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Abstract: A graph Γ is called G -basic if G is quasiprimitive or bi-quasiprimitive on the vertex set of Γ , where
G ≤ AutΓ . In this paper, we complete the classification of r -valent arc-transitive basic graphs with order 4p or 4p2 ,
where p and r are odd primes.
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1. Introduction
Throughout the paper, graphs considered are simple, connected, and undirected. For a graph Γ , we denote the
valency, vertex set, edge set, arc set, and full automorphism group of Γ by val(Γ) , V Γ , EΓ , AΓ , and AutΓ ,
respectively. Γ is called G-vertex-transitive, G-edge-transitive, or G-arc-transitive if G ≤ AutΓ is transitive
on V Γ , EΓ , or AΓ ; in particular, if G = AutΓ , then Γ is simply called vertex-transitive, edge-transitive, or
arc-transitive. As we all know, a graph Γ is G -arc-transitive if and only if G is vertex-transitive and the vertex
stabilizer Gv of v ∈ V Γ in G is transitive on the neighborhood Γ(v) of v . A permutation group G on a set Ω

is called quasiprimitive if each nontrivial normal subgroup of G is transitive on Ω ; G is called bi-quasiprimitive
if each nontrivial normal subgroup of G has at most two orbits, and there is at least one normal subgroup of
G that has exactly two orbits. A graph Γ is called G -basic if G is quasiprimitive or bi-quasiprimitive on V Γ

for some G ≤ AutΓ .
For a group G and a subgroup H of G , we use Z(G) , soc(G) , CG(H) , and NG(H) to denote the center,

the socle of G , the centralizer, and the normalizer of H in G , respectively. For two groups M and N , we use
M :N and M ×N to denote the semidirect product and direct product of M by N . For a positive integer n

and a prime divisor r
∣∣ n , we denote the largest r -power that divides n by nr , i.e. the r -part of n . We denote

the dihedral group of order 2n by D2n , the cyclic group of order n by Zn , and the alternating group and the
symmetric group of degree n by An and Sn , respectively.

In the literature, the classification of arc-transitive graphs of small valency has been extensively studied;
refer to [4–7, 9, 10, 15, 19–23, 27–29] and references therein. In particular, cubic and pentavalent arc-transitive
graphs of order 4p or 4p2 are classified in [13, 16], and heptavalent arc-transitive graphs of order 4p are classified
in [8], where p is a prime. The purpose of this paper is to characterize prime-valent arc-transitive basic graphs
with order four times a prime or a prime square. The main result of this paper is the following theorem.
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Theorem 1.1 Let Γ be a connected r -valent G-arc-transitive and G-basic graph with order 4p or 4p2 , where
G ≤ AutΓ , and p, r are odd primes. Then G is almost simple and Γ is T -edge-transitive, where T = soc(G) .
Furthermore, (Γ, |V Γ|, val(Γ),AutΓ, (AutΓ)α) lies in Table 1, where α ∈ V Γ .

Table 1. Prime-valent arc-transitive basic graphs of order 4p or 4p2 .

Row Γ |V Γ| val(Γ) AutΓ (AutΓ)α Remark

1 C20 20 3 A5 × Z2 S3 Example 2.4 (1)

2 C12 12 5 A5 × Z2 D10 Example 2.4 (2)

3 G36 36 5 A6 D10 Example 2.1

4 K4p 4p 4p− 1 S4p S4p−1

5 C28 28 3 PGL(2, 7) D12 Example 2.2

6 P (10, 7) 20 3 S5 × Z2 D12 Example 2.3

7 C36 36 7 PSL(2, 8) D14 Example 2.4 (5)

8 K2pn,2pn − 2pnK2 4pn 2pn − 1 S2pn × Z2 S2pn−1 n = 1, 2

2. Examples

In this section, we give some examples of connected r -valent arc-transitive graphs of order 4p or 4p2 that
appear in Theorem 1.1, where p and r are odd primes.

Example 2.1 Let G = A6 . Take a Sylow 5-subgroup, say P , of G , and set H = NG(P ) . From Conway et al.
[3] it is known that H ∼= D10 . Note that all involutions in G are conjugates of each other. For any involution
x ∈ H , we have CG(x) ∼= D8 . Take an element g of order 4 in CG(x) . Denote G36 = Cos(G,H,HgH) .

By [14], we know that G36 is a pentavalent symmetric graph of order 36 and AutG36
∼= A6 .

Example 2.2 We introduce a graph of order 28 that was discovered by Coxeter and investigated by Tutte [25].
Denote this graph by C28 . For its construction, see Biggs [1, Fig. 2(ii)]. By Biggs [1], C28 is 3-regular and
AutC28

∼= PGL(2, 7) .

Example 2.3 ([8]) Let n = 10 and 3 ∈ Z10 \ {0} . The generalized Petersen graph P (10, 3) is the graph with
vertex-set {xi, yi|i ∈ Z10} and edge set {{xi, xi+1}, {xi, yi} , {yi, yi+k}|i ∈
Z10} .

By [8], we know that P (10, 7) is a cubic symmetric graph of order 20 .
By using the Magma program [2], we have the following examples.

Example 2.4 (1) There is a unique connected cubic graph of order 20 that admits A5 as an arc-transitive
automorphism group. This graph is denoted by C20 . Moreover, AutC20 ∼= A5 × Z2 .

(2) There is a unique connected pentavalent graph of order 12 that admits A5 as an arc-transitive automor-
phism group. This graph is denoted by C12 . Moreover, AutC12 ∼= A5 × Z2 .
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(3) There exist no connected heptavalent graphs of order 36 that admit PSU(3, 3) as an arc-transitive
automorphism group.

(4) There is a unique connected cubic graph of order 20 that admits S5 as an arc-transitive automorphism
group. By Example 2.2 and Lemma 3.4, we know that the graph is isomorphic to P (10, 7) . Moreover,
AutP (10, 7) ∼= S5 × Z2 .

(5) There is a unique connected heptavalent graph of order 36 that admits PSL(2, 8) as an arc-transitive
automorphism group. This graph is denoted by C36 . Moreover, AutC36 ∼= PSL(2, 8) .

(6) There exist no connected heptavalent graphs of order 36 that admit A9 as an arc-transitive automorphism
group.

3. Preliminary results

In this section, we give some necessary preliminary results.
We now give a result that will be useful.

Lemma 3.1 Let r and p be odd primes, and let Γ be an r -valent G-arc-transitive graph of order 4p or 4p2

for some G ≤ AutΓ . Let N be an insoluble normal subgroup of G . Then r
∣∣ |NΓ(v)

v | for each v ∈ V Γ .

Proof For each v ∈ V Γ , since 1 ̸= Nv �Gv and G is transitive on V Γ , we have N
Γ(v)
v ̸= 1 by connectivity

of Γ . Since G
Γ(v)
v acts primitively on Γ(v) and N

Γ(v)
v �G

Γ(v)
v , it follows that r

∣∣ |NΓ(v)
v | . 2

The following two lemmas may be deduced from the classification of permutation groups of the degree of
a product of two prime powers (refer to [18]).

Lemma 3.2 Let T be a nonabelian simple group that has a subgroup H of index 2p or 2p2 with p a prime.
Then T,H, |H| , and |T : H| are as in Table 2.

Table 2. Nonabelian simple groups with a subgroup of index 2p or 2p2 .

T H |H| |T : H| Remark

A5 S3 2 · 3 10

A2pn A2pn−1
1
2 (2p

n − 1)! 2pn n = 1, 2

PSL(d, sf ) P1
sfd−1
sf−1

= 2pn n = 1, 2

PSL(d, 2f ) H1 2 2fd−1
2f−1

= 2pn n = 1, 2

M11 A6 23 · 32 · 5 22

M22 PSL(3, 4) 26 · 32 · 5 · 7 22

PSU(3, 5) A7 23 · 32 · 5 · 7 50

Remark 1 P1 = [sf(d−1)].(Z sf−1

(d,sf−1)

.PSL(d− 1, sf ).Z(d−1,sf−1)) ∼= H1.Z2 .
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Lemma 3.3 Let T be a nonabelian simple group with a subgroup X of index 4p or 4p2 , where p is a prime.
Then X is isomorphic to H or K , and T,K, |K|,H, |H| , and |T :X| are as in Table 3, where K is a maximal
subgroup of T but H is not a maximal subgroup of T .

Table 3. Nonabelian simple groups with a subgroup of index 4p or 4p2 .

T K |K| H |H| |T : X|
A5 Z3 3 4 · 5

Z5 5 4 · 3
A6 D10 2 · 5 4 · 32

32 : 2 32 · 2 4 · 5
A8 S6 24 · 32 · 5 4 · 7
A9 S7 24 · 32 · 5 · 7 4 · 32

A4pn A4pn−1
1
2 (4p

n − 1)! 4pn, n = 1, 2

M11 PSL(2, 11) 22 · 3 · 5 · 11 4 · 3
M12 M11 24 · 32 · 5 · 11 4 · 3
J2 PSU(3, 3) 25 · 33 · 7 4 · 52

HS M22 27 · 32 · 5 · 7 · 11 4 · 52

PSL(2, 8) D18 2 · 32 4 · 7
PSL(2, 16) A5 22 · 3 · 5 4 · 17
PSL(d, sf ) P1

sfd−1
sf−1

= 4pn, n = 1, 2

PSL(d, 2f ) H1 4 2fd−1
2f−1

= 4pn, n = 1, 2

PSU(3, 2) GU(2, 2) 2 · 32 4 · 3
PSU(3, 3) PSL(2, 7) 23 · 3 · 7 4 · 32

PSp(4, 3) S6 24 · 32 · 5 4 · 32

PSp(6, 2) PSU(4, 2) : 2 27 · 34 · 5 4 · 7
S8 27 · 32 · 5 · 7 4 · 32

PΩ−(6, 2) 27 · 34 · 5 4 · 7
PΩ(5, 3) Z2 × PΩ−(4, 3) 24 · 32 · 5 4 · 32

Remark 2 P1 = [sf(d−1)].(Z sf−1

(d,sf−1)

.PSL(d− 1, sf ).Z(d−1,sf−1)) ∼= H1.Z4 .

The following lemma gives a classification of cubic symmetric graphs of order 4p or 4p2 for a prime p .

Lemma 3.4 ([8, Theorem 6.2]) Let Γ be a connected cubic symmetric graph of order 4p or 4p2 for a prime
p . Then Γ is isomorphic to the 2-regular hypercube Q3 of order 8 , the 2-regular generalized Petersen graphs
P (8, 3) or P (10, 7) of order 16 or 20 respectively, the 3-regular dodecahedron of order 20 , or the 3-regular
Coxeter graph C28 of order 28 .

The next two lemmas give the classification of arc-transitive pentavalent graphs of order 4p or 4p2 for a
prime p ; see [16, Theorem 1.1] and [16, Corollary 1.2].
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Lemma 3.5 ([16, Theorem 1.1]) There exist no connected arc-transitive pentavalent graphs of order 4p or 4p2

for each prime p ≥ 5 .

Lemma 3.6 ([16, Corollary 1.2]) Let p be an odd prime. Then G36 is the only connected arc-transitive
pentavalent graph of order 4p2 .

The following three lemmas determine the stabilizers of cubic, pentavalent, and heptavalent arc-transitive
graphs, respectively.

Lemma 3.7 [24, 26] Let Γ be a connected (G, s)-transitive cubic graph, where s ≥ 1 . Then s ≤ 5 and the
stabilizer Gα and |Gα| satisfy Table 4, where α ∈ V Γ .

Table 4. The stabilizers of cubic arc-transitive graphs.

s 1 2 3 4 5

Gα Z3 S3 D12 S4 S4 × S2

|Gα| 3 2 · 3 22 · 3 23 · 3 24 · 3

Lemma 3.8 ([11, 30]) Let Γ be a pentavalent (G, s)-transitive graph for some G ≤ AutΓ and s ≥ 1 . Let
v ∈ V Γ . If Gv is soluble, then |Gv|

∣∣ 80 and s ≤ 3 . If Gv is insoluble, then |Gv|
∣∣ 29 · 32 · 5 and 2 ≤ s ≤ 5 .

Furthermore, one of the following holds:

(1) s = 1 , Gv
∼= Z5 , D10 or D20 ;

(2) s = 2 , Gv
∼= F20 , F20 × Z2 , A5 or S5 ;

(3) s = 3 , Gv
∼= F20 × Z4 , A4 × A5 , (A4 × A5):Z2 or S4 × S5 ;

(4) s = 4 , Gv
∼= ASL(2, 4) , AGL(2, 4) , A�L(2, 4) or A�L(2, 4) ;

(5) s = 5 , Gv
∼= Z6

2:�L(2, 4) .

Lemma 3.9 ([12, Theorem 1.1]) Let X be a connected (G, s)-transitive graph of valency 7 for some G ≤ AutX
and s ≥ 1 . Let v ∈ V X . Then s ≤ 3 and one of the following statements holds:

(1) For s = 1 , Gv
∼= Z7,D14, F21,D28 or F21 × Z3 ;

(2) For s = 2 , Gv
∼= F42, F42 × Z2, F42 × Z3,PSL(3, 2),A7,S7,Z3

2 ⋊ SL(3, 2) or Z4
2 ⋊ SL(3, 2) ;

(3) For s = 3 , Gv
∼= F42 × Z6,PSL(3, 2)× S4,A7 × A6,S7 × S6, (A7 × A6)⋊Z2,Z6

2 ⋊ (SL(2, 2)× SL(3, 2)) or
[220]⋊ (SL(2, 2)× SL(3, 2)) .

Let a and d be positive integers. A prime r is called a primitive prime divisor of ad − 1 if r divides
ad − 1 but does not divide ai − 1 for 1 ≤ i < d . The following lemma is a well-known result of Zsigmondy.

Lemma 3.10 ([17, p.508]) For any positive integers a and d , either ad − 1 has a primitive prime divisor, or
(d, a) = (6, 2) or (2, 2m − 1) , where m ≥ 2 .
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4. Proof of Theorem 1.1
Lemma 4.1 Let Γ be a connected r -valent G-arc-transitive and G-basic graph of order 4p or 4p2 , where
G ≤ AutΓ , and p, r are odd primes. Then G is almost simple and Γ is T -edge-transitive, where T = soc(G) .
Furthermore, (Γ, |V Γ|, valΓ, T, Tα) lies in Table 5, where α ∈ V Γ .

Table 5. Prime-valent G-arc-transitive and G-basic graphs of order 4p or 4p2 .

Γ |V Γ| valΓ T Tα Remark

C20 20 3 A5 Z3

C12 12 5 A5 Z5

G36 36 5 A6 D10

K12 12 11 M11 PSL(2, 11)
K12 12 11 M12 M11

K4p 4p 4p− 1 A4p A4p−1

K4p 4p 4p− 1 PSL(d, sf ) P1

C28 28 3 PSL(2, 7) D6

C36 36 7 PSL(2, 8) D14

P (10, 7) 20 3 A5 S3

K2pn,2pn − 2pnK2 4pn 2pn − 1 PSL(d, sf ) P1 n = 1, 2

K2pn,2pn − 2pnK2 4pn 2pn − 1 A2pn A2pn−1 n = 1, 2

C28 28 3 PSL(2, 7) D12

Proof Let N be a minimal normal subgroup of G . Then N has at most two orbits on V Γ . Note that the
length of an N -orbit is not a prime power and the order of a nonabelian simple group has at least three distinct
prime divisors. Then N ∼= T k with T a nonabelian simple group and integer k ≥ 1 . By Lemma 3.1, r

∣∣ |Nα|
for each α ∈ V Γ . Furthermore, it is easy to obtain that |Nα|r = r . Suppose that k ≥ 2 . Then, for each
i ∈ {1, 2, . . . , k} , we have |Ti:(Ti)α|

∣∣ |N :Nα| = 2p, 2p2, 4p , or 4p2 . Since (Ti)α ̸= 1 , r
∣∣ |(Ti)α|r . It follows

that rk
∣∣ |(T1)α × · · · × (Tk)α| , which is a contradiction as (T1)α × · · · × (Tk)α ≤ Nα and |Nα|r = r . Thus,

d = 1 and N = T � G . It follows that G is almost simple and Γ is T -edge-transitive. Thus, T ≤ G ≤ T.O ,
where O ∼= Out(T ) . Note that T has a subgroup of index 2p, 2p2, 4p , or 4p2 , so T is known by Lemmas 3.2
and 3.3.

First, we analyze all the candidates in Table 3. In this case, Γ is T -arc-transitive. It follows that Tα has
a subgroup Tαβ with prime index r , where β ∈ Γ(α) .

Suppose that (T, Tα) ∼= (J2,PSU(3, 3)) . Since PSU(3, 3) has no subgroups with a prime index by
Conway et al. [3], there exist no graphs Γ in this subcase. Similarly, we can exclude the subcase that
(T, Tα) ∼= (HS,M22) . Suppose that (T, Tα) ∼= (A8,S6) or (PSp(4, 3),S6) . Since Tα

∼= S6 has no subgroups
with an odd prime index by Magma [2], there exist no graphs Γ in this subcase. Similarly, we can exclude the
subcase that (T, Tα) ∼= (PSp(6, 2),S8) .

Suppose that (T, Tα) ∼= (A9,S7) . Then |V Γ| = |T :Tα| = 36 and val(Γ) = 7 , but by Example 2.4, there
exist no graphs Γ in this subcase.

Suppose that (T, Tα) ∼= (A5,Z3) . Then |V Γ| = |T :Tα| = 20 and val(Γ) = 3 . By Example 2.4, Γ ∼= C20 .
Suppose that (T, Tα) ∼= (A5,Z5) . Then |V Γ| = 12 and val(Γ) = 5 . By Example 2.4, Γ ∼= C12 .
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Suppose that (T, Tα) ∼= (A6,D10) . Then |V Γ| = 36 , and val(Γ) = 5 . By Lemma 3.6, Γ ∼= G36 . Suppose
that (T, Tα) ∼= (PSL(2, 8),D18) . Then |V Γ| = 28 , and val(Γ) = 3 , which is not possible as |Tα|

∣∣ 48 for
arc-transitive cubic graphs.

Suppose that (T, Tα) ∼= (M11,PSL(2, 11)) or (M12,M11) . Then |V Γ| = 12 and val(Γ) = 11 . It follows
that Γ ∼= K12 .

Suppose that (T, Tα) ∼= (PSU(3, 2),GU(2, 2)) . Then |V Γ| = 12 and val(Γ) = 3 . By Lemma 3.4, there
exist no graphs Γ in this subcase. Suppose that (T, Tα) ∼= (PSU(3, 3),

PSL(2, 7)) . Then |V Γ| = 36 and val(Γ) = 7 . By Example 2.4, there exist no graphs Γ in this subcase.
Suppose that (T, Tα) ∼= (PΩ(5, 3),Z2 × PΩ−(4, 3)) . Then |V Γ| = |T :Tα| = 36 and val(Γ) = 5 , but

by Lemma 3.8, arc-transitive pentavalent graphs have no such stabilizers, so there exist no graphs Γ in this
subcase.

Suppose that (T, Tα) ∼= (PSL(2, 16),A5) . Then |V Γ| = 68 and val(Γ) = 5 . By Lemma 3.5, there exist
no graphs Γ in this subcase. Suppose that (T, Tα) ∼= (A4p,A4p−1) . Since A4p is 2 -transitive on V Γ , Γ ∼= K4p

is the complete graph with val(Γ) = 4p − 1 a prime. Note that 4p2 − 1 is not a prime, so we can exclude the
subcase that (T, Tα) ∼= (A4p2 ,A4p2−1) .

Suppose that (T, Tα) ∼= (A6, 3
2:2) . Then |V Γ| = 20 , and val(Γ) = 3 , which is not possible as |Tα|

∣∣ 48
for arc-transitive cubic graphs.

Suppose that (T, Tα) ∼= (PSp(6, 2),PΩ−(6, 2)) or (PSp(6, 2),PSU(4, 2) : 2) . Then |V Γ| = 28 and
val(Γ) = 3 or 5 , which is not possible as |Tα|

∣∣ 48 for arc-transitive cubic graphs, and arc-transitive pentavalent
graphs have no such stabilizers.

Suppose that (T, Tα) ∼= (PSL(d, sf ),P1) . Since T is 2 -transitive on V Γ , Γ ∼= K4p is the complete graph
with r = 4p− 1 a odd prime.

Finally, we consider the case where (T, Tα) ∼= (PSL(d, 2f ),H1) . Note that 2fd−1
2f−1

= p or p2 . By easy

calculation, d is a prime. Assume d ≥ 3 . If (d, 2f ) = (3, 2) , then T = PSL(3, 2) ∼= PSL(2, 7) , Tα = D6 , and
|V Γ| = 28 . Since r divides |Tα| , r = 3 . By Lemma 3.4 and Example 2.2, Γ ∼= C28 .

Suppose that d = 3 and f ≥ 2 . Let t be an odd prime divisor of 2f + 1 . As (2f − 1, 2f + 1) = 1 ,

(t, 2f (2f − 1)) = 1 . It follows that (t, |P1|/|PSL(2, 2f )|) = 1 . Since 2f + 1 divides |H1| , and H1 and HΓ(α)
1

have the same prime divisors, t
∣∣ |HΓ(α)

1 | . It follows that PSL(2, 2f ) is a nonabelian simple compositor factor of

HΓ(α)
1 . As HΓ(α)

1 = T
Γ(α)
α is a transitive permutation group of prime degree r , either HΓ(α)

1 ≤ Zr:Zr−1 is affine

or HΓ(α) is almost simple, and we further conclude that soc(HΓ(α)
1 ) = PSL(2, 2f ) is transitive. By checking the

index of maximal subgroups of PSL(2, 2f ) and [3], either 2f = 11 and r = 11 , or 2f + 1 = r . The former case
is impossible as 2f ̸= 11 . For the latter case, since 2f + 1 is a prime, 2f = 22

m for some positive integer m .
Then pn = 22f +2f +1 = (2f +1)2 − 2f = (22

m − 22
m−1

+1)(22
m

+22
m−1

+1) , where n = 1 or 2 , but by easy
calculation, there exist no p satisfying the above condition.

Suppose d ≥ 4 . Note that (2f )d−1− 1 divides |H1| . If (d, 2f ) = (7, 2) , then 7 divides |H1| and does not
divide |P1|/|PSL(d−1, 2f )| ; if (d, 2f ) ̸= (7, 2) , then (2f )d−1−1 has a primitive prime divisor s by Lemma 3.10,

and s does not divide |P1|/|PSL(d − 1, 2f )| . Since H1 and HΓ(α)
1 have the same prime divisors, we conclude

that PSL(d − 1, r) is a nonabelian simple compositor factor of HΓ(α)
1 , and hence HΓ(α)

1 is an almost simple

2285



LIU/Turk J Math

group with socle PSL(d− 1, 2f ) . Thus, (2f )d−1−1
2f−1

= r . It follows that d− 1 is a prime. Now both d and d− 1

are primes, implying d = 3 , also yielding a contradiction.
Suppose d = 2 . Note that 2f +1 = p or p2 . If 2f = 4 , then PSL(2, 2f ) = PSL(2, 4) ∼= A5 , P1

∼= Z2
2 : Z3 ,

and H1
∼= Z3 . By previous discussion, Γ ∼= C20 . If 2f = 8 , then PSL(2, 2f ) = PSL(2, 8) ∼= A5 , P1

∼= Z3
2 : Z7

and H1
∼= D14 . It follows that |V Γ| = 36 and val(Γ) = 7 . By Example 2.4, Γ ∼= C36 . If 2f ≥ 16 , then

P1
∼= Zf

2 :Z2f−1 has no subgroups with index 4 , leading to a contradiction.
Next, we analyze all the candidates in Table 2. In this case, Γ is T -edge-transitive but not T -arc-

transitive.
Suppose that (T, Tα) ∼= (A5,S3) . Then G ∼= S5 , |V Γ| = 2|T :Tα| = 20 , and val(Γ) = 3 . It follows

that Gα
∼= S3 . By Lemma 3.4 and Example 2.4, Γ ∼= P (10, 7) . Suppose that (T, Tα) ∼= (M11,A6) . Then

G ∼= M11 , a contradiction. Suppose that (T, Tα) ∼= (M22,PSL(3, 4)) . Then G ∼= M22.Z2 , |V Γ| = 2|T :Tα| = 44 ,
and val(Γ) = 3, 5 , or 7 . It follows that |PSL(3, 4)|

∣∣ |Gα| . However, cubic, pentavalent, and heptavalent
arc-transitive graphs have no stabilizers of order divided by |PSL(3, 4)| = 20160 (see Lemmas 3.7–3.9), a
contradiction. Similarly, we can exclude the case where (T, Tα) ∼= (PSU(3, 5),A7) .

Suppose that (T, Tα) ∼= (PSL(d, sf ),P1) , or (A2pn ,A2pn−1) . Then Γ ∼= K2pn,2pn−2pnK2 with r = 2pn−1

an odd prime, where n = 1 or 2 .

Suppose that (T, Tα) ∼= (PSL(d, 2f ),H1) . Then 2fd−1
2f−1

= p or p2 . By easy calculation, d is a prime. If

d = 2 , then P1
∼= Zf

2 :Z2f−1 has no subgroups with index 2 , leading to a contradiction. If d = 3 and 2f = 2 ,
then G = PGL(2, 7) , |V Γ| = 28 , and Gα

∼= D12 . By Example 2.2, Γ ∼= C28 . For the remaining subcases, note
that T < G ≤ T.Out(T ) , so we easily know that there exist no Γ in these subcases by the discussion of the
previous paragraph. 2

Combining Lemma 4.1, and Examples 2.1–2.4, we complete the proof of Theorem 1.1.
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