

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/ Research Article Turk J Math (2018) 42: 2279 – 2287 © TÜBİTAK doi:10.3906/mat-1711-35

Prime-valent arc-transitive basic graphs with order 4p or $4p^2$

Hailin LIU*

School of Science, Jiangxi University of Science and Technology, Ganzhou, P.R. China

Received: 09.11.2017 • Accepted/Published Online: 20.06.2018	•	Final Version: 27.09.2018
--	---	----------------------------------

Abstract: A graph Γ is called *G*-basic if *G* is quasiprimitive or bi-quasiprimitive on the vertex set of Γ , where $G \leq \operatorname{Aut}\Gamma$. In this paper, we complete the classification of *r*-valent arc-transitive basic graphs with order 4p or $4p^2$, where *p* and *r* are odd primes.

Key words: Symmetric graph, basic graph, arc-transitive graph

1. Introduction

Throughout the paper, graphs considered are simple, connected, and undirected. For a graph Γ , we denote the valency, vertex set, edge set, arc set, and full automorphism group of Γ by val(Γ), $V\Gamma$, $E\Gamma$, $A\Gamma$, and Aut Γ , respectively. Γ is called *G*-vertex-transitive, *G*-edge-transitive, or *G*-arc-transitive if $G \leq Aut\Gamma$ is transitive on $V\Gamma$, $E\Gamma$, or $A\Gamma$; in particular, if $G = Aut\Gamma$, then Γ is simply called vertex-transitive, edge-transitive, or arc-transitive. As we all know, a graph Γ is *G*-arc-transitive if and only if *G* is vertex-transitive and the vertex stabilizer G_v of $v \in V\Gamma$ in *G* is transitive on the neighborhood $\Gamma(v)$ of v. A permutation group *G* on a set Ω is called quasiprimitive if each nontrivial normal subgroup of *G* is transitive on Ω ; *G* is called bi-quasiprimitive if each nontrivial normal subgroup of *G* is quasiprimitive or bi-quasiprimitive on $V\Gamma$ for some $G \leq Aut\Gamma$.

For a group G and a subgroup H of G, we use Z(G), soc(G), $C_G(H)$, and $N_G(H)$ to denote the center, the socle of G, the centralizer, and the normalizer of H in G, respectively. For two groups M and N, we use M:N and $M \times N$ to denote the semidirect product and direct product of M by N. For a positive integer n and a prime divisor $r \mid n$, we denote the largest r-power that divides n by n_r , i.e. the r-part of n. We denote the dihedral group of order 2n by D_{2n} , the cyclic group of order n by \mathbb{Z}_n , and the alternating group and the symmetric group of degree n by A_n and S_n , respectively.

In the literature, the classification of arc-transitive graphs of small valency has been extensively studied; refer to [4-7, 9, 10, 15, 19-23, 27-29] and references therein. In particular, cubic and pentavalent arc-transitive graphs of order 4p or $4p^2$ are classified in [13, 16], and heptavalent arc-transitive graphs of order 4p are classified in [8], where p is a prime. The purpose of this paper is to characterize prime-valent arc-transitive basic graphs with order four times a prime or a prime square. The main result of this paper is the following theorem.

²⁰¹⁰ AMS Mathematics Subject Classification: 20B25, 05C25

^{*}Correspondence: hailinliuqp@163.com

Theorem 1.1 Let Γ be a connected r-valent G-arc-transitive and G-basic graph with order 4p or $4p^2$, where $G \leq \operatorname{Aut}\Gamma$, and p, r are odd primes. Then G is almost simple and Γ is T-edge-transitive, where $T = \operatorname{soc}(G)$. Furthermore, $(\Gamma, |V\Gamma|, \operatorname{val}(\Gamma), \operatorname{Aut}\Gamma, (\operatorname{Aut}\Gamma)_{\alpha})$ lies in Table 1, where $\alpha \in V\Gamma$.

Row	Γ	$ V\Gamma $	$val(\Gamma)$	$Aut\Gamma$	$(Aut\Gamma)_\alpha$	Remark
1	\mathcal{C}_{20}	20	3	$A_5 \times \mathbb{Z}_2$	S_3	$Example \ 2.4 (1)$
2	\mathcal{C}_{12}	12	5	$A_5 \times \mathbb{Z}_2$	D_{10}	$Example \ 2.4 \ (2)$
3	\mathcal{G}_{36}	36	5	A ₆	D_{10}	Example 2.1
4	K_{4p}	4p	4p - 1	S_{4p}	S_{4p-1}	
5	C_{28}	28	3	PGL(2,7)	D_{12}	Example 2.2
6	P(10,7)	20	3	$S_5 \times \mathbb{Z}_2$	D_{12}	Example 2.3
7	\mathcal{C}_{36}	36	7	PSL(2,8)	D ₁₄	$Example \ \underline{2.4} \ (5)$
8	$K_{2p^n,2p^n} - 2p^n K_2$	$4p^n$	$2p^{n} - 1$	$S_{2p^n} \times \mathbb{Z}_2$	\mathbf{S}_{2p^n-1}	n = 1, 2

Table 1. Prime-valent arc-transitive basic graphs of order 4p or $4p^2$.

2. Examples

In this section, we give some examples of connected r-valent arc-transitive graphs of order 4p or $4p^2$ that appear in Theorem 1.1, where p and r are odd primes.

Example 2.1 Let $G = A_6$. Take a Sylow 5-subgroup, say P, of G, and set $H = N_G(P)$. From Conway et al. [3] it is known that $H \cong D_{10}$. Note that all involutions in G are conjugates of each other. For any involution $x \in H$, we have $C_G(x) \cong D_8$. Take an element g of order 4 in $C_G(x)$. Denote $\mathcal{G}_{36} = \mathsf{Cos}(G, H, HgH)$.

By [14], we know that \mathcal{G}_{36} is a pentavalent symmetric graph of order 36 and $\operatorname{Aut}\mathcal{G}_{36} \cong A_6$.

Example 2.2 We introduce a graph of order 28 that was discovered by Coxeter and investigated by Tutte [25]. Denote this graph by C_{28} . For its construction, see Biggs [1, Fig. 2(ii)]. By Biggs [1], C_{28} is 3-regular and Aut $C_{28} \cong PGL(2,7)$.

Example 2.3 ([8]) Let n = 10 and $3 \in \mathbb{Z}_{10} \setminus \{0\}$. The generalized Petersen graph P(10,3) is the graph with vertex-set $\{x_i, y_i | i \in \mathbb{Z}_{10}\}$ and edge set $\{\{x_i, x_{i+1}\}, \{x_i, y_i\}, \{y_i, y_{i+k}\} | i \in \mathbb{Z}_{10}\}$.

By [8], we know that P(10,7) is a cubic symmetric graph of order 20.

By using the Magma program [2], we have the following examples.

- **Example 2.4** (1) There is a unique connected cubic graph of order 20 that admits A_5 as an arc-transitive automorphism group. This graph is denoted by C_{20} . Moreover, $AutC_{20} \cong A_5 \times \mathbb{Z}_2$.
 - (2) There is a unique connected pentavalent graph of order 12 that admits A_5 as an arc-transitive automorphism group. This graph is denoted by C_{12} . Moreover, $AutC_{12} \cong A_5 \times \mathbb{Z}_2$.

- (3) There exist no connected heptavalent graphs of order 36 that admit PSU(3,3) as an arc-transitive automorphism group.
- (4) There is a unique connected cubic graph of order 20 that admits S_5 as an arc-transitive automorphism group. By Example 2.2 and Lemma 3.4, we know that the graph is isomorphic to P(10,7). Moreover, $AutP(10,7) \cong S_5 \times \mathbb{Z}_2$.
- (5) There is a unique connected heptavalent graph of order 36 that admits PSL(2,8) as an arc-transitive automorphism group. This graph is denoted by C_{36} . Moreover, $AutC_{36} \cong PSL(2,8)$.
- (6) There exist no connected heptavalent graphs of order 36 that admit A_9 as an arc-transitive automorphism group.

3. Preliminary results

In this section, we give some necessary preliminary results.

We now give a result that will be useful.

Lemma 3.1 Let r and p be odd primes, and let Γ be an r-valent G-arc-transitive graph of order 4p or $4p^2$ for some $G \leq \operatorname{Aut}\Gamma$. Let N be an insoluble normal subgroup of G. Then $r \mid |N_v^{\Gamma(v)}|$ for each $v \in V\Gamma$.

Proof For each $v \in V\Gamma$, since $1 \neq N_v \triangleleft G_v$ and G is transitive on $V\Gamma$, we have $N_v^{\Gamma(v)} \neq 1$ by connectivity of Γ . Since $G_v^{\Gamma(v)}$ acts primitively on $\Gamma(v)$ and $N_v^{\Gamma(v)} \leq G_v^{\Gamma(v)}$, it follows that $r \mid |N_v^{\Gamma(v)}|$.

The following two lemmas may be deduced from the classification of permutation groups of the degree of a product of two prime powers (refer to [18]).

Lemma 3.2 Let T be a nonabelian simple group that has a subgroup H of index 2p or $2p^2$ with p a prime. Then T, H, |H|, and |T:H| are as in Table 2.

T	H	H	T:H	Remark
A_5	S_3	$2 \cdot 3$	10	
A_{2p^n}	\mathbf{A}_{2p^n-1}	$\frac{1}{2}(2p^n-1)!$	$2p^n$	n = 1, 2
$\mathrm{PSL}(d, s^f)$	P_1		$\frac{s^{fd}-1}{s^f-1} = 2p^n$	n = 1, 2
$\mathrm{PSL}(d, 2^f)$	H_1		$2\frac{2^{fd}-1}{2^f-1} = 2p^n$	n = 1, 2
M_{11}	A_6	$2^3 \cdot 3^2 \cdot 5$	22	
M ₂₂	PSL(3,4)	$2^6 \cdot 3^2 \cdot 5 \cdot 7$	22	
PSU(3,5)	A_7	$2^3 \cdot 3^2 \cdot 5 \cdot 7$	50	

Table 2. Nonabelian simple groups with a subgroup of index 2p or $2p^2$.

Remark 1
$$P_1 = [s^{f(d-1)}] \cdot (\mathbb{Z}_{\frac{sf-1}{(d,sf-1)}} \cdot PSL(d-1,s^f) \cdot \mathbb{Z}_{(d-1,sf-1)}) \cong H_1 \cdot \mathbb{Z}_2$$

Lemma 3.3 Let T be a nonabelian simple group with a subgroup X of index 4p or $4p^2$, where p is a prime. Then X is isomorphic to H or K, and T, K, |K|, H, |H|, and |T:X| are as in Table 3, where K is a maximal subgroup of T but H is not a maximal subgroup of T.

Т	K	K	H	H	T:X
A ₅			\mathbb{Z}_3	3	$4 \cdot 5$
			\mathbb{Z}_5	5	$4 \cdot 3$
A ₆	D ₁₀	$2 \cdot 5$			$4 \cdot 3^2$
			$3^2:2$	$3^2 \cdot 2$	$4 \cdot 5$
A ₈	S_6	$2^4 \cdot 3^2 \cdot 5$			$4 \cdot 7$
A ₉			S ₇	$2^4 \cdot 3^2 \cdot 5 \cdot 7$	$4 \cdot 3^2$
A_{4p^n}	A_{4p^n-1}	$\frac{1}{2}(4p^n-1)!$			$4p^n, n = 1, 2$
M ₁₁	PSL(2, 11)	$2^2 \cdot 3 \cdot 5 \cdot 11$			$4 \cdot 3$
M ₁₂	M ₁₁	$2^4 \cdot 3^2 \cdot 5 \cdot 11$			$4 \cdot 3$
J_2	PSU(3,3)	$2^5 \cdot 3^3 \cdot 7$			$4 \cdot 5^2$
HS	M ₂₂	$2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$			$4 \cdot 5^2$
PSL(2,8)	D ₁₈	$2 \cdot 3^2$			$4 \cdot 7$
PSL(2, 16)	A ₅	$2^2 \cdot 3 \cdot 5$			$4 \cdot 17$
$\operatorname{PSL}(d, s^f)$	P ₁				$\frac{s^{fd}-1}{s^f-1} = 4p^n, n = 1, 2$
$\operatorname{PSL}(d, 2^f)$			H ₁		$4\frac{2^{fd}-1}{2^f-1} = 4p^n, n = 1, 2$
PSU(3,2)	$\mathrm{GU}(2,2)$	$2 \cdot 3^2$			$4 \cdot 3$
PSU(3,3)	PSL(2,7)	$2^3 \cdot 3 \cdot 7$			$4 \cdot 3^2$
PSp(4,3)	S_6	$2^4 \cdot 3^2 \cdot 5$			$4 \cdot 3^2$
PSp(6,2)	PSU(4,2):2	$2^7 \cdot 3^4 \cdot 5$			$4 \cdot 7$
	\mathbf{S}_{8}	$2^7 \cdot 3^2 \cdot 5 \cdot 7$			$4 \cdot 3^2$
	$P\Omega^{-}(6,2)$	$2^7 \cdot 3^4 \cdot 5$			$4 \cdot 7$
$P\Omega(5,3)$	$\mathbb{Z}_2 \times \mathrm{P}\Omega^-(4,3)$	$2^4 \cdot 3^2 \cdot 5$			$4 \cdot 3^2$

Table 3. Nonabelian simple groups with a subgroup of index 4p or $4p^2$.

Remark 2 $P_1 = [s^{f(d-1)}] \cdot (\mathbb{Z}_{\frac{s^f-1}{(d,s^f-1)}} \cdot \operatorname{PSL}(d-1,s^f) \cdot \mathbb{Z}_{(d-1,s^f-1)}) \cong H_1 \cdot \mathbb{Z}_4.$

The following lemma gives a classification of cubic symmetric graphs of order 4p or $4p^2$ for a prime p.

Lemma 3.4 ([8, Theorem 6.2]) Let Γ be a connected cubic symmetric graph of order 4p or 4p² for a prime p. Then Γ is isomorphic to the 2-regular hypercube Q_3 of order 8, the 2-regular generalized Petersen graphs P(8,3) or P(10,7) of order 16 or 20 respectively, the 3-regular dodecahedron of order 20, or the 3-regular Coxeter graph C_{28} of order 28.

The next two lemmas give the classification of arc-transitive pentavalent graphs of order 4p or $4p^2$ for a prime p; see [16, Theorem 1.1] and [16, Corollary 1.2].

Lemma 3.5 ([16, Theorem 1.1]) There exist no connected arc-transitive pentavalent graphs of order 4p or $4p^2$ for each prime $p \geq 5$.

Lemma 3.6 ([16, Corollary 1.2]) Let p be an odd prime. Then \mathcal{G}_{36} is the only connected arc-transitive pentavalent graph of order $4p^2$.

The following three lemmas determine the stabilizers of cubic, pentavalent, and heptavalent arc-transitive graphs, respectively.

Lemma 3.7 [24, 26] Let Γ be a connected (G, s)-transitive cubic graph, where $s \ge 1$. Then $s \le 5$ and the stabilizer G_{α} and $|G_{\alpha}|$ satisfy Table 4, where $\alpha \in V\Gamma$.

23 s1 4 5 G_{α} \mathbb{Z}_3 S_3 D_{12} S_4 $S_4 \times S_2$ $2 \cdot 3$ $2^2 \cdot 3$ $2^3 \cdot 3$ $2^4 \cdot 3$ $|G_{\alpha}|$ 3

Table 4. The stabilizers of cubic arc-transitive graphs.

Lemma 3.8 ([11, 30]) Let Γ be a pentavalent (G, s)-transitive graph for some $G \leq \operatorname{Aut}\Gamma$ and $s \geq 1$. Let $v \in V\Gamma$. If G_v is soluble, then $|G_v| \mid 80$ and $s \leq 3$. If G_v is insoluble, then $|G_v| \mid 2^9 \cdot 3^2 \cdot 5$ and $2 \leq s \leq 5$. Furthermore, one of the following holds:

- (1) s = 1, $G_v \cong \mathbb{Z}_5$, D_{10} or D_{20} ;
- (2) s = 2, $G_v \cong F_{20}$, $F_{20} \times \mathbb{Z}_2$, A_5 or S_5 ;
- (3) s = 3, $G_v \cong \mathbf{F}_{20} \times \mathbb{Z}_4$, $\mathbf{A}_4 \times \mathbf{A}_5$, $(\mathbf{A}_4 \times \mathbf{A}_5):\mathbb{Z}_2$ or $\mathbf{S}_4 \times \mathbf{S}_5$;
- (4) s = 4, $G_v \cong ASL(2,4)$, AGL(2,4), AL(2,4) or AL(2,4);
- (5) $s = 5, G_v \cong \mathbb{Z}_2^6$: L(2, 4).

Lemma 3.9 ([12, Theorem 1.1]) Let X be a connected (G, s)-transitive graph of valency 7 for some $G \leq \operatorname{Aut} X$ and $s \ge 1$. Let $v \in VX$. Then $s \le 3$ and one of the following statements holds:

(1) For s = 1, $G_v \cong \mathbb{Z}_7$, D_{14} , F_{21} , D_{28} or $F_{21} \times \mathbb{Z}_3$;

(2) For s = 2, $G_v \cong F_{42}, F_{42} \times \mathbb{Z}_2, F_{42} \times \mathbb{Z}_3, PSL(3,2), A_7, S_7, \mathbb{Z}_2^3 \rtimes SL(3,2)$ or $\mathbb{Z}_2^4 \rtimes SL(3,2)$;

(3) For s = 3, $G_v \cong F_{42} \times \mathbb{Z}_6$, $PSL(3,2) \times S_4$, $A_7 \times A_6$, $S_7 \times S_6$, $(A_7 \times A_6) \rtimes \mathbb{Z}_2$, $\mathbb{Z}_2^6 \rtimes (SL(2,2) \times SL(3,2))$ or $[2^{20}] \rtimes (SL(2,2) \times SL(3,2)).$

Let a and d be positive integers. A prime r is called a primitive prime divisor of $a^d - 1$ if r divides $a^{d}-1$ but does not divide $a^{i}-1$ for $1 \leq i < d$. The following lemma is a well-known result of Zsigmondy.

Lemma 3.10 ([17, p.508]) For any positive integers a and d, either $a^d - 1$ has a primitive prime divisor, or (d, a) = (6, 2) or $(2, 2^m - 1)$, where $m \ge 2$.

4. Proof of Theorem 1.1

Lemma 4.1 Let Γ be a connected r-valent G-arc-transitive and G-basic graph of order 4p or $4p^2$, where $G \leq \operatorname{Aut}\Gamma$, and p, r are odd primes. Then G is almost simple and Γ is T-edge-transitive, where $T = \operatorname{soc}(G)$. Furthermore, $(\Gamma, |V\Gamma|, \operatorname{val}\Gamma, T, T_{\alpha})$ lies in Table 5, where $\alpha \in V\Gamma$.

Γ	$ V\Gamma $	$val\Gamma$	T	T_{α}	Remark
\mathcal{C}_{20}	20	3	A_5	\mathbb{Z}_3	
\mathcal{C}_{12}	12	5	A_5	\mathbb{Z}_5	
\mathcal{G}_{36}	36	5	A_6	D ₁₀	
K_{12}	12	11	M_{11}	PSL(2,11)	
K_{12}	12	11	M_{12}	M_{11}	
K_{4p}	4p	4p - 1	A_{4p}	A_{4p-1}	
K_{4p}	4p	4p - 1	$\mathrm{PSL}(d, s^f)$	P_1	
C ₂₈	28	3	PSL(2,7)	D_6	
\mathcal{C}_{36}	36	7	PSL(2,8)	D ₁₄	
P(10,7)	20	3	A_5	S_3	
$K_{2p^n,2p^n} - 2p^n K_2$	$4p^n$	$2p^n-1$	$\mathrm{PSL}(d, s^f)$	P_1	n = 1, 2
$K_{2p^n,2p^n} - 2p^n K_2$	$4p^n$	$2p^n-1$	A_{2p^n}	A_{2p^n-1}	n = 1, 2
C ₂₈	28	3	PSL(2,7)	D ₁₂	

Table 5. Prime-valent G-arc-transitive and G-basic graphs of order 4p or $4p^2$.

Proof Let N be a minimal normal subgroup of G. Then N has at most two orbits on VΓ. Note that the length of an N-orbit is not a prime power and the order of a nonabelian simple group has at least three distinct prime divisors. Then $N \cong T^k$ with T a nonabelian simple group and integer $k \ge 1$. By Lemma 3.1, $r \mid |N_{\alpha}|$ for each $\alpha \in V\Gamma$. Furthermore, it is easy to obtain that $|N_{\alpha}|_r = r$. Suppose that $k \ge 2$. Then, for each $i \in \{1, 2, \ldots, k\}$, we have $|T_i:(T_i)_{\alpha}| \mid |N:N_{\alpha}| = 2p, 2p^2, 4p$, or $4p^2$. Since $(T_i)_{\alpha} \ne 1$, $r \mid |(T_i)_{\alpha}|_r$. It follows that $r^k \mid |(T_1)_{\alpha} \times \cdots \times (T_k)_{\alpha}|$, which is a contradiction as $(T_1)_{\alpha} \times \cdots \times (T_k)_{\alpha} \le N_{\alpha}$ and $|N_{\alpha}|_r = r$. Thus, d = 1 and $N = T \trianglelefteq G$. It follows that G is almost simple and Γ is T-edge-transitive. Thus, $T \le G \le T.O$, where $O \cong \text{Out}(T)$. Note that T has a subgroup of index $2p, 2p^2, 4p$, or $4p^2$, so T is known by Lemmas 3.2 and 3.3.

First, we analyze all the candidates in Table 3. In this case, Γ is *T*-arc-transitive. It follows that T_{α} has a subgroup $T_{\alpha\beta}$ with prime index r, where $\beta \in \Gamma(\alpha)$.

Suppose that $(T, T_{\alpha}) \cong (J_2, \text{PSU}(3, 3))$. Since PSU(3, 3) has no subgroups with a prime index by Conway et al. [3], there exist no graphs Γ in this subcase. Similarly, we can exclude the subcase that $(T, T_{\alpha}) \cong (\text{HS}, M_{22})$. Suppose that $(T, T_{\alpha}) \cong (A_8, S_6)$ or $(\text{PSp}(4, 3), S_6)$. Since $T_{\alpha} \cong S_6$ has no subgroups with an odd prime index by Magma [2], there exist no graphs Γ in this subcase. Similarly, we can exclude the subcase that $(T, T_{\alpha}) \cong (\text{PSp}(6, 2), S_8)$.

Suppose that $(T, T_{\alpha}) \cong (A_9, S_7)$. Then $|V\Gamma| = |T:T_{\alpha}| = 36$ and $\mathsf{val}(\Gamma) = 7$, but by Example 2.4, there exist no graphs Γ in this subcase.

Suppose that $(T, T_{\alpha}) \cong (A_5, \mathbb{Z}_3)$. Then $|V\Gamma| = |T:T_{\alpha}| = 20$ and $\mathsf{val}(\Gamma) = 3$. By Example 2.4, $\Gamma \cong \mathcal{C}_{20}$. Suppose that $(T, T_{\alpha}) \cong (A_5, \mathbb{Z}_5)$. Then $|V\Gamma| = 12$ and $\mathsf{val}(\Gamma) = 5$. By Example 2.4, $\Gamma \cong \mathcal{C}_{12}$. Suppose that $(T, T_{\alpha}) \cong (A_6, D_{10})$. Then $|V\Gamma| = 36$, and $\mathsf{val}(\Gamma) = 5$. By Lemma 3.6, $\Gamma \cong \mathcal{G}_{36}$. Suppose that $(T, T_{\alpha}) \cong (\mathrm{PSL}(2, 8), D_{18})$. Then $|V\Gamma| = 28$, and $\mathsf{val}(\Gamma) = 3$, which is not possible as $|T_{\alpha}| \mid 48$ for arc-transitive cubic graphs.

Suppose that $(T, T_{\alpha}) \cong (M_{11}, PSL(2, 11))$ or (M_{12}, M_{11}) . Then $|V\Gamma| = 12$ and $\mathsf{val}(\Gamma) = 11$. It follows that $\Gamma \cong K_{12}$.

Suppose that $(T, T_{\alpha}) \cong (PSU(3, 2), GU(2, 2))$. Then $|V\Gamma| = 12$ and $\mathsf{val}(\Gamma) = 3$. By Lemma 3.4, there exist no graphs Γ in this subcase. Suppose that $(T, T_{\alpha}) \cong (PSU(3, 3),$

PSL(2,7)). Then $|V\Gamma| = 36$ and $val(\Gamma) = 7$. By Example 2.4, there exist no graphs Γ in this subcase.

Suppose that $(T, T_{\alpha}) \cong (P\Omega(5,3), \mathbb{Z}_2 \times P\Omega^-(4,3))$. Then $|V\Gamma| = |T:T_{\alpha}| = 36$ and $\mathsf{val}(\Gamma) = 5$, but by Lemma 3.8, arc-transitive pentavalent graphs have no such stabilizers, so there exist no graphs Γ in this subcase.

Suppose that $(T, T_{\alpha}) \cong (\text{PSL}(2, 16), A_5)$. Then $|V\Gamma| = 68$ and $\text{val}(\Gamma) = 5$. By Lemma 3.5, there exist no graphs Γ in this subcase. Suppose that $(T, T_{\alpha}) \cong (A_{4p}, A_{4p-1})$. Since A_{4p} is 2-transitive on $V\Gamma$, $\Gamma \cong K_{4p}$ is the complete graph with $\text{val}(\Gamma) = 4p - 1$ a prime. Note that $4p^2 - 1$ is not a prime, so we can exclude the subcase that $(T, T_{\alpha}) \cong (A_{4p^2}, A_{4p^2-1})$.

Suppose that $(T, T_{\alpha}) \cong (A_6, 3^2:2)$. Then $|V\Gamma| = 20$, and $\mathsf{val}(\Gamma) = 3$, which is not possible as $|T_{\alpha}| \mid 48$ for arc-transitive cubic graphs.

Suppose that $(T, T_{\alpha}) \cong (PSp(6, 2), P\Omega^{-}(6, 2))$ or (PSp(6, 2), PSU(4, 2) : 2). Then $|V\Gamma| = 28$ and $val(\Gamma) = 3$ or 5, which is not possible as $|T_{\alpha}| \mid 48$ for arc-transitive cubic graphs, and arc-transitive pentavalent graphs have no such stabilizers.

Suppose that $(T, T_{\alpha}) \cong (PSL(d, s^f), P_1)$. Since T is 2-transitive on $V\Gamma$, $\Gamma \cong K_{4p}$ is the complete graph with r = 4p - 1 a odd prime.

Finally, we consider the case where $(T, T_{\alpha}) \cong (\text{PSL}(d, 2^f), \text{H}_1)$. Note that $\frac{2^{fd}-1}{2^{f}-1} = p$ or p^2 . By easy calculation, d is a prime. Assume $d \ge 3$. If $(d, 2^f) = (3, 2)$, then $T = \text{PSL}(3, 2) \cong \text{PSL}(2, 7)$, $T_{\alpha} = D_6$, and $|V\Gamma| = 28$. Since r divides $|T_{\alpha}|$, r = 3. By Lemma 3.4 and Example 2.2, $\Gamma \cong C_{28}$.

Suppose that d = 3 and $f \ge 2$. Let t be an odd prime divisor of $2^f + 1$. As $(2^f - 1, 2^f + 1) = 1$, $(t, 2^f(2^f - 1)) = 1$. It follows that $(t, |P_1|/|PSL(2, 2^f)|) = 1$. Since $2^f + 1$ divides $|H_1|$, and H_1 and $H_1^{\Gamma(\alpha)}$ have the same prime divisors, $t \mid |H_1^{\Gamma(\alpha)}|$. It follows that $PSL(2, 2^f)$ is a nonabelian simple compositor factor of $H_1^{\Gamma(\alpha)}$. As $H_1^{\Gamma(\alpha)} = T_{\alpha}^{\Gamma(\alpha)}$ is a transitive permutation group of prime degree r, either $H_1^{\Gamma(\alpha)} \le \mathbb{Z}_r : \mathbb{Z}_{r-1}$ is affine or $H^{\Gamma(\alpha)}$ is almost simple, and we further conclude that $soc(H_1^{\Gamma(\alpha)}) = PSL(2, 2^f)$ is transitive. By checking the index of maximal subgroups of $PSL(2, 2^f)$ and [3], either $2^f = 11$ and r = 11, or $2^f + 1 = r$. The former case is impossible as $2^f \neq 11$. For the latter case, since $2^f + 1$ is a prime, $2^f = 2^{2^m}$ for some positive integer m. Then $p^n = 2^{2f} + 2^f + 1 = (2^f + 1)^2 - 2^f = (2^{2^m} - 2^{2^{m-1}} + 1)(2^{2^m} + 2^{2^{m-1}} + 1)$, where n = 1 or 2, but by easy calculation, there exist no p satisfying the above condition.

Suppose $d \ge 4$. Note that $(2^f)^{d-1} - 1$ divides $|\mathcal{H}_1|$. If $(d, 2^f) = (7, 2)$, then 7 divides $|\mathcal{H}_1|$ and does not divide $|\mathcal{P}_1|/|\mathrm{PSL}(d-1, 2^f)|$; if $(d, 2^f) \ne (7, 2)$, then $(2^f)^{d-1} - 1$ has a primitive prime divisor s by Lemma 3.10, and s does not divide $|\mathcal{P}_1|/|\mathrm{PSL}(d-1, 2^f)|$. Since \mathcal{H}_1 and $\mathcal{H}_1^{\Gamma(\alpha)}$ have the same prime divisors, we conclude that $\mathrm{PSL}(d-1, r)$ is a nonabelian simple compositor factor of $\mathcal{H}_1^{\Gamma(\alpha)}$, and hence $\mathcal{H}_1^{\Gamma(\alpha)}$ is an almost simple

group with socle $PSL(d-1, 2^f)$. Thus, $\frac{(2^f)^{d-1}-1}{2^f-1} = r$. It follows that d-1 is a prime. Now both d and d-1 are primes, implying d = 3, also yielding a contradiction.

Suppose d = 2. Note that $2^f + 1 = p$ or p^2 . If $2^f = 4$, then $PSL(2, 2^f) = PSL(2, 4) \cong A_5$, $P_1 \cong \mathbb{Z}_2^2 : \mathbb{Z}_3$, and $H_1 \cong \mathbb{Z}_3$. By previous discussion, $\Gamma \cong \mathcal{C}_{20}$. If $2^f = 8$, then $PSL(2, 2^f) = PSL(2, 8) \cong A_5$, $P_1 \cong \mathbb{Z}_2^3 : \mathbb{Z}_7$ and $H_1 \cong D_{14}$. It follows that $|V\Gamma| = 36$ and $\mathsf{val}(\Gamma) = 7$. By Example 2.4, $\Gamma \cong \mathcal{C}_{36}$. If $2^f \ge 16$, then $P_1 \cong \mathbb{Z}_2^f : \mathbb{Z}_{2^f-1}$ has no subgroups with index 4, leading to a contradiction.

Next, we analyze all the candidates in Table 2. In this case, Γ is *T*-edge-transitive but not *T*-arc-transitive.

Suppose that $(T, T_{\alpha}) \cong (A_5, S_3)$. Then $G \cong S_5$, $|V\Gamma| = 2|T:T_{\alpha}| = 20$, and $\mathsf{val}(\Gamma) = 3$. It follows that $G_{\alpha} \cong S_3$. By Lemma 3.4 and Example 2.4, $\Gamma \cong P(10,7)$. Suppose that $(T, T_{\alpha}) \cong (M_{11}, A_6)$. Then $G \cong M_{11}$, a contradiction. Suppose that $(T, T_{\alpha}) \cong (M_{22}, \mathrm{PSL}(3, 4))$. Then $G \cong M_{22}.\mathbb{Z}_2$, $|V\Gamma| = 2|T:T_{\alpha}| = 44$, and $\mathsf{val}(\Gamma) = 3, 5$, or 7. It follows that $|\mathrm{PSL}(3, 4)| \mid |G_{\alpha}|$. However, cubic, pentavalent, and heptavalent arc-transitive graphs have no stabilizers of order divided by $|\mathrm{PSL}(3, 4)| = 20160$ (see Lemmas 3.7–3.9), a contradiction. Similarly, we can exclude the case where $(T, T_{\alpha}) \cong (\mathrm{PSU}(3, 5), A_7)$.

Suppose that $(T, T_{\alpha}) \cong (PSL(d, s^f), P_1)$, or (A_{2p^n}, A_{2p^n-1}) . Then $\Gamma \cong K_{2p^n, 2p^n} - 2p^n K_2$ with $r = 2p^n - 1$ an odd prime, where n = 1 or 2.

Suppose that $(T, T_{\alpha}) \cong (\text{PSL}(d, 2^{f}), \text{H}_{1})$. Then $\frac{2^{fd}-1}{2^{f}-1} = p$ or p^{2} . By easy calculation, d is a prime. If d = 2, then $P_{1} \cong \mathbb{Z}_{2}^{f}:\mathbb{Z}_{2^{f}-1}$ has no subgroups with index 2, leading to a contradiction. If d = 3 and $2^{f} = 2$, then G = PGL(2,7), $|V\Gamma| = 28$, and $G_{\alpha} \cong D_{12}$. By Example 2.2, $\Gamma \cong C_{28}$. For the remaining subcases, note that $T < G \leq T.\text{Out}(T)$, so we easily know that there exist no Γ in these subcases by the discussion of the previous paragraph.

Combining Lemma 4.1, and Examples 2.1–2.4, we complete the proof of Theorem 1.1.

References

- [1] Biggs N. Three remarkable graphs. Canad J Math 1973; 25: 397-411.
- [2] Bosma W, Cannon C, Playoust C. The Magma algebra system I: The user languages. J Symbolic Comput 2007; 24: 235-265.
- [3] Conway JH, Curtis RT, Noton SP, Parker RA, Wilson RA. Atlas of Finite Groups. Oxford, UK: Clarendon Press, 1985.
- [4] Ding SY, Ling B, Lou BG, Pan JM. Arc-transitive pentavalent graphs of square-free order. Graphs Combin 2016; 32: 2355-2366.
- [5] Feng YQ, Kwak JH. Classifying cubic symmetric graphs of order 10p or $10p^2$. Sci China Ser A 2006; 49: 300-319.
- [6] Feng YQ, Kwak JH. Cubic symmetric graphs of order twice an odd prime power. J Aust Math Soc 2006; 81: 153-164.
- [7] Feng YQ, Kwak JH. Cubic s-regular graphs of order $2p^3$. J Graph Theory 2006; 52: 341-352.
- [8] Feng YQ, Kwak JH. Cubic symmetric graphs of order a small number times a prime or a prime square. J Combin Theory Ser B 2007; 97: 627-646.
- [9] Feng YQ, Kwak JH, Wang KS. Classifying cubic symmetric graphs of order 8p or 8p². European J Combin 2005; 26: 1033-1052.
- [10] Feng YQ, Zhou JX, Li YT. Pentavalent symmetric graphs of order twice a prime power. Discrete Math 2016; 339: 2640-2651.

- [11] Guo ST, Feng YQ. A note on pentavalent s-transitive graphs. Discrete Math 2012; 312: 2214-2216.
- [12] Guo ST, Li YT, Hua XH. (G, s)-transitive graphs of valency 7. Algebra Colloq 2016; 23; 493-500.
- [13] Guo ST, Shi JT, Zhang ZJ. Heptavalent symmetric graphs of order 4p. South Asian Journal of Mathematics 2011;
 1: 131-136.
- [14] Guo ST, Zhou JX, Feng YQ. Pentavalent symmetric graphs of order 12p. Electronic J Combin 2011; 18; P233.
- [15] Hua XH, Feng YQ, Lee J. Pentavalent symmetric graphs of order 2pq. Discrete Math 2011; 311: 2259-2267.
- [16] Huang ZH, Li CH, Pan JM. Pentavalent symmetric graphs of order four times a prime power. Ars Combinatoria (in press).
- [17] Huppert B. Endliche Gruppen I. Berlin, Germany: Springer-Verlag, 1967 (in German).
- [18] Li CH, Li XH. On permutation groups of degree of product of two prime-powers. Commun Algebra 2014; 42: 4722-4743.
- [19] Li CH, Lu ZP, Wang GX. The vertex-transitive and edge-transitive tetravalent graphs of squarefree order. J Algebr Combin 2015; 42: 25-50.
- [20] Ling B, Wu CX, Lou BG. Pentavalent symmetric graphs of order 30p. Bull Aust Math Soc 2014; 90: 353-36.
- [21] Oh JM. A classification of cubic s-regular graphs of order 14p. Discrete Math 2009: 309: 2721-2726.
- [22] Oh JM. A classification of cubic s-regular graphs of order 16p. Discrete Math 2009; 309: 3150-3155.
- [23] Pan JM, Liu Z, Yu XF. Pentavalent symmetric graphs of order twice a prime square. Algebra Colloq 2015; 22: 383-394.
- [24] Tutte WT. A family of cubical graphs. Proc Cambridge Philos Soc 1947; 43: 459-474.
- [25] Tutte WT. A non-Hamiltonian graph. Canad Math Bull 1960; 3: 1-5.
- [26] Weiss RM. Über symmetrische Graphen vom Grad fünf. J Combin Theory Ser B 1974; 17: 59-64 (in German).
- [27] Yang DW, Feng YQ. Pentavalent symmetric graphs of order $2p^3$. Sci China Math 2016; 59: 1851-1868.
- [28] Zhou JX. Tetravalent s-transitive graphs of order 4p. Discrete Math 2009; 309: 6081-6086.
- [29] Zhou JX, Feng YQ. Tetravalent s-transitive graphs of order twice a prime power. J Aust Math Soc 2010; 88: 277-288.
- [30] Zhou JX, Feng YQ. On symmetric graphs of valency five. Discrete Math 2010; 310: 1725-1732.