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Abstract: Andrews, Lewis, and Lovejoy studied arithmetic properties of partitions with designated summands that are
defined on ordinary partitions by tagging exactly one part among parts with equal size. A bipartition of n is an ordered
pair of partitions (π1, π2) with the sum of all of the parts being n . In this paper, we investigate arithmetic properties
of bipartitions with designated summands. Let PD−2(n) denote the number of bipartitions of n with designated
summands. We establish several Ramanujan-like congruences and an infinite family of congruences modulo 9 satisfied
by PD−2(n) .
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1. Introduction
In [1], Andrews et al. investigated the number of partitions with designated summands that are defined on
ordinary partitions by designating exactly one part of each part size. Let PD(n) denote the number of partitions
of n with designated summands. For instance, there are ten partitions of 4 with designated summands:

4′, 3′ + 1′, 2′ + 2, 2 + 2′, 2′ + 1′ + 1,

2′ + 1 + 1′, 1′ + 1 + 1 + 1, 1 + 1′ + 1 + 1, 1 + 1 + 1′ + 1, 1 + 1 + 1 + 1′.

Thus, PD(4) = 10 . Andrews et al. [1] obtained the generating function of PD(n) as given by

∞∑
n=0

PD(n)qn =
(q6; q6)∞

(q; q)∞(q2; q2)∞(q3; q3)∞
=

f6
f1f2f3

, (1.1)

where here and throughout this paper (a; q)∞ stands for the q -shifted factorial

(a; q)∞ =

∞∏
n=1

(1− aqn−1), |q| < 1,

and for any positive integer k , fk is defined by

fk = (qk; qk)∞.

∗Correspondence: shenyy@hhu.edu.cn
2010 AMS Mathematics Subject Classification: 05A17, 11P83

This work is licensed under a Creative Commons Attribution 4.0 International License.
2325

https://orcid.org/0000-0002-1316-9927
https://orcid.org/0000-0003-2687-0031


HAO and SHEN/Turk J Math

By using modular forms and q -series identities, Andrews et al. [1] studied arithmetic properties of the partition
function PD(n) . In particular, they obtained a 2 -dissection formula for the generating function of PD(n) and
a Ramanujan-type congruence as given by

PD(3n+ 2) ≡ 0 (mod 3). (1.2)

Later, Chen et al. [8] established a 3 -dissection formula for the partition function PD(n) relying on Chan’s
identity[6] on Ramanujan’s cubic continued fraction and some identities on cubic theta functions. The generating
function of PD(3n+2) implies the congruence (1.2) of Andrews et al. By introducing a rank for partitions with
designated summands, Chen et al. [8] gave a combinatorial interpretation of the congruence (1.2). Recently,
Xia[22] also investigated the arithmetic properties of the partition function PD(n) . He proved several infinite
families of congruences modulo 9 and 27 for PD(n) by utilizing the generating function of PD(3n) and
PD(3n + 1) derived in [8]. Xia[22] also found some congruences modulo 27 for PD(n) by employing some
results due to Newman[19].

A bipartition π of n is an ordered pair of partitions (π1, π2) with the sum of all of the parts being n .
Let p−2(n) denote the number of bipartitions of n . The generating function of p−2(n) equals

∞∑
n=0

p−2(n)q
n =

1

(q; q)2∞
=

1

f21
.

There are numerous remarkable results on arithmetic properties for p−2(n) (see [2, 11, 12, 20]). Recently,
arithmetic properties for bipartitions with certain restrictions on each partition have drawn a great deal of
interest (see [5, 7, 9, 10]).

In this paper, we wish to consider bipartitions with designated summands. More specifically, a bipartition
with designated summands is a bipartition π = (π1, π2) for which π1 and π2 are both partitions with designated
summands. Notice that π1 and π2 are allowed to have one part of equal size tagged in common. For instance,
π = (2′, 2′) is a bipartition of 4 with designated summands. Let PD−2(n) denote the number of bipartitions
of n with designated summands. We have the generating function of PD−2(n) as given by

∞∑
n=0

PD−2(n)q
n =

(q6; q6)2∞
(q; q)2∞(q2; q2)2∞(q3; q3)2∞

=
f26

f21 f
2
2 f

2
3

. (1.3)

In a very recent work, Naika and Shivashankar[18] investigated the arithmetic properties of the generating
function of PD−2(n) . They proved that this function satisfied various congruence properties modulo 3 and
powers of 2.

In this paper, we proceed to study the congruence properties of bipartitions with designated summands.
The main objective of this paper is to prove the following four congruences modulo 9 for the partition function
PD−2(n) :

PD−2(9n+ 6) ≡ 0 (mod 9), (1.4)

PD−2(12n+ 6) ≡ 0 (mod 9), (1.5)

PD−2(12n+ 10) ≡ 0 (mod 9), (1.6)

PD−2(3
α(6n+ 2)) ≡ 0 (mod 9), (1.7)

where n ≥ 0 and α ≥ 1 .
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2. Preliminaries
In this section, we present some results that will be used in our proofs.

Let f(a, b) be Ramanujan’s general theta function given by

f(a, b) =

∞∑
n=−∞

an(n+1)/2bn(n−1)/2, |ab| < 1. (2.1)

Jacobi triple product identity can be illustrated by Ramanujan’s notation as follows:

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (2.2)

We recall two special cases of f(a, b) [3, Eq. (1.2.2) and Eq. (1.2.3)] as given by

φ(q) =

∞∑
n=−∞

qn
2

=
f52
f21 f

2
4

, (2.3)

ψ(q) =

∞∑
n=0

qn(n+1)/2 =
f22
f1
. (2.4)

It is easy to check that

φ(−q) = f21
f2
. (2.5)

The following dissection formula proved by Hirschhorn and Sellers[16] is crucial in our proofs.

Lemma 2.1 We have

1

φ(−q)
=

φ(−q9)
φ(−q3)4

(
φ(−q9)2 + 2qφ(−q9)X(−q3) + 4q2X(−q3)2

)
, (2.6)

where

X(q) =
f22 f3f12
f1f4f6

.

Replacing q by −q in [9, Eq. (2.9)], we obtain the following lemma.

Lemma 2.2 We have

1

ψ(q)
=

ψ(q9)

ψ(q3)4
(
A(q3)2 − qA(q3)ψ(q9) + q2ψ(q9)2

)
, (2.7)

where

A(q) =
f2f

2
3

f1f6
. (2.8)

We also need the following five 2 -dissection formulae.
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Lemma 2.3 The following 2-dissections hold:

f1
f33

=
f2f

2
4 f

2
12

f76
− q

f32 f
6
12

f24 f
9
6

, (2.9)

f33
f1

=
f34 f

2
6

f22 f12
+ q

f312
f4
, (2.10)

f3
f31

=
f64 f

3
6

f92 f
2
12

+ 3q
f24 f6f

2
12

f72
, (2.11)

f31
f3

=
f34
f12

− 3q
f22 f

3
12

f4f26
, (2.12)

1

f21 f
2
3

=
f48 f

10
12

f42 f
2
4 f

8
6 f

4
24

+ 2q
f44 f

4
12

f62 f
6
6

+ q2
f104 f424

f82 f
4
6 f

4
8 f

2
12

. (2.13)

(2.9) and (2.10) were proved in [15, Lemma 2.1]. (2.11) and (2.13) were obtained by Xia and Yao [23, Eq. (3.38)
and Eq. (3.13)]. (2.12) is due to Hirschhorn et al. [14, Eq. (1.35)].

The cubic theta function a(q) was introduced by Borwein et al. [4] and is defined by

a(q) =

∞∑
m,n=−∞

qm
2+mn+n2

.

From [13] we find that

a(q) = 1 + 6

∞∑
n=0

(
q3n+1

1− q3n+1
− q3n+2

1− q3n+2

)
.

Let

P (q) = f1a(q) = f1

(
1 + 6

∞∑
n=0

(
q3n+1

1− q3n+1
− q3n+2

1− q3n+2

))
. (2.14)

Wang proved the following results.

Lemma 2.4 ([21, Lemma 2.3]) The following 3-dissection holds:

f31 = P (q3)− 3qf39 , (2.15)

where
P (q) = f1a(q) = f1φ(q)φ(q

3) + 4qf1ψ(q
2)ψ(q6). (2.16)

Lemma 2.5 ([21, Lemma 2.4]) We have

P (q3)− 27qf93 =
f121
f33

, (2.17)

and
1

f31
=

f39
f123

(
P (q3)2 + 3qP (q3)f39 + 9q2f69

)
. (2.18)
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For a partition π , we can construct its Ferrers–Young diagram. For example, the Ferrers–Young diagram
for the partition π = (4, 3, 3, 1) is illustrated as below.

•
•
•
•

•
•
•

•
•
• •

Figure. π = (4, 3, 3, 1) .

The node in position (i, j) in the Ferrers–Young diagram can be assigned a hook number h(i, j) , which
is defined as the number of nodes in the hook containing that node. For instance, the hook numbers of the
nodes in the first row of π = (4, 3, 3, 1) are 7, 5, 4, and 1, respectively. Given a partition π of n , we call π a
t -core if it has no hook numbers divisible by t (see [17]). Let B3(n) be the number of partition triples of n
where each partition is a 3 -core. The generating function of B3(n) is given by

∞∑
n=0

B3(n)q
n =

f93
f31
.

Wang[21] derived the following dissection formulae of B3(n) and a 2 -dissection formula of 1
f5
1 f3

.

Lemma 2.6 We have
∞∑

n=0

B3(3n)q
n = P (q)2

f33
f31
, (2.19)

=
f102 f106

f51 f3f
4
4 f

4
12

+ 16q2
f33 f

4
4 f

4
12

f1f22 f
2
6

+ 8q
f42 f3f

4
6

f31
, (2.20)

∞∑
n=0

B3(6n)q
n =

f102 f93
f71 f

6
6

+ 16q
f72 f

3
6

f41
+ 27q

f22 f
5
3 f

2
6

f31
. (2.21)

(2.19) was proved in [21, Theorem 2.2]. (2.20) and (2.21) were proved in [21, Theorem 2.4].

Lemma 2.7 We have
1

f51 f3
=

(
f144

f172 f6f212
+ 3q2

f64 f
6
12

f56 f
13
2

)
+ q

(
5
f104 f212
f152 f36

− 9q2
f24 f

10
12

f76 f
11
2

)
. (2.22)

Identity (2.22) was obtained by Wang[21, Theorem 2.4].

3. Congruences modulo 9 for PD−2(n)

In this section, we begin by proving the first two congruences modulo 9 for the generating function of PD−2(n) .

Theorem 3.1 For each nonnegative integer n , we have

PD−2(12n+ 6) ≡ 0 (mod 9), (3.1)

PD−2(18n+ 6) ≡ 0 (mod 9). (3.2)
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Proof Utilizing (1.3), (2.4), (2.7), and (2.18), we get
∞∑

n=0

PD−2(n)q
n =

f26
f23

· 1

f31
· f1
f22

≡ f26
f23

· f
3
9

f123

(
P (q3)2 + 3qP (q3)f39

)
× ψ(q9)

ψ(q3)4
(
A(q3)2 − qA(q3)ψ(q9) + q2ψ(q9)2

)
(mod 9). (3.3)

Choosing the terms on both sides of (3.3) for which the powers of q are of the form 3n , and replacing q3 by
q , we obtain that

∞∑
n=0

PD−2(3n)q
n ≡ H1(q) +H2(q) (mod 9), (3.4)

where

H1(q) = P (q)2A(q)2
f22 f

3
3

f141
· ψ(q

3)

ψ(q)4
, (3.5)

H2(q) = 3qP (q)
f22 f

6
3

f141
· ψ(q

3)3

ψ(q)4
. (3.6)

For all positive integers m and k , it is easy to see that

f3m3k ≡ f9mk (mod 9). (3.7)

Hence, by (2.4), (2.14), (3.6), and (3.7), we find that

H2(q) ≡ 3qf1 ·
f22 f

6
3

f141
· f

4
1

f82
· f

6
6

f33
≡ 3qf122 (mod 9). (3.8)

In view of (2.4), (2.8), (2.19), (3.5), and (3.7), we deduce that

H1(q) = P (q)2
f22 f

4
3

f21 f
2
6

· f
2
2 f

3
3

f141
· f

4
1

f82
· f

2
6

f3

≡ P (q)2
f33
f31 f

4
2

=
1

f42

∞∑
n=0

B3(3n)q
n (mod 9). (3.9)

Invoking (2.21), (3.4), (3.7), (3.8), and (3.9), we have
∞∑

n=0

PD−2(6n)q
n ≡ 1

f41

∞∑
n=0

B3(6n)q
n

≡ 1

f41

(
f102 f93
f71 f

6
6

+ 16q
f72 f

3
6

f41

)

≡ f63
f36

· 1

φ(−q)
+ 16q

f66
f33

· 1

ψ(q)
(mod 9). (3.10)
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By (2.4) and (2.5), we find that (3.10) can be written as
∞∑

n=0

PD−2(6n)q
n ≡ f2

f36
· f

6
3

f21
+ 16q

f66
f22

· f1
f33

(mod 9). (3.11)

Using (2.9) and (2.10), we choose the coefficients of q2n+1 on both sides of (3.11) and obtain that
∞∑

n=0

PD−2(12n+ 6)qn ≡ 18
f22 f

2
6

f1f3
(mod 9). (3.12)

As a result, (3.1) is true.
Next, employing (2.6) and (2.7), we consider the coefficients of q3n+1 on both sides of (3.10) and observe

that
∞∑

n=0

PD−2(18n+ 6)qn ≡ 2
f61
f32

· φ(−q
3)2

φ(−q)4
X(−q) + 16

f62
f31

· ψ(q
3)

ψ(q)4
A(q)2 (mod 9). (3.13)

By (2.4), (2.5), (2.8), and the fact

X(−q) = f1f
2
6

f2f3
,

we deduce that
∞∑

n=0

PD−2(18n+ 6)qn ≡ 18
f33
f1

(mod 9). (3.14)

Hence, we arrive at (3.2). This completes the proof. 2

In order to show (1.4), we need to prove the following theorem.

Theorem 3.2 For each nonnegative integer n , we have
PD−2(18n+ 15) ≡ 0 (mod 9). (3.15)

Proof Employing (3.4), (3.8), and (3.9), we have
∞∑

n=0

PD−2(3n)q
n ≡ H1(q) +H2(q)

≡ 1

f42

∞∑
n=0

B3(3n)q
n + 3qf122 (mod 9). (3.16)

Invoking (2.10), (2.11), (2.20), (2.22), and (3.7), we extract those terms involving the powers q2n+1 of (3.16)
and find that

∞∑
n=0

PD−2(6n+ 3)qn ≡ 13
f62 f

7
3

f91 f
2
6

+ 16q
f32 f

7
6

f61 f
2
3

+ 3f121

≡ 13
f43
f26

· f92 · 1

f32
· f

3
3

f91
+ 16q

f76
f23

· f
3
2

f91
· f31 + 3f43

≡ 13f43 f6 ·
1

f32
+ 16q

f76
f53

· f32 f31 + 3f43 (mod 9). (3.17)
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Applying (2.15) and (2.18), the above identity can be written as
∞∑

n=0

PD−2(6n+ 3)qn ≡13
f43 f

3
18

f116

(
P (q6)2 + 3q2P (q6)f318 + 9q4f618

)
+ 16q

f76
f53

(
P (q6)− 3q2f318

) (
P (q3)− 3qf39

)
+ 3f43

≡13
f43 f

3
18

f116

(
P (q6)2 + 3q2P (q6)f318 + 9q4f618

)
+ 16q

f76
f53

(
P (q6)P (q3)− 3qf39P (q

6)− 3q2f318P (q
3) + 9q3f39 f

3
18

)
+ 3f43 (mod 9).

(3.18)

Selecting those terms on both sides of (3.18) whose powers of q are of the form 3n+ 2 , we obtain that
∞∑

n=0

PD−2(18n+ 15)q3n+2 ≡ 13
f43 f

3
18

f116
· 3q2f318P (q6)− 16q

f76
f53

· 3qf39P (q6) (mod 9).

Dividing the above formula by q2 , and replacing q3 by q , we derive that
∞∑

n=0

PD−2(18n+ 15)qn ≡ 39
f41 f

6
6

f112
P (q2)− 48

f72 f
3
3

f51
P (q2) (mod 9). (3.19)

By (2.14), (3.7), and (3.19), we find
∞∑

n=0

PD−2(18n+ 15)qn ≡ 39
f41 f

6
6

f102
− 48

f82 f
3
3

f51

≡ 39f41 f
8
2 − 48f41 f

8
2 = −9f41 f

8
2 (mod 9), (3.20)

which yields (3.15). This completes the proof. 2

Combining (3.2) and (3.15), it turns out that (1.4) is true.
Next, we present a proof of the third congruence.

Theorem 3.3 For each nonnegative integer n , we have

PD−2(12n+ 10) ≡ 0 (mod 9). (3.21)

Proof Selecting those terms on both sides of (3.3) for which the powers of q are of the form 3n+1 , dividing
by q , and replacing q3 by q , we get

∞∑
n=0

PD−2(3n+ 1)qn ≡ G1(q)−G2(q) (mod 9), (3.22)

where

G1(q) = 3P (q)A(q)2
f22 f

6
3

f141
· ψ(q

3)

ψ(q)4
, (3.23)

G2(q) = P (q)2A(q)
f22 f

3
3

f141
· ψ(q

3)2

ψ(q)4
. (3.24)
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By (2.4), (2.8), and (2.14), we deduce that

G1(q) ≡ 3
f22 f

6
3

f141
· f1 ·

1

ψ(q)
· f

2
2 f

4
3

f21 f
2
6

≡ 3
f22
f26

(
f33
f1

)2

(mod 9), (3.25)

G2(q) = P (q)2
f22 f

3
3

f141
· f

4
1 f

4
6

f82 f
2
3

· f2f
2
3

f1f6
≡ P (q)2

f42
f21

(mod 9). (3.26)

Invoking (2.3), (2.14), (2.16), and (3.26), we get

G2(q) ≡ f42

(
1 + 12

∞∑
n=0

(
q3n+1

1− q3n+1
− q3n+2

1− q3n+2

))

= 2f42

(
1 + 6

∞∑
n=0

(
q3n+1

1− q3n+1
− q3n+2

1− q3n+2

))
− f42

≡ 2f42
(
φ(q)φ(q3) + 4qψ(q2)ψ(q6)

)
− f42

≡ 2
f92 f

5
6

f24 f
2
12

· 1

f21 f
2
3

+ 8q
f32 f

2
4 f

2
12

f6
− f42 (mod 9). (3.27)

Hence, by (3.22), (3.25), and (3.27), we derive that
∞∑

n=0

PD−2(3n+ 1)qn ≡ 3
f22
f26

(
f33
f1

)2

− 2
f92 f

5
6

f24 f
2
12

· 1

f21 f
2
3

− 8q
f32 f

2
4 f

2
12

f6
+ f42 (mod 9). (3.28)

By (2.10) and (2.13), the above identity can be written as
∞∑

n=0

PD−2(3n+ 1)qn ≡ 3
f22
f26

(
f34 f

2
6

f22 f12
+ q

f312
f4

)2

− 2
f92 f

5
6

f24 f
2
12

(
f48 f

10
12

f42 f
2
4 f

8
6 f

4
24

+2q
f44 f

4
12

f62 f
6
6

+ q2
f104 f424

f82 f
4
6 f

4
8 f

2
12

)
− 8q

f32 f
2
4 f

2
12

f6
+ f42 (mod 9). (3.29)

Choosing the terms on both sides of (3.29) for which the powers of q are of the form 2n + 1 , dividing by q ,
and replacing q2 by q , we obtain that

∞∑
n=0

PD−2(6n+ 4)qn ≡ 6f22 f
2
6 − 12f22 f

2
6 · f

3
1

f3
(mod 9). (3.30)

Applying (2.12) to (3.30), we get
∞∑

n=0

PD−2(6n+ 4)qn ≡ 6f22 f
2
6 − 12f22 f

2
6

(
f34
f12

− 3q
f22 f

3
12

f4f26

)
(mod 9). (3.31)

Extracting the terms on both sides of (3.31) for which the powers of q are of the form 2n+ 1 , dividing by q ,
and replacing q2 by q , we are led to

∞∑
n=0

PD−2(12n+ 10)qn ≡ 36
f41 f

3
6

f2
(mod 9). (3.32)
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Hence, we arrive at (3.21). This completes the proof. 2

Finally, we close this article by proving the last congruence.

Theorem 3.4 For n ≥ 0 and α ≥ 1 , we have

PD−2(3
α(6n+ 2)) ≡ 0 (mod 9). (3.33)

Proof By (2.6), (2.7), and (3.10), we deduce that
∞∑

n=0

PD−2(6n)q
n ≡ f63

f36
· φ(−q

9)

φ(−q3)4
(
φ(−q9)2 + 2qφ(−q9)X(−q3) + 4q2X(−q3)2

)

+ 16q
f66
f33

· ψ(q
9)

ψ(q3)4
(
A(q3)2 − qA(q3)ψ(q9) + q2ψ(q9)2

)
(mod 9). (3.34)

Extracting those terms associated with powers q3n on both sides of (3.34) and replacing q3 by q , we observe
that

∞∑
n=0

PD−2(18n)q
n ≡ f61

f32
· φ(−q

3)3

φ(−q)4
+ 16q

f62
f31

· ψ(q
3)3

ψ(q)4
(mod 9). (3.35)

Applying (2.4) and (2.5) to (3.35), we are led to
∞∑

n=0

PD−2(18n)q
n ≡ f63

f36
· 1

φ(−q)
+ 16q

f66
f33

· 1

ψ(q)
(mod 9). (3.36)

In view of (3.10) and (3.36), we obtain

PD−2(6n) ≡ PD−2(18n) (mod 9). (3.37)

Based on (3.2) and (3.37), by induction on α , it yields that (3.33) is true. This completes the proof. 2
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