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Abstract: We are concerned about various strongly clean properties of a kind of matrix subrings L(s)(R) over a local
ring R . Let R be a local ring, and let s ∈ C(R) . We prove that A ∈ L(s)(R) is strongly clean if and only if A or I2−A

is invertible, or A is similar to a diagonal matrix in L(s)(R) . Furthermore, we prove that A ∈ L(s)(R) is quasipolar

if and only if A ∈ GL2(R) or A ∈ L(s)(R)qnil , or A is similar to a diagonal matrix
(

λ 0
0 µ

)
in L(s)(R) , where

λ ∈ J(R) , µ ∈ U(R) or λ ∈ U(R) , µ ∈ J(R) , and lµ − rλ , lλ − rµ are injective. Pseudopolarity of such matrix subrings
is also obtained.
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1. Introduction
Throughout, all rings are associative with an identity. An element a in a ring R is strongly clean provided that it
is the sum of an idempotent and a unit that commute. The commutant of a ∈ R is defined by comm(a) = {x ∈
R | xa = ax} . Set Rqnil = {a ∈ R | 1 + ax ∈ U(R) for every x ∈ comm(a)} . We say a ∈ R is quasinilpotent if
a ∈ Rqnil . The double commutant of a ∈ R is defined by comm2(a) = {x ∈ R | xy = yx for all y ∈ comm(a)} .

In [6], an element a in a ring R is called quasipolar if for any a ∈ R there exists e2 = e ∈ comm2(a)

such that a+ e ∈ U(R) and ae ∈ Rqnil . As is well known, an element a ∈ R is quasipolar if and only if it has
generalized Drazin inverse, i.e. there exists b ∈ comm2(a) such that b = b2a, a− a2b ∈ Rqnil (see [6]).

Following [8], an element a in a ring R has a pseudo Drazin inverse if and only if there exists b ∈ comm2(a)

such that b = bab, ak − ak+1b ∈ J(R) for some k ≥ 1 . In a ring R , evidently, { elements having pseudo Drazin
inverses } ⊆ { quasipolar elements } ⊆ { strongly clean elements } . The subjects of strongly clean rings,
quasipolar rings, and pseudo Drazin inverses were extensively studied in [1–5, 7] and [10–12].

Evidently, the clean property for a ring does not transfer to its subrings. For example, Z(2) is strongly
clean, but the subring Z of Z(2) is not strongly clean where Z(2) is the localization of Z at the prime ideal
(2) . For instance, 4 ∈ Z cannot be written as the sum of an idempotent and a unit that commute.

The motivation of this paper is to investigate the behave of subrings of a strongly clean ring. This enables
us to construct related counterexamples as well. For this purpose, we introduce a kind of matrix subrings over
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a local ring R . Here, a ring R is local if it has only one maximal right ideal. Let R be a local ring, and let
s ∈ C(R) . Let

L(s)(R) = {
(

a b
sc d

)
∈ M2(R) | a, b, c, d ∈ R},

where the operations are defined as those in M2(R) . Then L(s)(R) forms a subring of M2(R) . We prove that
A ∈ L(s)(R) is strongly clean if and only if A or I2 − A is invertible, or A is similar to a diagonal matrix in
L(s)(R) . Moreover, we prove that A ∈ L(s)(R) is quasipolar if and only if A ∈ GL2(R) or A ∈ L(s)(R)qnil , or

A is similar to a diagonal matrix
(

λ 0
0 µ

)
in L(s)(R) , where λ ∈ J(R) , µ ∈ U(R) or λ ∈ U(R) , µ ∈ J(R) ,

and lµ − rλ , lλ − rµ are injective. Note that for a ∈ R , la and ra denote the abelian group endomorphisms
of R given by left and right multiplication by a , respectively. Pseudopolarity of such matrix subrings is also
obtained.

We use J(R) to denote the Jacobson radical of R and U(R) to denote the group of units of R .
Furthermore, C(R) is the center of a ring R and N stands for the set of all natural numbers.

2. Strongly clean matrices

The goal of this section is to investigate strong cleanness of L(s)(R) . We begin with the following.

Proposition 2.1 Let R be a ring, and let s ∈ C(R)
∩
U(R) . Then L(s)(R) ∼= M2(R) .

Proof Let φ : M2(R) → L(s)(R) , defined by

φ

((
a b
c d

))
=

(
a b
c d

)
=

(
a b

s(s−1c) d

)
.

As s ∈ C(R)
∩
U(R) , one directly checks that φ is a ring isomorphism, as asserted. 2

Lemma 2.2 Let R be a ring, and let s ∈ C(R)
∩
J(R) . Then U(L(s)(R)) = {

(
c x
sy d

)
∈ M2(R) | c, d ∈

U(R), x, y ∈ R} .

Proof As s ∈ J(R) , we easily see that U(L(s)(R)) ⊆ {
(

c x
sy d

)
∈ M2(R) | c, d ∈ U(R), x, y ∈ R} . To see

the converse inclusion, suppose that c, d ∈ U(R) . Then

(
c x
sy d

)−1

=

(
c−1 −c−1xd−1

sd−1yc−1 d−1

)(
a 0
0 b

)
,

where a = (1− sxd−1yc−1)−1 and b = (1− syc−1xd−1)−1 , as desired. 2

Lemma 2.3 Let R be a ring, and let s ∈ C(R)
∩
J(R) . Then J(L(s)(R)) = {

(
c x
sy d

)
∈ M2(R) | c, d ∈

J(R), x, y ∈ R} .
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Proof As is well known, r ∈ J(R) if and only if 1 − rx ∈ U(R) for any x ∈ R . We easily obtain the result
by Lemma 2.2. 2

Lemma 2.4 Let R be a ring, and let e, f ∈ R be idempotents. Then the following are equivalent:

(1) There exist u, v ∈ U(R) such that uev = f .

(2) e is similar to f , i.e. w−1ew = f for some w ∈ U(R) .

Proof (1) ⇒ (2) By hypothesis, there exist u, v ∈ U(R) such that uev = f . Let w = u−1(−1 + f + ueu−1) .
Then w−1 = (−1 + f + ueu−1)u . Therefore, fw−1 = w−1e , and so w−1ew = f .

(2) ⇐ (1) This is trivial. 2

Lemma 2.5 Let R be a local ring, let s ∈ C(R)
∩

J(R) , and let E2 = E ∈ L(s)(R) . Then E = 0 , E = I2 , or

E is similar to
(

1 0
0 0

)
or

(
0 0
0 1

)
.

Proof Assume that E =

(
c x
sy d

)
̸= 0 and E ̸= I2 . Then c or d is invertible.

Case I. c ∈ U(R) . Then(
1 0

−syc−1 1

)
E

(
c−1 −c−1x
0 1

)
=

(
1 0
0 d− syc−1x

)
.

This implies that
(

1 0
0 d− syc−1x

)
∈ L(s)(R) is regular, and then so is d− syc−1x ∈ R . As R is local, we

easily check that d − syc−1x is zero or invertible. If d − syc−1x = 0 , then P1EQ1 is an idempotent diagonal

matrix where P1 =

(
1 0

−syc−1 1

)
∈ U(L(s)(R)) and Q1 =

(
c−1 −c−1x
0 1

)
∈ U(L(s)(R)) . If d − syc−1x

is invertible, then there exist

P2 =

(
1 0
0 d− syc−1x

)−1 (
1 0

−syc−1 1

)
∈ U(L(s)(R))

and

Q2 =

(
c−1 −c−1x
0 1

)
∈ U(L(s)(R))

such that P2EQ2 is an idempotent diagonal matrix. In light of Lemma 2.4, E is similar to a diagonal matrix.
Case II. d ∈ U(R) . Then(

1 −xd−1

0 1

)
E

(
1 0

−sd−1y d−1

)
=

(
c− sxd−1y 0

0 1

)
.

This implies that
(

c− sxd−1y 0
0 1

)
∈ L(s)(R) is regular, and then so is c− sxd−1y ∈ R . Hence, c− sxd−1y

is zero or invertible. Thus, similar to Case I, we have P,Q ∈ U(L(s)(R)) such that PEQ is an idempotent
diagonal matrix. In light of Lemma 2.4, E is similar to a diagonal matrix.
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Write P−1EP =

(
e 0
0 f

)
for some P ∈ U(L(s)(R)) . We may assume that e = 1 , f = 0 or e = 0 ,

f = 1 . This completes the proof. 2

Theorem 2.6 Let R be a local ring, and let s ∈ C(R) . Then A ∈ L(s)(R) is strongly clean if and only if

(1) A or I2 −A is invertible; or

(2) A is similar to a diagonal matrix in L(s)(R) .

Proof Since R is local, we see that s ∈ U(R) or s ∈ J(R) .
Case I. s ∈ U(R) . By virtue of Proposition 2.1, L(s)(R) ∼= M2(R) . Then the result follows from [9].
Case II. s ∈ J(R) .
⇐= If A or I2 − A is invertible, then A ∈ L(s)(R) is strongly clean. Suppose that A is similar to

a diagonal matrix in L(s)(R) . Then there exists U ∈ U(L(s)(R)) such that U−1AU =

(
a 0
0 b

)
. As R

is local, it is strongly clean. Hence, we can find idempotents e , f ∈ R such that a − e , b − f ∈ U(R) ,

ea = ae , and bf = fb . Set E = U

(
e 0
0 f

)
U−1 . Then E2 = E ∈ L(s)(R) and EA = AE . Furthermore,

A− E ∈ U(L(s)(R)) , as desired.

=⇒ Suppose that A and I2 − A are not invertible. Write A = E + U with EA = AE , E2 = E ,

U ∈ U(L(s)(R)) . Set E =

(
c x
sy d

)
. In light of Lemma 2.5, E is similar to a diagonal matrix.

Write P−1EP =

(
e 0
0 f

)
for some P ∈ U(L(s)(R)) . We may assume that e = 1 , f = 0 or e = 0 ,

f = 1 . If e = 1 , f = 0 , then

P−1AP =

(
1 0
0 0

)
+ P−1UP

and

P−1AP

(
1 0
0 0

)
=

(
1 0
0 0

)
P−1AP.

This forces that P−1AP is diagonal. If e = 0 , f = 1 , we prove that A is similar to a diagonal matrix in a
similar way. This completes the proof. 2

3. Quasipolar and pseudopolar matrices

The aim of this section is to extend Theorem 2.6 to quasipolar and pseudopolar matrices over a local ring. The
following lemma is crucial.

Lemma 3.1 Let R be a local ring, and s ∈ C(R) , and let a, b ∈ R . Then all matrices that commute with(
a 0
0 b

)
or

(
b 0
0 a

)
must be diagonal in L(s)(R) if and only if both la − rb and ra − lb are injective.
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Proof =⇒ Assume that ax = xb . Then(
0 x
0 0

)
∈ comm

((
a 0
0 b

))
.

Hence, x = 0 . Thus, la − rb : R → R is injective. Assume that bx = xa . Then
(

0 x
0 0

)
∈

comm

((
b 0
0 a

))
; hence, x = 0 . Thus, lb − ra : R → R is injective.

⇐= This is clear by [3, Lemma 3.4], as L(s)(R) is a subring of M2(R) . 2

Theorem 3.2 Let R be a local ring, and let s ∈ C(R) . Then A ∈ L(s)(R) is quasipolar if and only if

(1) A ∈ GL2(R) ; or

(2) A ∈ L(s)(R)qnil ; or

(3) A is similar to a diagonal matrix
(

λ 0
0 µ

)
in L(s)(R) , where λ ∈ J(R) , µ ∈ U(R) or λ ∈ U(R) ,

µ ∈ J(R) , and lµ − rλ , lλ − rµ are injective.

Proof We may assume that s ∈ U(R) or s ∈ J(R) .
Case I. s ∈ U(R) . By virtue of Proposition 2.1, L(s)(R) ∼= M2(R) . Hence, the result follows from [4].
Case II. s ∈ J(R) .
=⇒ Since A ∈ L(s)(R) is quasipolar. Write A + E = U with E2 = E ∈ comm2(A) , U ∈ U(L(s)(R))

and AE ∈ L(s)(R)qnil . In view of Lemma 2.5, E = 0 , E = I2 , or E is similar to
(

1 0
0 0

)
or

(
0 0
0 1

)
.

Case 1. E = 0 . Then A ∈ GL2(R) .
Case 2. E = I2 . Then A ∈ L(s)(R)qnil .

Case 3. E is similar to
(

1 0
0 0

)
. Write P−1EP =

(
1 0
0 0

)
where P ∈ U(L(s)(R)) . Then

P−1AP +

(
1 0
0 0

)
= P−1UP

and

P−1AP

(
1 0
0 0

)
=

(
1 0
0 0

)
P−1AP.

As in the proof of Theorem 2.6, P−1AP is a diagonal matrix
(

λ 0
0 µ

)
where λ ∈ J(R), µ ∈ U(R) . Let

x ∈ R such that λx = xµ . Then
(

0 x
0 0

)
∈ comm(P−1AP ) , and so

(
0 x
0 0

)
∈ comm

((
1 0
0 0

))
.

Therefore, x = 0 , and so lλ − rµ is injective. Likewise, lµ − rλ is injective.
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Case 4. E is similar to
(

0 0
0 1

)
. Then similar to the proof of Case 3, A is similar to a diagonal matrix(

λ 0
0 µ

)
in L(s)(R) where λ ∈ U(R), µ ∈ J(R) . The rest is also similar to the Case 3.

⇐= Case 1. A ∈ GL2(R) . Then A is quasipolar.
Case 2. A ∈ L(s)(R)qnil . Then A is quasipolar with the spectral idempotent I2 .

Case 3. A is similar to a diagonal matrix
(

λ 0
0 µ

)
, where λ ∈ J(R) , µ ∈ U(R) , and lµ − rλ , lλ − rµ

are injective. Then (
λ 0
0 µ

)
+

(
1 0
0 0

)
=

(
λ+ 1 0
0 µ

)
∈ U(L(s)(R)).

Let
(

x q
sp y

)
∈ comm

((
λ 0
0 µ

))
. In view of Lemma 3.1, sp = q = 0 . Then

(
x q
sp y

)
∈ comm

((
1 0
0 0

))
.

Therefore, (
1 0
0 0

)
∈ comm2

((
λ 0
0 µ

))
.

Furthermore,
(

λ 0
0 µ

)(
1 0
0 0

)
∈ L(s)(R)qnil and so A is quasipolar.

Case 4. A is similar to a diagonal matrix
(

λ 0
0 µ

)
, where λ ∈ U(R) , µ ∈ J(R) , and lµ − rλ , lλ − rµ

are injective. Then similar to Case 3, A is quasipolar with the spectral idempotent
(

0 0
0 1

)
. This completes

the proof. 2

Corollary 3.3 Let R be a commutative local ring, and let s ∈ R . Then A ∈ L(s)(R) is quasipolar if and only
if

(1) A ∈ GL2(R) ; or

(2) A2 ∈ J(L(s)(R)) ; or

(3) A is similar to a diagonal matrix in L(s)(R) .

Proof =⇒ This is obvious by Theorem 3.2.
⇐= If A ∈ GL2(R) or A2 ∈ J(L(s)(R)) , then A is quasipolar by Theorem 3.2. Suppose that A is

similar to a diagonal matrix
(

α 0
0 β

)
. If α, β ∈ U(R) , then A ∈ U(L(s)(R)) and so A is quasipolar. If

α, β ∈ J(R) , then A ∈ J(L(s)(R)) and so A is quasipolar. Otherwise, A is similar to
(

α 0
0 β

)
, where

α ∈ U(R) , β ∈ J(R) or α ∈ J(R) , β ∈ U(R) . According to Theorem 3.2, A ∈ L(s)(R) is quasipolar, as
asserted. 2

Theorem 3.4 Let R be a local ring, and let s ∈ C(R) . Then A ∈ L(s)(R) is pseudopolar if and only if
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(1) A ∈ GL2(R) or A2 ∈ J(L(s)(R)) ; or

(2) A is similar to a diagonal matrix
(

λ 0
0 µ

)
in L(s)(R) , where λ ∈ J(R) , µ ∈ U(R) or λ ∈ U(R) ,

µ ∈ J(R) , and lµ − rλ , lλ − rµ are injective.

Proof Let A be pseudopolar. It is clear that A ∈ GL2(R) if and only if A is pseudopolar with an idempotent(
0 0
0 0

)
. Also, A2 ∈ J(L(s)(R)) if and only if A is pseudopolar with an idempotent

(
1 0
0 1

)
. Hence, we

may assume A /∈ GL2(R) or A2 /∈ J(L(s)(R)) . Since A is pseudopolar, there exists P 2 = P ∈ L(s)(R) such
that P ∈ comm2(A) , A+P ∈ U(L(s)(R)) , and for some k ≥ 1 , AkP ∈ J(L(s)(R)) . Then by Lemma 2.5, there

exists V ∈ U(L(s)(R)) such that V −1PV =

(
e 0
0 f

)
. We may take e = 1 , f = 0 or e = 0 , f = 1 . If e = 1

and f = 0 , since AP = PA , A is similar to
(

λ 0
0 µ

)
where λ ∈ J(R) , µ ∈ U(R) . Thus,

(
λ 0
0 µ

)
is

pseudopolar since A is pseudopolar. Hence, the strongly spectral idempotent of
(

λ 0
0 µ

)
is Q =

(
1 0
0 0

)
.

To see that lλ − rµ is injective, let (lλ − rµ)(x) = 0 . Then

(
λ 0
0 µ

)(
0 x
0 0

)
=

(
0 x
0 0

)(
λ 0
0 µ

)
.

Since Q ∈ comm2

((
λ 0
0 µ

))
, we have x = 0 as asserted. If (lµ − rλ)(y) = 0 , then for B =

(
0 0
y 0

)
,

B

(
λ 0
0 µ

)
=

(
λ 0
0 µ

)
B . Hence, similarly, lµ − rλ is injective. If e = 0 and f = 1 , then A is similar to(

λ 0
0 µ

)
where λ ∈ U(R) and µ ∈ J(R) . Furthermore,

(
λ 0
0 µ

)
is pseudopolar with the strongly spectral

idempotent
(

0 0
0 1

)
. Hence, lµ − rλ and lλ − rµ are injective. By Lemma 3.1, the converse is obvious. 2

Corollary 3.5 Let R be a commutative local ring, and let s ∈ R . Then A ∈ L(s)(R) is quasipolar if and only
if it is pseudopolar.

Proof ⇐= This is obvious by Theorem 3.2 and Theorem 3.4, as A2 ∈ J(L(s)(R)) implies that A ∈ L(s)(R)qnil .
=⇒ If s ∈ U(R) , we obtain the result by [3] and Proposition 2.1. We may assume that s ∈ J(R) .

Write A =

(
x q
sp y

)
∈ L(s)(R)qnil . Then xy = det(A) + spq ∈ J(R) . Suppose x + y ∈ U(R) . Choose

Y =

(
−(x+ y)−1 0

0 −(x+ y)−1

)
. Then Y ∈ comm(A) . Hence, I2 + AY ∈ U(L(s)(R)) . This shows that

1−x(x+y)−1, 1−y(x+y)−1 ∈ U(R) . Thus, x, y ∈ U(R) , a contradiction. Therefore, x+y ∈ J(R) . Regarding
A as a matrix in M2(R) , by the Cayley–Hamilton theorem, A2 = tr(A)A− det(A)I2 ∈ M2(J(R)) . Moreover,
we have A2 ∈ J(L(s)(R)) . Therefore, we complete the proof by Theorem 3.4 and Theorem 3.2. 2
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Let R be a commutative local ring, let s ∈ R , and let A ∈ L(s)(R) . Evidently, A ∈ L(s)(R)qnil if and
only if A ∈ M2(R)qnil if and only if A2 ∈ M2(J(R)) .

Example 3.6 Let R = Z4 . Then we have(
1 3
1 2

)−1 (
3 3
2 0

)(
1 3
1 2

)
=

(
2 0
0 1

)
.

Hence,
(

3 3
2 0

)
is isomorphic to the diagonal matrix

(
2 0
0 1

)
in M2(Z4) . However,

(
3 3
2 0

)
is not

isomorphic to the diagonal matrix
(

2 0
0 1

)
in L(2)(Z4) . Otherwise, we can find some p, q ∈ Z4 such that

(
3 3
2 0

)(
x q
2p y

)
=

(
x q
2p y

)(
2 0
0 1

)
,

where x, y are −1 or 1 . Thus, 2x = 0 , and so 2 = 0 , which is absurd. In this case, l2−r1 and l1−r2 : Z4 → Z4

are injective.
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