Turkish Journal of Mathematics
http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2018) 42: $2279-2287$
© TÜBİTAK
doi:10.3906/mat-1711-35

Prime-valent arc-transitive basic graphs with order $4 p$ or $4 p^{2}$

Hailin LIU* ${ }^{\text {(1) }}$
School of Science, Jiangxi University of Science and Technology, Ganzhou, P.R. China

Received: 09.11.2017 • Accepted/Published Online: 20.06.2018 \quad Final Version: 27.09 .2018

Abstract: A graph Γ is called G-basic if G is quasiprimitive or bi-quasiprimitive on the vertex set of Γ, where $G \leq$ Aut Γ. In this paper, we complete the classification of r-valent arc-transitive basic graphs with order $4 p$ or $4 p^{2}$, where p and r are odd primes.

Key words: Symmetric graph, basic graph, arc-transitive graph

1. Introduction

Throughout the paper, graphs considered are simple, connected, and undirected. For a graph Γ, we denote the valency, vertex set, edge set, arc set, and full automorphism group of Γ by val $(\Gamma), V \Gamma, E \Gamma, A \Gamma$, and Aut Γ, respectively. Γ is called G-vertex-transitive, G-edge-transitive, or G-arc-transitive if $G \leq A u t \Gamma$ is transitive on $V \Gamma, E \Gamma$, or $A \Gamma$; in particular, if $G=A u t \Gamma$, then Γ is simply called vertex-transitive, edge-transitive, or arc-transitive. As we all know, a graph Γ is G-arc-transitive if and only if G is vertex-transitive and the vertex stabilizer G_{v} of $v \in V \Gamma$ in G is transitive on the neighborhood $\Gamma(v)$ of v. A permutation group G on a set Ω is called quasiprimitive if each nontrivial normal subgroup of G is transitive on Ω; G is called bi-quasiprimitive if each nontrivial normal subgroup of G has at most two orbits, and there is at least one normal subgroup of G that has exactly two orbits. A graph Γ is called G-basic if G is quasiprimitive or bi-quasiprimitive on $V \Gamma$ for some $G \leq$ Aut Γ.

For a group G and a subgroup H of G, we use $Z(G), \operatorname{soc}(G), C_{G}(H)$, and $N_{G}(H)$ to denote the center, the socle of G, the centralizer, and the normalizer of H in G, respectively. For two groups M and N, we use $M: N$ and $M \times N$ to denote the semidirect product and direct product of M by N. For a positive integer n and a prime divisor $r \mid n$, we denote the largest r-power that divides n by n_{r}, i.e. the r-part of n. We denote the dihedral group of order $2 n$ by $\mathrm{D}_{2 n}$, the cyclic group of order n by \mathbb{Z}_{n}, and the alternating group and the symmetric group of degree n by A_{n} and S_{n}, respectively.

In the literature, the classification of arc-transitive graphs of small valency has been extensively studied; refer to $[4-7,9,10,15,19-23,27-29]$ and references therein. In particular, cubic and pentavalent arc-transitive graphs of order $4 p$ or $4 p^{2}$ are classified in [13, 16], and heptavalent arc-transitive graphs of order $4 p$ are classified in [8], where p is a prime. The purpose of this paper is to characterize prime-valent arc-transitive basic graphs with order four times a prime or a prime square. The main result of this paper is the following theorem.

[^0]Theorem 1.1 Let Γ be a connected r-valent G-arc-transitive and G-basic graph with order $4 p$ or $4 p^{2}$, where $G \leq \mathrm{Aut} \Gamma$, and p, r are odd primes. Then G is almost simple and Γ is T-edge-transitive, where $T=\operatorname{soc}(G)$. Furthermore, $\left(\Gamma,|V \Gamma|, \operatorname{val}(\Gamma), \operatorname{Aut} \Gamma,(\mathrm{Aut} \Gamma)_{\alpha}\right)$ lies in Table 1, where $\alpha \in V \Gamma$.

Table 1. Prime-valent arc-transitive basic graphs of order $4 p$ or $4 p^{2}$.

Row	Γ	$\|V \Gamma\|$	$\operatorname{val}(\Gamma)$	$\mathrm{Aut} \Gamma$	$(\mathrm{Aut} \Gamma)_{\alpha}$	Remark
1	\mathcal{C}_{20}	20	3	$\mathrm{~A}_{5} \times \mathbb{Z}_{2}$	$\mathrm{~S}_{3}$	Example 2.4 (1)
2	\mathcal{C}_{12}	12	5	$\mathrm{~A}_{5} \times \mathbb{Z}_{2}$	D_{10}	Example 2.4 (2)
3	\mathcal{G}_{36}	36	5	$\mathrm{~A}_{6}$	D_{10}	Example 2.1
4	$K_{4 p}$	$4 p$	$4 p-1$	$\mathrm{~S}_{4 p}$	$\mathrm{~S}_{4 p-1}$	
5	C_{28}	28	3	$\mathrm{PGL}(2,7)$	D_{12}	Example 2.2
6	$P(10,7)$	20	3	$\mathrm{~S}_{5} \times \mathbb{Z}_{2}$	D_{12}	Example 2.3
7	\mathcal{C}_{36}	36	7	$\mathrm{PSL}(2,8)$	D_{14}	Example 2.4 (5)
8	$K_{2 p^{n}, 2 p^{n}}-2 p^{n} K_{2}$	$4 p^{n}$	$2 p^{n}-1$	$\mathrm{~S}_{2 p^{n}} \times \mathbb{Z}_{2}$	$\mathrm{~S}_{2 p^{n}-1}$	$n=1,2$

2. Examples

In this section, we give some examples of connected r-valent arc-transitive graphs of order $4 p$ or $4 p^{2}$ that appear in Theorem 1.1, where p and r are odd primes.

Example 2.1 Let $G=\mathrm{A}_{6}$. Take a Sylow 5-subgroup, say P, of G, and set $H=N_{G}(P)$. From Conway et al. [3] it is known that $H \cong \mathrm{D}_{10}$. Note that all involutions in G are conjugates of each other. For any involution $x \in H$, we have $C_{G}(x) \cong \mathrm{D}_{8}$. Take an element g of order 4 in $C_{G}(x)$. Denote $\mathcal{G}_{36}=\operatorname{Cos}(G, H, H g H)$.

By [14], we know that \mathcal{G}_{36} is a pentavalent symmetric graph of order 36 and Aut $\mathcal{G}_{36} \cong \mathrm{~A}_{6}$.

Example 2.2 We introduce a graph of order 28 that was discovered by Coxeter and investigated by Tutte [25]. Denote this graph by C_{28}. For its construction, see Biggs [1, Fig. 2(ii)]. By Biggs [1], C_{28} is 3-regular and AutC $28 \cong \operatorname{PGL}(2,7)$.

Example 2.3 ([8]) Let $n=10$ and $3 \in \mathbb{Z}_{10} \backslash\{0\}$. The generalized Petersen graph $P(10,3)$ is the graph with vertex-set $\left\{x_{i}, y_{i} \mid i \in \mathbb{Z}_{10}\right\}$ and edge set $\left\{\left\{x_{i}, x_{i+1}\right\},\left\{x_{i}, y_{i}\right\},\left\{y_{i}, y_{i+k}\right\} \mid i \in\right.$ $\left.\mathbb{Z}_{10}\right\}$.

By [8], we know that $P(10,7)$ is a cubic symmetric graph of order 20.
By using the Magma program [2], we have the following examples.

Example 2.4 (1) There is a unique connected cubic graph of order 20 that admits A_{5} as an arc-transitive automorphism group. This graph is denoted by \mathcal{C}_{20}. Moreover, Aut $\mathcal{C}_{20} \cong \mathrm{~A}_{5} \times \mathbb{Z}_{2}$.
(2) There is a unique connected pentavalent graph of order 12 that admits A_{5} as an arc-transitive automorphism group. This graph is denoted by \mathcal{C}_{12}. Moreover, Aut $\mathcal{C}_{12} \cong \mathrm{~A}_{5} \times \mathbb{Z}_{2}$.
(3) There exist no connected heptavalent graphs of order 36 that admit $\mathrm{PSU}(3,3)$ as an arc-transitive automorphism group.
(4) There is a unique connected cubic graph of order 20 that admits S_{5} as an arc-transitive automorphism group. By Example 2.2 and Lemma 3.4, we know that the graph is isomorphic to $P(10,7)$. Moreover, Aut $P(10,7) \cong S_{5} \times \mathbb{Z}_{2}$.
(5) There is a unique connected heptavalent graph of order 36 that admits $\operatorname{PSL}(2,8)$ as an arc-transitive automorphism group. This graph is denoted by \mathcal{C}_{36}. Moreover, Aut $\mathcal{C}_{36} \cong \operatorname{PSL}(2,8)$.
(6) There exist no connected heptavalent graphs of order 36 that admit A_{9} as an arc-transitive automorphism group.

3. Preliminary results

In this section, we give some necessary preliminary results.
We now give a result that will be useful.

Lemma 3.1 Let r and p be odd primes, and let Γ be an r-valent G-arc-transitive graph of order $4 p$ or $4 p^{2}$ for some $G \leq \mathrm{Aut} \Gamma$. Let N be an insoluble normal subgroup of G. Then $r\left|\left|N_{v}^{\Gamma(v)}\right|\right.$ for each $v \in V \Gamma$.

Proof For each $v \in V \Gamma$, since $1 \neq N_{v} \triangleleft G_{v}$ and G is transitive on $V \Gamma$, we have $N_{v}^{\Gamma(v)} \neq 1$ by connectivity of Γ. Since $G_{v}^{\Gamma(v)}$ acts primitively on $\Gamma(v)$ and $N_{v}^{\Gamma(v)} \unlhd G_{v}^{\Gamma(v)}$, it follows that $r\left|\left|N_{v}^{\Gamma(v)}\right|\right.$.

The following two lemmas may be deduced from the classification of permutation groups of the degree of a product of two prime powers (refer to [18]).

Lemma 3.2 Let T be a nonabelian simple group that has a subgroup H of index $2 p$ or $2 p^{2}$ with p a prime. Then $T, H,|H|$, and $|T: H|$ are as in Table 2.

Table 2. Nonabelian simple groups with a subgroup of index $2 p$ or $2 p^{2}$.

T	H	$\|H\|$	$\|T: H\|$	Remark
A_{5}	$\mathrm{~S}_{3}$	$2 \cdot 3$	10	
$\mathrm{~A}_{2 p^{n}}$	$\mathrm{~A}_{2 p^{n}-1}$	$\frac{1}{2}\left(2 p^{n}-1\right)!$	$2 p^{n}$	$n=1,2$
$\operatorname{PSL}\left(d, s^{f}\right)$	P_{1}		$\frac{s^{f d}-1}{s^{f}-1}=2 p^{n}$	$n=1,2$
$\operatorname{PSL}\left(d, 2^{f}\right)$	H_{1}		$2 \frac{2^{f d}-1}{2^{f-1}}=2 p^{n}$	$n=1,2$
M_{11}	$\mathrm{~A}_{6}$	$2^{3} \cdot 3^{2} \cdot 5$	22	
M_{22}	$\operatorname{PSL}(3,4)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	22	
$\operatorname{PSU}(3,5)$	A_{7}	$2^{3} \cdot 3^{2} \cdot 5 \cdot 7$	50	

Remark $1 \quad \mathrm{P}_{1}=\left[s^{f(d-1)}\right] \cdot\left(\mathbb{Z}_{\frac{s^{f}-1}{\left(d, s^{f}-1\right)}} \cdot \operatorname{PSL}\left(d-1, s^{f}\right) \cdot \mathbb{Z}_{\left(d-1, s^{f}-1\right)}\right) \cong \mathrm{H}_{1} \cdot \mathbb{Z}_{2}$.

Lemma 3.3 Let T be a nonabelian simple group with a subgroup X of index $4 p$ or $4 p^{2}$, where p is a prime. Then X is isomorphic to H or K, and $T, K,|K|, H,|H|$, and $|T: X|$ are as in Table 3, where K is a maximal subgroup of T but H is not a maximal subgroup of T.

Table 3. Nonabelian simple groups with a subgroup of index $4 p$ or $4 p^{2}$.

T	K	$\|K\|$	H	$\|H\|$	$\|T: X\|$
A_{5}			$\begin{aligned} & \mathbb{Z}_{3} \\ & \mathbb{Z}_{5} \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \cdot 5 \\ & 4 \cdot 3 \end{aligned}$
A_{6}	D_{10}	$2 \cdot 5$	$3^{2}: 2$	$3^{2} \cdot 2$	$\begin{aligned} & 4 \cdot 3^{2} \\ & 4 \cdot 5 \end{aligned}$
A_{8}	S_{6}	$2^{4} \cdot 3^{2} \cdot 5$			$4 \cdot 7$
A_{9}			S_{7}	$2^{4} \cdot 3^{2} \cdot 5 \cdot 7$	$4 \cdot 3^{2}$
$\mathrm{A}_{4 p^{n}}$	$\mathrm{A}_{4 p^{n}-1}$	$\frac{1}{2}\left(4 p^{n}-1\right)$!			$4 p^{n}, n=1,2$
M_{11}	$\operatorname{PSL}(2,11)$	$2^{2} \cdot 3 \cdot 5 \cdot 11$			$4 \cdot 3$
M_{12}	M_{11}	$2^{4} \cdot 3^{2} \cdot 5 \cdot 11$			$4 \cdot 3$
J_{2}	$\operatorname{PSU}(3,3)$	$2^{5} \cdot 3^{3} \cdot 7$			$4 \cdot 5^{2}$
HS	M_{22}	$2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$			$4 \cdot 5^{2}$
$\operatorname{PSL}(2,8)$	D_{18}	$2 \cdot 3^{2}$			$4 \cdot 7$
$\operatorname{PSL}(2,16)$	A_{5}	$2^{2} \cdot 3 \cdot 5$			$4 \cdot 17$
$\operatorname{PSL}\left(d, s^{f}\right)$	P_{1}				$\frac{s^{f d}-1}{s^{f}-1}=4 p^{n}, n=1,2$
$\operatorname{PSL}\left(d, 2^{f}\right)$			H_{1}		$4 \frac{2^{\text {fd }}-1}{2^{f}-1}=4 p^{n}, n=1,2$
$\operatorname{PSU}(3,2)$	$\mathrm{GU}(2,2)$	$2 \cdot 3^{2}$			$4 \cdot 3$
$\operatorname{PSU}(3,3)$	$\operatorname{PSL}(2,7)$	$2^{3} \cdot 3 \cdot 7$			$4 \cdot 3^{2}$
$\operatorname{PSp}(4,3)$	S_{6}	$2^{4} \cdot 3^{2} \cdot 5$			$4 \cdot 3^{2}$
$\operatorname{PSp}(6,2)$	$\begin{array}{\|l} \hline \operatorname{PSU}(4,2): 2 \\ \mathrm{~S}_{8} \\ \mathrm{P} \Omega^{-}(6,2) \\ \hline \end{array}$	$\begin{aligned} & 2^{7} \cdot 3^{4} \cdot 5 \\ & 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \\ & 2^{7} \cdot 3^{4} \cdot 5 \end{aligned}$			$\begin{aligned} & 4 \cdot 7 \\ & 4 \cdot 3^{2} \\ & 4 \cdot 7 \end{aligned}$
$\mathrm{P} \Omega(5,3)$	$\mathbb{Z}_{2} \times \mathrm{P} \Omega^{-}(4,3)$	$2^{4} \cdot 3^{2} \cdot 5$			$4 \cdot 3^{2}$

Remark $2 \mathrm{P}_{1}=\left[s^{f(d-1)}\right] \cdot\left(\mathbb{Z}_{\frac{s^{f}-1}{\left(d, s^{f}-1\right)}} \cdot \operatorname{PSL}\left(d-1, s^{f}\right) \cdot \mathbb{Z}_{\left(d-1, s^{f}-1\right)}\right) \cong \mathrm{H}_{1} \cdot \mathbb{Z}_{4}$.
The following lemma gives a classification of cubic symmetric graphs of order $4 p$ or $4 p^{2}$ for a prime p.

Lemma 3.4 ([8, Theorem 6.2]) Let Γ be a connected cubic symmetric graph of order $4 p$ or $4 p^{2}$ for a prime p. Then Γ is isomorphic to the 2 -regular hypercube Q_{3} of order 8 , the 2 -regular generalized Petersen graphs $P(8,3)$ or $P(10,7)$ of order 16 or 20 respectively, the 3 -regular dodecahedron of order 20 , or the 3 -regular Coxeter graph C_{28} of order 28.

The next two lemmas give the classification of arc-transitive pentavalent graphs of order $4 p$ or $4 p^{2}$ for a prime p; see [16, Theorem 1.1] and [16, Corollary 1.2].

Lemma 3.5 ([16, Theorem 1.1]) There exist no connected arc-transitive pentavalent graphs of order $4 p$ or $4 p^{2}$ for each prime $p \geq 5$.

Lemma 3.6 ([16, Corollary 1.2]) Let p be an odd prime. Then \mathcal{G}_{36} is the only connected arc-transitive pentavalent graph of order $4 p^{2}$.

The following three lemmas determine the stabilizers of cubic, pentavalent, and heptavalent arc-transitive graphs, respectively.

Lemma 3.7 [24, 26] Let Γ be a connected (G,s)-transitive cubic graph, where $s \geq 1$. Then $s \leq 5$ and the stabilizer G_{α} and $\left|G_{\alpha}\right|$ satisfy Table 4, where $\alpha \in V \Gamma$.

Table 4. The stabilizers of cubic arc-transitive graphs.

s	1	2	3	4	5
G_{α}	\mathbb{Z}_{3}	$\mathrm{~S}_{3}$	D_{12}	$\mathrm{~S}_{4}$	$\mathrm{~S}_{4} \times \mathrm{S}_{2}$
$\left\|G_{\alpha}\right\|$	3	$2 \cdot 3$	$2^{2} \cdot 3$	$2^{3} \cdot 3$	$2^{4} \cdot 3$

Lemma 3.8 ($[11,30]$) Let Γ be a pentavalent (G, s)-transitive graph for some $G \leq$ Aut Γ and $s \geq 1$. Let $v \in V \Gamma$. If G_{v} is soluble, then $\left|G_{v}\right| \mid 80$ and $s \leq 3$. If G_{v} is insoluble, then $\left|G_{v}\right| \mid 2^{9} \cdot 3^{2} \cdot 5$ and $2 \leq s \leq 5$. Furthermore, one of the following holds:
(1) $s=1, G_{v} \cong \mathbb{Z}_{5}, \mathrm{D}_{10}$ or D_{20};
(2) $s=2, G_{v} \cong \mathrm{~F}_{20}, \mathrm{~F}_{20} \times \mathbb{Z}_{2}, \mathrm{~A}_{5}$ or S_{5};
(3) $s=3, G_{v} \cong \mathrm{~F}_{20} \times \mathbb{Z}_{4}, \mathrm{~A}_{4} \times \mathrm{A}_{5},\left(\mathrm{~A}_{4} \times \mathrm{A}_{5}\right): \mathbb{Z}_{2}$ or $\mathrm{S}_{4} \times \mathrm{S}_{5}$;
(4) $s=4, G_{v} \cong \operatorname{ASL}(2,4), \operatorname{AGL}(2,4), \operatorname{AL}(2,4)$ or $\mathrm{AL}(2,4)$;
(5) $s=5, G_{v} \cong \mathbb{Z}_{2}^{6}: \mathrm{L}(2,4)$.

Lemma 3.9 ([12, Theorem 1.1]) Let X be a connected (G, s)-transitive graph of valency 7 for some $G \leq$ Aut X and $s \geq 1$. Let $v \in V X$. Then $s \leq 3$ and one of the following statements holds:
(1) For $s=1, G_{v} \cong \mathbb{Z}_{7}, \mathrm{D}_{14}, F_{21}, \mathrm{D}_{28}$ or $F_{21} \times \mathbb{Z}_{3}$;
(2) For $s=2, G_{v} \cong F_{42}, F_{42} \times \mathbb{Z}_{2}, F_{42} \times \mathbb{Z}_{3}, \operatorname{PSL}(3,2), \mathrm{A}_{7}, \mathrm{~S}_{7}, \mathbb{Z}_{2}^{3} \rtimes \operatorname{SL}(3,2)$ or $\mathbb{Z}_{2}^{4} \rtimes \operatorname{SL}(3,2)$;
(3) For $s=3, G_{v} \cong F_{42} \times \mathbb{Z}_{6}, \operatorname{PSL}(3,2) \times \mathrm{S}_{4}, \mathrm{~A}_{7} \times \mathrm{A}_{6}, \mathrm{~S}_{7} \times \mathrm{S}_{6},\left(\mathrm{~A}_{7} \times \mathrm{A}_{6}\right) \rtimes \mathbb{Z}_{2}, \mathbb{Z}_{2}^{6} \rtimes(\mathrm{SL}(2,2) \times \mathrm{SL}(3,2))$ or $\left[2^{20}\right] \rtimes(\operatorname{SL}(2,2) \times \operatorname{SL}(3,2))$.

Let a and d be positive integers. A prime r is called a primitive prime divisor of $a^{d}-1$ if r divides $a^{d}-1$ but does not divide $a^{i}-1$ for $1 \leq i<d$. The following lemma is a well-known result of Zsigmondy.

Lemma 3.10 ([17, p.508]) For any positive integers a and d, either $a^{d}-1$ has a primitive prime divisor, or $(d, a)=(6,2)$ or $\left(2,2^{m}-1\right)$, where $m \geq 2$.

LIU/Turk J Math

4. Proof of Theorem 1.1

Lemma 4.1 Let Γ be a connected r-valent G-arc-transitive and G-basic graph of order $4 p$ or $4 p^{2}$, where $G \leq A u t \Gamma$, and p, r are odd primes. Then G is almost simple and Γ is T-edge-transitive, where $T=\operatorname{soc}(G)$. Furthermore, $\left(\Gamma,|V \Gamma|\right.$, val $\left.\Gamma, T, T_{\alpha}\right)$ lies in Table 5 , where $\alpha \in V \Gamma$.

Table 5. Prime-valent G-arc-transitive and G-basic graphs of order $4 p$ or $4 p^{2}$.

Γ	$\|V \Gamma\|$	val Γ	T	T_{α}	Remark
\mathcal{C}_{20}	20	3	$\mathrm{~A}_{5}$	\mathbb{Z}_{3}	
\mathcal{C}_{12}	12	5	$\mathrm{~A}_{5}$	\mathbb{Z}_{5}	
\mathcal{G}_{36}	36	5	$\mathrm{~A}_{6}$	D_{10}	
K_{12}	12	11	M_{11}	$\operatorname{PSL}(2,11)$	
K_{12}	12	11	M_{12}	M_{11}	
$K_{4 p}$	$4 p$	$4 p-1$	$\mathrm{~A}_{4 p}$	$\mathrm{~A}_{4 p-1}$	
$K_{4 p}$	$4 p$	$4 p-1$	$\operatorname{PSL}\left(d, s^{f}\right)$	P_{1}	
C_{28}	28	3	$\operatorname{PSL}(2,7)$	D_{6}	
\mathcal{C}_{36}	36	7	$\operatorname{PSL}(2,8)$	D_{14}	
$P(10,7)$	20	3	$\mathrm{~A}_{5}$	$\mathrm{~S}_{3}$	
$K_{2 p^{n}, 2 p^{n}}-2 p^{n} K_{2}$	$4 p^{n}$	$2 p^{n}-1$	$\operatorname{PSL}\left(d, s^{f}\right)$	P_{1}	$n=1,2$
$K_{2 p^{n}, 2 p^{n}}-2 p^{n} K_{2}$	$4 p^{n}$	$2 p^{n}-1$	$\mathrm{~A}_{2 p^{n}}$	$\mathrm{~A}_{2 p^{n}-1}$	$n=1,2$
C_{28}	28	3	$\operatorname{PSL}(2,7)$	D_{12}	

Proof Let N be a minimal normal subgroup of G. Then N has at most two orbits on $V \Gamma$. Note that the length of an N-orbit is not a prime power and the order of a nonabelian simple group has at least three distinct prime divisors. Then $N \cong T^{k}$ with T a nonabelian simple group and integer $k \geq 1$. By Lemma 3.1, $r\left|\left|N_{\alpha}\right|\right.$ for each $\alpha \in V \Gamma$. Furthermore, it is easy to obtain that $\left|N_{\alpha}\right|_{r}=r$. Suppose that $k \geq 2$. Then, for each $i \in\{1,2, \ldots, k\}$, we have $\left|T_{i}:\left(T_{i}\right)_{\alpha}\right|\left|\left|N: N_{\alpha}\right|=2 p, 2 p^{2}, 4 p\right.$, or $4 p^{2}$. Since $\left.\left(T_{i}\right)_{\alpha} \neq 1, r\right|\left|\left(T_{i}\right)_{\alpha}\right|_{r}$. It follows that $r^{k}| |\left(T_{1}\right)_{\alpha} \times \cdots \times\left(T_{k}\right)_{\alpha} \mid$, which is a contradiction as $\left(T_{1}\right)_{\alpha} \times \cdots \times\left(T_{k}\right)_{\alpha} \leq N_{\alpha}$ and $\left|N_{\alpha}\right|_{r}=r$. Thus, $d=1$ and $N=T \unlhd G$. It follows that G is almost simple and Γ is T-edge-transitive. Thus, $T \leq G \leq T . O$, where $O \cong \operatorname{Out}(T)$. Note that T has a subgroup of index $2 p, 2 p^{2}, 4 p$, or $4 p^{2}$, so T is known by Lemmas 3.2 and 3.3.

First, we analyze all the candidates in Table 3. In this case, Γ is T-arc-transitive. It follows that T_{α} has a subgroup $T_{\alpha \beta}$ with prime index r, where $\beta \in \Gamma(\alpha)$.

Suppose that $\left(T, T_{\alpha}\right) \cong\left(\mathrm{J}_{2}, \operatorname{PSU}(3,3)\right)$. Since $\operatorname{PSU}(3,3)$ has no subgroups with a prime index by Conway et al. [3], there exist no graphs Γ in this subcase. Similarly, we can exclude the subcase that $\left(T, T_{\alpha}\right) \cong\left(\mathrm{HS}, \mathrm{M}_{22}\right)$. Suppose that $\left(T, T_{\alpha}\right) \cong\left(\mathrm{A}_{8}, \mathrm{~S}_{6}\right)$ or $\left(\operatorname{PSp}(4,3), \mathrm{S}_{6}\right)$. Since $T_{\alpha} \cong \mathrm{S}_{6}$ has no subgroups with an odd prime index by Magma [2], there exist no graphs Γ in this subcase. Similarly, we can exclude the subcase that $\left(T, T_{\alpha}\right) \cong\left(\operatorname{PSp}(6,2), \mathrm{S}_{8}\right)$.

Suppose that $\left(T, T_{\alpha}\right) \cong\left(\mathrm{A}_{9}, \mathrm{~S}_{7}\right)$. Then $|V \Gamma|=\left|T: T_{\alpha}\right|=36$ and $\operatorname{val}(\Gamma)=7$, but by Example 2.4, there exist no graphs Γ in this subcase.

Suppose that $\left(T, T_{\alpha}\right) \cong\left(\mathrm{A}_{5}, \mathbb{Z}_{3}\right)$. Then $|V \Gamma|=\left|T: T_{\alpha}\right|=20$ and $\operatorname{val}(\Gamma)=3$. By Example $2.4, \Gamma \cong \mathcal{C}_{20}$. Suppose that $\left(T, T_{\alpha}\right) \cong\left(\mathrm{A}_{5}, \mathbb{Z}_{5}\right)$. Then $|V \Gamma|=12$ and $\operatorname{val}(\Gamma)=5$. By Example $2.4, \Gamma \cong \mathcal{C}_{12}$.

Suppose that $\left(T, T_{\alpha}\right) \cong\left(\mathrm{A}_{6}, \mathrm{D}_{10}\right)$. Then $|V \Gamma|=36$, and $\operatorname{val}(\Gamma)=5$. By Lemma 3.6, $\Gamma \cong \mathcal{G}_{36}$. Suppose that $\left(T, T_{\alpha}\right) \cong\left(\operatorname{PSL}(2,8), \mathrm{D}_{18}\right)$. Then $|V \Gamma|=28$, and $\operatorname{val}(\Gamma)=3$, which is not possible as $\left|T_{\alpha}\right| \mid 48$ for arc-transitive cubic graphs.

Suppose that $\left(T, T_{\alpha}\right) \cong\left(\mathrm{M}_{11}, \operatorname{PSL}(2,11)\right)$ or $\left(\mathrm{M}_{12}, \mathrm{M}_{11}\right)$. Then $|V \Gamma|=12$ and $\operatorname{val}(\Gamma)=11$. It follows that $\Gamma \cong K_{12}$.

Suppose that $\left(T, T_{\alpha}\right) \cong(\operatorname{PSU}(3,2), \mathrm{GU}(2,2))$. Then $|V \Gamma|=12$ and $\operatorname{val}(\Gamma)=3$. By Lemma 3.4, there exist no graphs Γ in this subcase. Suppose that $\left(T, T_{\alpha}\right) \cong(\operatorname{PSU}(3,3)$,
$\operatorname{PSL}(2,7))$. Then $|V \Gamma|=36$ and $\operatorname{val}(\Gamma)=7$. By Example 2.4, there exist no graphs Γ in this subcase.
Suppose that $\left(T, T_{\alpha}\right) \cong\left(\mathrm{P} \Omega(5,3), \mathbb{Z}_{2} \times \mathrm{P} \Omega^{-}(4,3)\right)$. Then $|V \Gamma|=\left|T: T_{\alpha}\right|=36$ and $\operatorname{val}(\Gamma)=5$, but by Lemma 3.8, arc-transitive pentavalent graphs have no such stabilizers, so there exist no graphs Γ in this subcase.

Suppose that $\left(T, T_{\alpha}\right) \cong\left(\operatorname{PSL}(2,16), \mathrm{A}_{5}\right)$. Then $|V \Gamma|=68$ and $\operatorname{val}(\Gamma)=5$. By Lemma 3.5, there exist no graphs Γ in this subcase. Suppose that $\left(T, T_{\alpha}\right) \cong\left(\mathrm{A}_{4 p}, \mathrm{~A}_{4 p-1}\right)$. Since $\mathrm{A}_{4 p}$ is 2 -transitive on $V \Gamma, \Gamma \cong K_{4 p}$ is the complete graph with $\operatorname{val}(\Gamma)=4 p-1$ a prime. Note that $4 p^{2}-1$ is not a prime, so we can exclude the subcase that $\left(T, T_{\alpha}\right) \cong\left(\mathrm{A}_{4 p^{2}}, \mathrm{~A}_{4 p^{2}-1}\right)$.

Suppose that $\left(T, T_{\alpha}\right) \cong\left(\mathrm{A}_{6}, 3^{2}: 2\right)$. Then $|V \Gamma|=20$, and $\operatorname{val}(\Gamma)=3$, which is not possible as $\left|T_{\alpha}\right| \mid 48$ for arc-transitive cubic graphs.

Suppose that $\left(T, T_{\alpha}\right) \cong\left(\operatorname{PSp}(6,2), \mathrm{P}^{-}(6,2)\right)$ or $(\operatorname{PSp}(6,2), \operatorname{PSU}(4,2): 2)$. Then $|V \Gamma|=28$ and $\operatorname{val}(\Gamma)=3$ or 5 , which is not possible as $\left|T_{\alpha}\right| \mid 48$ for arc-transitive cubic graphs, and arc-transitive pentavalent graphs have no such stabilizers.

Suppose that $\left(T, T_{\alpha}\right) \cong\left(\operatorname{PSL}\left(d, s^{f}\right), \mathrm{P}_{1}\right)$. Since T is 2 -transitive on $V \Gamma, \Gamma \cong K_{4 p}$ is the complete graph with $r=4 p-1$ a odd prime.

Finally, we consider the case where $\left(T, T_{\alpha}\right) \cong\left(\operatorname{PSL}\left(d, 2^{f}\right), \mathrm{H}_{1}\right)$. Note that $\frac{2^{f d}-1}{2^{f}-1}=p$ or p^{2}. By easy calculation, d is a prime. Assume $d \geq 3$. If $\left(d, 2^{f}\right)=(3,2)$, then $T=\operatorname{PSL}(3,2) \cong \operatorname{PSL}(2,7), T_{\alpha}=\mathrm{D}_{6}$, and $|V \Gamma|=28$. Since r divides $\left|T_{\alpha}\right|, r=3$. By Lemma 3.4 and Example 2.2, $\Gamma \cong \mathrm{C}_{28}$.

Suppose that $d=3$ and $f \geq 2$. Let t be an odd prime divisor of $2^{f}+1$. As $\left(2^{f}-1,2^{f}+1\right)=1$, $\left(t, 2^{f}\left(2^{f}-1\right)\right)=1$. It follows that $\left(t,\left|\mathrm{P}_{1}\right| /\left|\operatorname{PSL}\left(2,2^{f}\right)\right|\right)=1$. Since $2^{f}+1$ divides $\left|\mathrm{H}_{1}\right|$, and H_{1} and $\mathrm{H}_{1}^{\Gamma(\alpha)}$ have the same prime divisors, $t\left|\left|\mathrm{H}_{1}^{\Gamma(\alpha)}\right|\right.$. It follows that $\operatorname{PSL}\left(2,2^{f}\right)$ is a nonabelian simple compositor factor of $\mathrm{H}_{1}^{\Gamma(\alpha)}$. As $\mathrm{H}_{1}^{\Gamma(\alpha)}=T_{\alpha}^{\Gamma(\alpha)}$ is a transitive permutation group of prime degree r, either $\mathrm{H}_{1}^{\Gamma(\alpha)} \leq \mathbb{Z}_{r}: \mathbb{Z}_{r-1}$ is affine or $H^{\Gamma(\alpha)}$ is almost simple, and we further conclude that $\operatorname{soc}\left(\mathrm{H}_{1}^{\Gamma(\alpha)}\right)=\operatorname{PSL}\left(2,2^{f}\right)$ is transitive. By checking the index of maximal subgroups of $\operatorname{PSL}\left(2,2^{f}\right)$ and [3], either $2^{f}=11$ and $r=11$, or $2^{f}+1=r$. The former case is impossible as $2^{f} \neq 11$. For the latter case, since $2^{f}+1$ is a prime, $2^{f}=2^{2^{m}}$ for some positive integer m. Then $p^{n}=2^{2 f}+2^{f}+1=\left(2^{f}+1\right)^{2}-2^{f}=\left(2^{2^{m}}-2^{2^{m-1}}+1\right)\left(2^{2^{m}}+2^{2^{m-1}}+1\right)$, where $n=1$ or 2 , but by easy calculation, there exist no p satisfying the above condition.

Suppose $d \geq 4$. Note that $\left(2^{f}\right)^{d-1}-1$ divides $\left|\mathrm{H}_{1}\right|$. If $\left(d, 2^{f}\right)=(7,2)$, then 7 divides $\left|\mathrm{H}_{1}\right|$ and does not divide $\left|\mathrm{P}_{1}\right| /\left|\mathrm{PSL}\left(d-1,2^{f}\right)\right|$; if $\left(d, 2^{f}\right) \neq(7,2)$, then $\left(2^{f}\right)^{d-1}-1$ has a primitive prime divisor s by Lemma 3.10, and s does not divide $\left|\mathrm{P}_{1}\right| /\left|\operatorname{PSL}\left(d-1,2^{f}\right)\right|$. Since H_{1} and $\mathrm{H}_{1}^{\Gamma(\alpha)}$ have the same prime divisors, we conclude that $\operatorname{PSL}(d-1, r)$ is a nonabelian simple compositor factor of $\mathrm{H}_{1}^{\Gamma(\alpha)}$, and hence $\mathrm{H}_{1}^{\Gamma(\alpha)}$ is an almost simple
group with socle $\operatorname{PSL}\left(d-1,2^{f}\right)$. Thus, $\frac{\left(2^{f}\right)^{d-1}-1}{2^{f}-1}=r$. It follows that $d-1$ is a prime. Now both d and $d-1$ are primes, implying $d=3$, also yielding a contradiction.

Suppose $d=2$. Note that $2^{f}+1=p$ or p^{2}. If $2^{f}=4$, then $\operatorname{PSL}\left(2,2^{f}\right)=\operatorname{PSL}(2,4) \cong \mathrm{A}_{5}, \mathrm{P}_{1} \cong \mathbb{Z}_{2}^{2}: \mathbb{Z}_{3}$, and $\mathrm{H}_{1} \cong \mathbb{Z}_{3}$. By previous discussion, $\Gamma \cong \mathcal{C}_{20}$. If $2^{f}=8$, then $\operatorname{PSL}\left(2,2^{f}\right)=\operatorname{PSL}(2,8) \cong \mathrm{A}_{5}, \mathrm{P}_{1} \cong \mathbb{Z}_{2}^{3}: \mathbb{Z}_{7}$ and $\mathrm{H}_{1} \cong \mathrm{D}_{14}$. It follows that $|V \Gamma|=36$ and $\operatorname{val}(\Gamma)=7$. By Example 2.4, $\Gamma \cong \mathcal{C}_{36}$. If $2^{f} \geq 16$, then $\mathrm{P}_{1} \cong \mathbb{Z}_{2}^{f}: \mathbb{Z}_{2^{f-1}}$ has no subgroups with index 4 , leading to a contradiction.

Next, we analyze all the candidates in Table 2. In this case, Γ is T-edge-transitive but not T-arctransitive.

Suppose that $\left(T, T_{\alpha}\right) \cong\left(\mathrm{A}_{5}, \mathrm{~S}_{3}\right)$. Then $G \cong \mathrm{~S}_{5},|V \Gamma|=2\left|T: T_{\alpha}\right|=20$, and $\operatorname{val}(\Gamma)=3$. It follows that $G_{\alpha} \cong \mathrm{S}_{3}$. By Lemma 3.4 and Example $2.4, \Gamma \cong P(10,7)$. Suppose that $\left(T, T_{\alpha}\right) \cong\left(\mathrm{M}_{11}, \mathrm{~A}_{6}\right)$. Then $G \cong \mathrm{M}_{11}$, a contradiction. Suppose that $\left(T, T_{\alpha}\right) \cong\left(\mathrm{M}_{22}, \operatorname{PSL}(3,4)\right)$. Then $G \cong \mathrm{M}_{22} \cdot \mathbb{Z}_{2},|V \Gamma|=2\left|T: T_{\alpha}\right|=44$, and $\operatorname{val}(\Gamma)=3,5$, or 7 . It follows that $|\operatorname{PSL}(3,4)|\left|\left|G_{\alpha}\right|\right.$. However, cubic, pentavalent, and heptavalent arc-transitive graphs have no stabilizers of order divided by $|\operatorname{PSL}(3,4)|=20160$ (see Lemmas 3.7-3.9), a contradiction. Similarly, we can exclude the case where $\left(T, T_{\alpha}\right) \cong\left(\operatorname{PSU}(3,5), \mathrm{A}_{7}\right)$.

Suppose that $\left(T, T_{\alpha}\right) \cong\left(\operatorname{PSL}\left(d, s^{f}\right), \mathrm{P}_{1}\right)$, or $\left(\mathrm{A}_{2 p^{n}}, \mathrm{~A}_{2 p^{n}-1}\right)$. Then $\Gamma \cong K_{2 p^{n}, 2 p^{n}-2 p^{n}} K_{2}$ with $r=2 p^{n}-1$ an odd prime, where $n=1$ or 2 .

Suppose that $\left(T, T_{\alpha}\right) \cong\left(\operatorname{PSL}\left(d, 2^{f}\right), \mathrm{H}_{1}\right)$. Then $\frac{2^{f d}-1}{2^{f}-1}=p$ or p^{2}. By easy calculation, d is a prime. If $d=2$, then $\mathrm{P}_{1} \cong \mathbb{Z}_{2}^{f}: \mathbb{Z}_{2^{f}-1}$ has no subgroups with index 2 , leading to a contradiction. If $d=3$ and $2^{f}=2$, then $G=\operatorname{PGL}(2,7),|V \Gamma|=28$, and $G_{\alpha} \cong \mathrm{D}_{12}$. By Example 2.2, $\Gamma \cong \mathrm{C}_{28}$. For the remaining subcases, note that $T<G \leq T$.Out (T), so we easily know that there exist no Γ in these subcases by the discussion of the previous paragraph.

Combining Lemma 4.1, and Examples 2.1-2.4, we complete the proof of Theorem 1.1.

References

[1] Biggs N. Three remarkable graphs. Canad J Math 1973; 25: 397-411.
[2] Bosma W, Cannon C, Playoust C. The Magma algebra system I: The user languages. J Symbolic Comput 2007; 24: 235-265.
[3] Conway JH, Curtis RT, Noton SP, Parker RA, Wilson RA. Atlas of Finite Groups. Oxford, UK: Clarendon Press, 1985.
[4] Ding SY, Ling B, Lou BG, Pan JM. Arc-transitive pentavalent graphs of square-free order. Graphs Combin 2016; 32: 2355-2366.
[5] Feng YQ, Kwak JH. Classifying cubic symmetric graphs of order $10 p$ or $10 p^{2}$. Sci China Ser A 2006; 49: 300-319.
[6] Feng YQ, Kwak JH. Cubic symmetric graphs of order twice an odd prime power. J Aust Math Soc 2006; 81: 153-164.
[7] Feng YQ, Kwak JH. Cubic s-regular graphs of order $2 p^{3}$. J Graph Theory 2006; 52: 341-352.
[8] Feng YQ, Kwak JH. Cubic symmetric graphs of order a small number times a prime or a prime square. J Combin Theory Ser B 2007; 97: 627-646.
[9] Feng YQ, Kwak JH, Wang KS. Classifying cubic symmetric graphs of order $8 p$ or $8 p^{2}$. European J Combin 2005; 26: 1033-1052.
[10] Feng YQ, Zhou JX, Li YT. Pentavalent symmetric graphs of order twice a prime power. Discrete Math 2016; 339: 2640-2651.

LIU/Turk J Math

[11] Guo ST, Feng YQ. A note on pentavalent s-transitive graphs. Discrete Math 2012; 312: 2214-2216.
[12] Guo ST, Li YT, Hua XH. (G, s)-transitive graphs of valency 7. Algebra Colloq 2016; 23; 493-500.
[13] Guo ST, Shi JT, Zhang ZJ. Heptavalent symmetric graphs of order 4p. South Asian Journal of Mathematics 2011; 1: 131-136.
[14] Guo ST, Zhou JX, Feng YQ. Pentavalent symmetric graphs of order 12p. Electronic J Combin 2011; 18; P233.
[15] Hua XH, Feng YQ, Lee J. Pentavalent symmetric graphs of order 2pq. Discrete Math 2011; 311: 2259-2267.
[16] Huang ZH, Li CH, Pan JM. Pentavalent symmetric graphs of order four times a prime power. Ars Combinatoria (in press).
[17] Huppert B. Endliche Gruppen I. Berlin, Germany: Springer-Verlag, 1967 (in German).
[18] Li CH, Li XH. On permutation groups of degree of product of two prime-powers. Commun Algebra 2014; 42: 4722-4743.
[19] Li CH, Lu ZP, Wang GX. The vertex-transitive and edge-transitive tetravalent graphs of squarefree order. J Algebr Combin 2015; 42: 25-50.
[20] Ling B, Wu CX, Lou BG. Pentavalent symmetric graphs of order 30p. Bull Aust Math Soc 2014; 90: 353-36.
[21] Oh JM. A classification of cubic s-regular graphs of order 14p. Discrete Math 2009: 309: 2721-2726.
[22] Oh JM. A classification of cubic s-regular graphs of order 16p. Discrete Math 2009; 309: 3150-3155.
[23] Pan JM, Liu Z, Yu XF. Pentavalent symmetric graphs of order twice a prime square. Algebra Colloq 2015; 22: 383-394.
[24] Tutte WT. A family of cubical graphs. Proc Cambridge Philos Soc 1947; 43: 459-474.
[25] Tutte WT. A non-Hamiltonian graph. Canad Math Bull 1960; 3: 1-5.
[26] Weiss RM. Über symmetrische Graphen vom Grad fünf. J Combin Theory Ser B 1974; 17: 59-64 (in German).
[27] Yang DW, Feng YQ. Pentavalent symmetric graphs of order $2 p^{3}$. Sci China Math 2016; 59: 1851-1868.
[28] Zhou JX. Tetravalent s-transitive graphs of order 4p. Discrete Math 2009; 309: 6081-6086.
[29] Zhou JX, Feng YQ. Tetravalent s-transitive graphs of order twice a prime power. J Aust Math Soc 2010; 88: 277-288.
[30] Zhou JX, Feng YQ. On symmetric graphs of valency five. Discrete Math 2010; 310: 1725-1732.

[^0]: *Correspondence: hailinliuqp@163.com
 2010 AMS Mathematics Subject Classification: 20B25, 05C25

