π) , then u → w1 → · · · → wk → v

is called a directed path from u to v . If u = v or there exists a directed path from u to v , then the restricted
part from u to v of Π is called a connection from u to v and we say u is connected to v . In particular, for
distinct vertices u1, . . . , uk ∈ V (Π) where k ≥ 1 , the closed directed path u1 → · · · → uk → u1 is called a
cycle, and a cycle that consists of a unique vertex is called a loop. For any directed path u1 → · · · → uk , the
product u1u2 · · ·uk where 2 ≤ k is called a consecutive product. Let U be a nonempty subset of Dr in ODIn,r

(OIn,r ). Then we define the digraph ΓU as follows:

• the vertex set of ΓU , denoted by V = V (ΓU ) , is U ; and

• the directed edge set of ΓU , denoted by −→
E =

−→
E (ΓU ) , is

−→
E = {(α, β) ∈ V × V : αβ ∈ Dr} = {(α, β) ∈ V × V : im (α) = dom (β)}.
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3. Generating sets of PODIn,r

Notice that PODIn,0 = POIn,0 = {∅} , where ∅ is the empty map on Xn , and PODIn,1 = POIn,1 . Therefore,
unless otherwise stated, in this section we consider the cases 2 ≤ r ≤ n− 1 .

Lemma 3.1 For 2 ≤ r ≤ n− 1 , PODIn,r = ⟨Da
r ⟩ where

Da
r = {α ∈ PODIn,r : α is antitone and |im (α)| = r}.

Proof Let α ∈ Dr in PODIn,r be an isotone map with dom (α) = {a1 < · · · < ar} and im (α) = {b1 <

· · · < br} ; that is, α =

(
a1 · · · ar
b1 · · · br

)
. Now consider the antitone maps β =

(
a1 · · · ar
ar · · · a1

)
and

γ =

(
a1 · · · ar
br · · · b1

)
. Then it is clear that α = βγ . Thus, Dr ⊆ ⟨Da

r ⟩ , and so PODIn,r = ⟨Da
r ⟩ . 2

Corollary 3.2 For 2 ≤ r ≤ n− 1 a nonempty subset U of Dr is a generating set of PODIn,r if and only if
Da

r ⊆ ⟨U⟩ .

Theorem 3.3 Let 2 ≤ r ≤ n− 1 , and let ∅ ̸= U ⊆ Dr in PODIn,r . Then U is a generating set of PODIn,r

if and only if for each pair of subsets A and B of Xn with cardinality r there exist α, β ∈ U such that

(i) dom (α) = A ,

(ii) im (β) = B , and

(iii) α is connected to β in the digraph ΓU , with the property that the number of antitone maps in the
connection is an odd number.

Proof (⇒) Suppose that ∅ ̸= U ⊆ Dr is a generating set of PODIn,r , i.e. Da
r ⊆ ⟨U⟩ . Let A and B be

any pair of subsets of Xn with cardinality r . Consider the antitone map γ ∈ Dr with domain set A and
image set B . Then there exist α1, . . . , αt ∈ U such that α1 · · ·αt = γ for t ≥ 1 . From Lemma 2.2 we have
dom (α1) = dom (γ) = A and im (αt) = im (γ) = B . Moreover, we have αiαi+1 ∈ Dr , for each 1 ≤ i ≤ t − 1 ,
and so α1 is connected to αt in the digraph ΓU . Then it is easy to see that the number of antitone maps in
this connection must be an odd number since γ is antitone.

(⇐) Conversely, suppose that the conditions are satisfied, and that γ ∈ Dr be any antitone map
with domain set A and image set B . Then there exist α, β ∈ U such that dom (α) = A = dom (γ) and
im (β) = B = im (γ) , and α is connected to β in the digraph ΓU , with the property that the number of
antitone maps in the connection is an odd number. If we denote the consecutive product of all elements in
this connection by ξ , then ξ is also an antitone map, and moreover, dom (ξ) = dom (α) = dom (γ) and
im (ξ) = im (β) = im (γ) from Lemma 2.2. Hence, γ = ξ ∈ ⟨U⟩ , and so Da

r ⊆ ⟨U⟩ . Thus, the result is clear
from Corollary 3.2. 2

Lemma 3.4 Let 1 ≤ r ≤ n− 1 , and let ∅ ̸= U ⊆ Dr . For any subset A of Xn with cardinality r , let RA and
LA be the R-class and L-class, which contain id A , in Dr , respectively, and let HA = RA ∩ LA .

(i) If RA ∩ U ⊆ HA , then RA ∩ ⟨U⟩ ⊆ HA .

(ii) If LA ∩ U ⊆ HA , then LA ∩ ⟨U⟩ ⊆ HA .
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Proof First of all recall that HA = {
(

A
A

)
,

(
A
AR

)
} .

(i) If RA ∩U = ∅ then RA ∩ ⟨U⟩ = ∅ since dom (β) ̸= A for each β ∈ ⟨U⟩ . Now let ∅ ̸= RA ∩U ⊆ HA ,
and let β ∈ RA∩⟨U⟩ . Then there exist β1, . . . , βt ∈ U such that β = β1 · · ·βt (t ∈ Z+) . It follows from Lemma
2.2 that im (βi) = dom (βi+1) for each 1 ≤ i ≤ t − 1 , and so dom (β) = dom (β1) . Thus, β1 ∈ RA , and so
β1 ∈ RA ∩ U . Then, from the assumption, we have β1 ∈ HA . Similarly, since dom (βi+1) = im (βi) = A for
each 1 ≤ i ≤ t− 1 , it follows that β1, . . . , βt ∈ HA , and so β ∈ HA , as required.

(ii) It can be proved similarly. 2

Recall that for 2 ≤ r ≤ n− 1 , rank (PODIn,r) =
(
n
r

)
, and so we have the following theorem.

Theorem 3.5 For 2 ≤ r ≤ n − 1 , let U ⊆ Dr with cardinality
(
n
r

)
. Then U is a minimal generating set of

PODIn,r if and only if

(i) |R ∩ U | = |L ∩ U | = 1 for each R-class R and L-class L in Dr ,

(ii) the digraph ΓU is a cycle, and

(iii) the number of antitone maps in U is an odd number.

Proof (⇒) Suppose that U ⊆ Dr is a (minimal) generating set of PODIn,r with cardinality
(
n
r

)
.

(i) The claim is clearly provided from Theorem 3.3.
(ii) First notice that

(
n
r

)
≥ 2 for 2 ≤ r ≤ n − 1 , and from the first condition and Lemma 3.4, there

is no element in U that has either form
(

A
A

)
or form

(
A
AR

)
for any subset A of Xn with cardinality

r . Hence, there is no loop in ΓU . Now let α and β be two distinct elements of U . Then consider any map
γ ∈ Dr such that dom (γ) = dom (α) and im (γ) = im (β) . Notice that α and β are not in the same R -class
and not in the same L -class in Dr , from the first condition, and so α ̸= γ , β ̸= γ , and moreover, γ /∈ U . Since
U is a generating set of PODIn,r , there exist λ1, . . . , λt ∈ U such that λ1 · · ·λt = γ and t ≥ 2 . Then, from
Lemma 2.2, we have dom (λ1) = dom (γ) = dom (α) and im (λt) = im (γ) = im (β) , and so λ1Rα and λtLβ .
From the first condition λ1 = α and λt = β , and so there exists a directed path from α to β ; that is, α is
connected to β in the digraph ΓU . Moreover, for any α ∈ U , there exists a unique element λ ∈ (U)\{α} such
that im (α) = dom (λ) and a unique element µ ∈ U\{α} such that dom (α) = im (µ) from the first condition.
That is, there exists a unique edge from α and a unique edge to α in digraph ΓU . Therefore, ΓU is a cycle.

(iii) Let U = {µ1, . . . , µk} . Without loss of generality suppose that the cycle ΓU is µ1 → · · · → µk → µ1

where k =
(
n
r

)
. Since any product of some isotone maps is also an isotone map, U must contain at least one

antitone map. Now consider the map

δ =


(

A
BR

)
if µ1 =

(
A
B

)
,(

A
B

)
if µ1 =

(
A
BR

)
,

for two different subsets A and B with cardinality r . It is easy to see from Lemma 2.2 that to generate the
map δ we have to use the directed path µ1 → · · · → µk → µ1 in ΓU , and δ can be written only as the product
(µ1 · · ·µk)

tµ1 for some t ≥ 1 . If the number of antitone maps in U is an even number, then the consecutive
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product µ1 · · ·µk is the partial identity map with domain set dom (µ1) , and so (µ1 · · ·µk)
tµ1 = µ1 for each

t ≥ 1 . Thus, we have δ /∈ ⟨U⟩ , which is a contradiction, and so the number of antitone maps in U is an odd
number.

(⇐) Suppose that the conditions are satisfied, and let γ ∈ Dr . Then, from the first condition, there
exist a unique α ∈ U and a unique β ∈ U such that dom (γ) = dom (α) and im (γ) = im (β) . Moreover,
from the other conditions ΓU is a cycle and the number of antitone maps in U is an odd number. If γ ∈ U

then γ = α = β , as required. If γ /∈ U and α = β , then dom (γ) = dom (α) , im (γ) = im (α) , and γ ̸= α ;
that is, H \ {α} = {γ} , where H is the H -class contains α . Then, without loss of generality, suppose that
U = {α, λ1, . . . , λk−1} and that the cycle ΓU has a form

α → λ1 → · · · → λk−1 → α

where k =
(
n
r

)
. It is clear that αλ1 · · ·λk−1 is an antitone map, and so

γ = αλ1 · · ·λk−1α ∈ ⟨U⟩.

Finally, if γ /∈ U and α ̸= β , then, without loss of generality, suppose that U = {α, λ1, . . . , λt, β, µ1, . . . , µl}
for t, l ≥ 0 (notice that t+ l + 2 = k =

(
n
r

)
), and that the cycle ΓU has a form

α → λ1 → · · · → λt → β → µ1 → · · · → µl → α.

If the number of antitone maps in {α, λ1, . . . , λt, β} is even, then

γ =

{
αλ1 · · ·λtβ if α is an isotone map,
αλ1 · · ·λtβµ1 · · ·µlαλ1 · · ·λtβ if α is an antitone map,

and so γ ∈ ⟨U⟩ . If the number of antitone maps in {α, λ1, . . . , λt, β} is odd, then

γ =

{
αλ1 · · ·λtβµ1 · · ·µlαλ1 · · ·λtβ if α is an isotone map,
αλ1 · · ·λtβ if α is an antitone map,

and so γ ∈ ⟨U⟩ . Thus, Dr ⊆ ⟨U⟩ , and so U is a minimal generating set of PODIn,r . 2

4. Generating sets of POIn,r

First notice that for PODIn,0 = POIn,0 = {∅} there is nothing to prove. Now consider the subsemigroup
PODIn,1 = POIn,1 , and notice that there exist only two D -classes, D0 and D1 , which have the following egg
box forms:

D0 : R1

L1

∅ ,

D1 : R1

Rn

L1 Ln(
1
1

)
· · ·

(
1
n

)
... . . . ...(
n
1

)
· · ·

(
n
n

) ,

respectively. As a particular case of Theorem 3.3 we have the following lemma.
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Lemma 4.1 Let ∅ ̸= U ⊆ D1 in PODIn,1 = POIn,1 . Then U is a generating set of PODIn,1 if and only if,
for each 1 ≤ i, j ≤ n , there exist α, β ∈ U such that

(i) dom (α) = {i} ,

(ii) im (β) = {j} , and

(iii) α is connected to β in the digraph ΓU .

Lemma 4.2 Let ∅ ̸= U ⊆ D1 in PODIn,1 = POIn,1 with cardinality n . Then U is a minimal generating set
of PODIn,1 = POIn,1 if and only if

(i) |R ∩ U | = |L ∩ U | = 1 for each R-class R and L-class L in D1 , and

(ii) the digraph ΓU is a cycle.

Proof The proof is similar to the proof of Theorem 3.5. 2

Theorem 4.3 Let 2 ≤ r ≤ n− 1 , and let U ⊆ Dr in POIn,r . Then U is a generating set of POIn,r if and
only if, for each pair of subsets A and B of Xn with cardinality r , there exist α, β ∈ U such that dom (α) = A ,
im (β) = B , and α is connected to β in the digraph ΓU .

Proof The proof is similar to the proof of Theorem 3.3. 2

Lemma 4.4 Let 1 ≤ r ≤ n− 1 , and let ∅ ̸= U ⊆ Dr . For any subset A of Xn with cardinality r , let RA and
LA be the R-class and L-class, which contain id A , in Dr , respectively. Moreover, let HA = RA ∩ LA ; that
is, HA = {id A} .

(i) If RA ∩ U ⊆ HA , then RA ∩ ⟨U⟩ ⊆ HA .

(ii) If LA ∩ U ⊆ HA , then LA ∩ ⟨U⟩ ⊆ HA .

Proof The proof is similar to the proof of Lemma 3.4. 2

Recall that, for 2 ≤ r ≤ n− 1 , rank (POIn,r) =
(
n
r

)
, and so we have the following theorem.

Theorem 4.5 For 2 ≤ r ≤ n− 1 , let ∅ ̸= U ⊆ Dr with cardinality
(
n
r

)
. Then U is a minimal generating set

of POIn,r if and only if

(i) |R ∩ U | = |L ∩ U | = 1 for each R-class R and L-class L in Dr , and

(ii) the digraph ΓU is a cycle.

Proof The proof is similar to the proof of Theorem 3.5 by using the fact that |H| = 1 for each H -class H in
POIn,r . 2
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5. Generating set of En,r

Let Mp = {α ∈ En : |im (α)| = p} for 0 ≤ p ≤ n . Then it is clear that |Mp| =
(
n
p

)
and En,r is a disjoint union

of M0,M1, . . . ,Mr for 0 ≤ r ≤ n .

Lemma 5.1 Let id A ∈ Mp−1 for 1 ≤ p ≤ r ≤ n− 1 . Then there exist ∅ ̸= B,C ⊆ Xn with cardinality p such
that id A = id B id C ; that is, Mp−1 ⊆ (Mp)

2 .

Proof Let A = {a1, . . . , ap−1} . Then there exist at least two distinct elements a, b of Xn\A , and it is clear
that id A = id B id C where B = {a1, . . . , ap−1} ∪ {a} and C = {a1, . . . , ap−1} ∪ {b} . 2

As a result of Lemma 5.1, En,r is generated by elements of Mr for 0 ≤ r ≤ n − 1 . Moreover, for
id A, id B ∈ En , from the fact id Aid B = id A∩B and that we have id Aid B ∈ Mp if and only if A ∩B = A = B

for 0 ≤ p ≤ n . Then we can state the following corollary.

Corollary 5.2 The set Mr is the minimum generating set of En,r for 0 ≤ r ≤ n − 1 . Moreover, it follows
from the facts En \ En,n−1 = {id Xn

} and that id Xn
is an identity map on Xn that rank (En,r) =

(
n
r

)
and

rank (En) =
(

n
n−1

)
+ 1 = n+ 1 .

Remark The free semilattice SLA over a set A is the semigroup of all subsets of A with set-theoretic
intersection as multiplication. In particular, if A is a finite set with cardinality n it is more common to
use the notation SLn instead of SLA (see, for example, [2]). Let A = Xn and consider the subsemigroups
SLn,r = {Y ⊆ Xn : |Y | ≤ r} of SLn for 0 ≤ r ≤ n − 1 . It is clear that SLn,r

∼= En,r , and so we also have
rank (SLn,r) =

(
n
r

)
for 0 ≤ r ≤ n− 1 and rank (SLn) = n+ 1 .
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