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Abstract: In this paper, we develop the weighted energy estimates for arbitrary 4-convex vectors and the vectors having
both 4-convex and 4-concave functions as their arguments. To do this, we first develop these estimates for smooth 4-
convex vectors and then, through mollification, extend the results for arbitrary 4-convex vectors. This type of estimates
are valuable in problems of financial mathematics for the establishment of optimal investment strategies
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1. Introduction
The role of convex sets, convex functions, and their generalizations are important in applied mathematics,
especially in nonlinear programming and optimization theory [7]. For example, in economics, convexity plays a
fundamental role in equilibrium and duality theory. The convexity of sets and functions has been the subject of
many studies in recent years. However, in many new problems encountered in applied mathematics the notion of
convexity is not enough to produce favorite results and hence it is necessary to extend the notion of convexity to
the new generalized notions. Recently, several extensions have been considered for the classical convex functions
such that some of these new concepts are based on extension of the domain of a convex function (a convex set)
to a generalized form and some of them are new definitions in which there is no generalization on domain but
on the form of the definition [3].

A function is convex if and only if it is convex when restricted to any line that intersects its domain.
The analysis of convex functions is a well-developed field. Many results for convex functions can be interpreted
geometrically using epi graphs and applying results for convex sets [4].

The basic inequality in convex analysis is

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (1.1)

sometimes called Jensen’s inequality [3]. Many famous inequalities can be derived by applying Jensen’s
inequality to some appropriate convex function. The term convexity is generalized by different mathematicians
in many directions such as quasi convex functions, log convex functions, k convex functions, n convex functions,
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and (n-m) convex functions [4]. These are the new generalizations and all of these generalizations have many
interesting applications according to their constructions.

One of the important generalizations of the definition of convexity is n-convex functions. The function
f(x) is said to be an n-convex function if

f (n)(x) ≥ 0.

The weighted energy estimates for the convex functions and 4-convex functions are established in [1] and [5].
In [6], the author defined the convex vector and established the results for it and the vector having both convex
and concave components. It is natural to derive similar results for 4-convex vectors and vectors having both
4-convex and 4-concave components. For convenience we will use the following notations and definitions:

I = I(x0, r) stands for interval I(x0, r) , where xo = a+b
2 and r = a+b

2 − a and I is closed interval [a, b] .
The n-dimensional vector

F (x) =
(
f1(x), f2(x), ..., fn(x)

)
(1.2)

is called a smooth convex vector if

d2

dx2
fi(x) ≥ 0 ∀i = 1, 2, ..., n (1.3)

and a smooth 4-convex vector if

d4

dx4
fi(x) ≥ 0 ∀i = 1, 2, ..., n. (1.4)

The vector F (x) in (1.2) is arbitrary 4-convex provided

fi
(2)(λx+ (1− λ)y) ≤ λfi

(2)(x) + (1− λ)f
(2)
i (y) ∀i = 1, 2, . . . , n (1.5)

for each λ ∈ [0, 1] and all x, y belong to R.

Let χ
[j+1,n]

[1,j]
[a, b] be the class of vectors having convex functions on its first j components and the remaining

components are concave functions at interval [a, b] and χ
[j+1,n]

[1,j]
[a, b] be the class of vectors having concave

functions on its first j components and the remaining are convex at the interval [a, b] . It is trivial that if

F (x) ∈ χ
[j+1,n]

[1,j]
[a, b] then −F (x) ∈ χ

[1,j]

[j+1,n]
[a, b].

Now we define the class of 4 -convex vectors:
Let Υ

[j+1,n]

[1,j]
[a, b] be the class of vectors having 4-convex functions on its first j components and the

remaining components are 4-concave functions at interval [a, b] and Υ
[j+1,n]

[1,j]
[a, b] be the class of vectors having

4-concave functions on its first j components and the remaining are 4-convex at the interval [a, b] . It is trivial

that if F (x) ∈ Υ
[j+1,n]

[1,j]
[a, b] then −F (x) ∈ Υ

[1,j]

[j+1,n]
[a, b].

Let h(x) be the weight function, which is a nonnegative 2-concave function in C4[a, b] , i.e.

h(a) = h(b) = 0, h
′
(a) = h

′
(b) = 0, h

′′
(a) = h

′′
(b) = 0, h

′′′
(a) = h

′′′
(b) = 0. (1.6)

with a ≤ x ≤ b.
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The paper is organized as follows:
In the second section we develop the energy estimates for the smooth vectors, and we define the molifi-

cation of arbitrary convex vectors. In the last section we develop the estimates for arbitrary convex vectors

belonging to Υ
[j+1,n]

[1,j]
[a, b] and also belonging to χ

[j+1,n]

[1,j]
[a, b].

2. The case of smooth 4-convex vectors
Lemma 2.1 [1] Let f(x) and g(x) be both smooth 4-convex as well as smooth convex functions. Let h(x) be
the nonnegative smooth weight function as defined in (1.6) and satisfying the condition

h
′′
(x) ≤ 0 ∀ x ∈ I and h

′
(x) = h

′′
(x) = h

′′′
(x) = 0 ∀ x ∈ ∂I. (2.1)

Then the following estimate holds:

∫
I

(
|f

′′
(x)− g

′′
(x)|

)2
h(x)dx ≤

∫
I

((
f(x)− g(x)

)2
2

− sup
x∈I

|f(x)− g(x)|

(f(x) + g(x))

)
h(iv)(x)dx. (2.2)

Lemma 2.2 [1] Let f(x) and g(x) be both 4-concave as well as 2-concave functions. Let h(x) be the nonnegative
smooth weight function as defined in (1.6) and satisfying the condition h

′′
(x) ≤ 0 ∀ x ∈ I and

h
′
(x) = h

′′
(x) = h

′′′
(x) = 0 ∀ x ∈ ∂I.

Then the following estimate holds:

∫
I

(
|f

′′
(x)− g

′′
(x)|

)2
h(x)dx ≤

∫
I

((
f(x)− g(x)

)2
2

+ sup
x∈I

|f(x)− g(x)|

(f(x) + g(x))

)
h(iv)(x)dx. (2.3)

We will start with the following theorem:

Theorem 2.3 Let F (x) and G(x) be two smooth 4-convex vectors as well as smooth convex vectors as defined
in (1.3) and (1.5). Let h(x) be the smooth nonnegative weight function defined in (1.6) and satisfying (2.1);
then the following energy estimate is valid:

∫
I

∣∣∣F ′′
(x)−G

′′
(x)

∣∣∣2 h(x)dx ≤
n∑

i=1

∫
I

[
(fi(x)− gi(x))

2

2
− sup

x∈I
|fi(x)− gi(x)|

×
(
fi(x) + gi(x)

)]
h(iv)(x)dx. (2.4)
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Proof Take

∫
I

∣∣∣F ′′
(x)−G

′′
(x)

∣∣∣2 h(x)dx
and we have

∫
I

∣∣∣F ′′
(x)−G

′′
(x)

∣∣∣2 h(x)dx =

n∑
i=1

∫
I

(
f

′′

i (x)− g
′′

i (x)

)2

h(x)dx.

Now using lemma (2.1) , we have

∫
I

∣∣∣F ′′
(x)−G

′′
(x)

∣∣∣2 h(x)dx ≤
n∑

i=1

∫
I

[(
fi(x)− gi(x)

)2
2

− sup
x∈I

∣∣fi(x)− gi(x)
∣∣

(
fi(x) + gi(x)

)]
h(iv)(x)dx (2.5)

2

Remark 2.4 Taking the supremum of (2.5), we obtain

∫
I

∣∣∣F ′′
(x)−G

′′
(x)

∣∣∣2 h(x)dx ≤
n∑

i=1

[
1

2
∥fi(x)− gi(x)∥2L∞ + ∥fi(x)− gi(x)∥L∞

×
(
∥fi(x)∥L∞ + ∥gi(x)∥L∞

)] ∫
I

|h(iv)(x)|dx. (2.6)

Remark 2.5 If F (x) and G(x) are 4-concave vectors then using lemma (2.2) we have

∫
I

∣∣∣F ′′
(x)−G

′′
(x)

∣∣∣2 h(x)dx ≤
n∑

i=1

∫
I

[
(fi(x)− gi(x))

2

2
+ sup

x∈I
|fi(x)− gi(x)|

× (fi(x) + gi(x))

]
h(iv)(x)dx (2.7)

Theorem 2.6 Let F (x) and G(x) be two vectors that belong to Υ
[j+1,n]

[1,j]
[a, b] and also belong to χ

[j+1,n]

[1,j]
[a, b] .
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Let h(x) be the nonnegative weight function satisfying (1.6) ; then the following inequality is valid:

∫
I

∣∣F ′′
(x)−G

′′
(x)

∣∣2h(x)dx ≤
∫
I

[ n∑
i=1

(
fi(x)− gi(x)

)2
2

+

j∑
i=1

sup
x∈I

∣∣fi(x)− gi(x)
∣∣[fi(x) + gi(x)

]
−

n∑
i=j+1

sup
x∈I

∣∣fi(x)− gi(x)
∣∣

×
[
fi(x) + gi(x)

]]
h(iv)(x)dx. (2.8)

Proof Take ∫
I

|F
′′
(x)−G

′′
(x)|2h(x)dx,

and we have ∫
I

|F
′′
(x)−G

′′
(x)|2h(x)dx =

n∑
i=1

∫
I

(
f

′′

i (x)− g
′′

i (x)

)2

h(x)dx (2.9)

=

j∑
i=1

∫
I

(
f

′′

i (x)− g
′′

i (x)

)2

h(x)dx+

n∑
i=j+1

∫
I

(
f

′′

i (x)− g
′′

i (x)

)2

h(x)dx. (2.10)

Using lemma (2.1) on the first integral, we obtain

∫
I

(
f

′′

i (x)− g
′′

i (x)

)2

h(x)dx ≤
∫
I

[ n∑
i=1

(
fi(x)− gi(x)

)2
2

− sup
x∈I

∣∣fi(x)− gi(x)
∣∣

×
(
fi(x) + gi(x)

)]
h(iv)(x)dx, (2.11)

similarly using the lemma (2.2) on the second integral, we have the following inequality (2.8):

∫
I

(
f

′′

i (x)− g
′′

i (x)

)2

h(x)dx ≤
∫
I

[ n∑
i=1

(
fi(x)− gi(x)

)2
2

+ sup
x∈I

∣∣fi(x)− gi(x)
∣∣

×
(
fi(x) + gi(x)

)]
h(iv)(x)dx, (2.12)

On combining the inequality (2.11) and (2.12), we have the required inequality (2.8). 2

Now we define the vector convolution for

F (x) ∈ Υ
[j+1,n]

[1,j]
[a, b]

2095



SALEEM et al./Turk J Math

in the following way as
F (x) =

(
f1(x), f2(x), ....., fn(x)

)
take

ϵ =
(
ϵ1, ϵ2, ......, ϵn

)
,

and
ϵ→ 0 means {max

(
ϵ1, ϵ2, . . . , ϵn

)
} → 0.

Take
θϵ(x) = (θϵ1(x), θϵ2(x), ......., θϵn(x))

and

θϵi(x) =

{
cexp 1

x
ϵi

−1 if |x| < ϵi

0 if |x| > ϵi

∀ i = 1, 2, . . . , n.

We define the convolution as

F ∗ θϵ(x) =
(
f1 ∗ θϵ1 , f2 ∗ θϵ2 , ........., fn ∗ θϵn

)
Let us denote

fϵi = fi ∗ θϵi =
∫
ℜ

fi(x− y)θϵi(y)dy.

If fi is continuous then fϵi converges uniformly to fi in any compact subset
Ki ⊆ I i.e.

|fϵi − fi|−−−→ϵi→0
0 this implies that

|Fϵ − F |2 =

n∑
i=1

|fϵi − fi|2−−−→ϵi→0
.0

Now we claim that
Fϵ ∈ Υ

[i,j]

[j+1,n]
[a, b]

i.e. fϵi is a convex function ∀ i = 1, 2, ....., j and concave for ∀ i = j + 1, . . . , n. It can be seen in the following
way:

take

fϵi(λx1 + (1− λ)x2) =

∫
I

fi
(
λx1 + (1− λ)x2 − y

)
θϵi(y)dy

=

∫
I

fi
[
λ(x1 − y) + (1− λ)(x2 − y)

]
θϵi(y)dy. (2.13)

Now for i = 1, . . . j , we have

fϵi(λx1 + (1− λ)x2) ≤
∫
I

[
λfi(x1 − y) + (1− λ)fi(x2 − y)

]
θϵi(y)dy
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= λ

∫
I

fi(x1 − y)θϵi(y)dy + (1− λ)

∫
I

fi(x2 − y)θϵi(y)dy

= λfϵi(x1) + (1− λ)fϵi(x2)

and for i = j + 1, . . . n , from (2.13) we have

fϵi(λx1 + (1− λ)x2) ≥ λ

∫
I

fi(x1 − y)θϵi(y)dy + (1− λ)

∫
I

fi(x2 − y)θϵi(y)dy

= λfϵi(x1) + (1− λ)fϵi(x2).

Thus fϵi is 2-convex. Similarly, the 2-convexity of fi
2 yields the 2-convexity of f2

ϵi . Therefore, fϵi is 4-convex.

3. The case of arbitrary 4-convex vectors

We will use Ik for the interval I(xo, rk) , x0 is the center, and radius rk is defined as where

rk = r
(k + 1

k + 2

)
.

It is trivial that Ik ⊂ Ik+1 and
∞∪
k=1

Ik = I

Theorem 3.1 Let F (x) be the continuous arbitrary 4-convex vector; then it satisfies∫
I

∣∣∣F ′′
(x)

∣∣∣2 h(x)dx < ∞.

Proof Take Fϵ(x) , the mollification of the arbitrary 4-convex vector F (x) as defined in (1.5). Writing the
inequality (2.6) for F = Fm and G = 0 and for intervals Ik+l ⊂ I , we have

∫
Ik+l

∣∣∣F ′′

m(x)
∣∣∣2 hk+ldx ≤

n∑
i=1

[
3

2

∥∥f(m,i)(x)
∥∥2
L

∞
Ik+l

] ∫
Ik+l

∣∣∣h(iv)
k+l(x)

∣∣∣ dx. (3.1)

Denote ∫
Ik+l

∣∣∣h(iv)
k+l(x)dx

∣∣∣ = ck+l

and we have ∫
Ik+l

∣∣∣F ′′

m(x)
∣∣∣2 hk+ldx ≤

n∑
i=1

[
3

2

∥∥f(m,i)(x)
∥∥2
L

∞
Ik+l

]
.(ck+l) (3.2)

Applying limit as m → ∞ , we have∫
Ik+l

∣∣∣F ′′
(x)

∣∣∣2 hk+ldx ≤
n∑

i=1

3

2
∥fi(x)∥2L∞

Ik+l

(ck+l).
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Since Ik ⊆ Ik+l so ∫
Ik

∣∣∣F ′′
(x)

∣∣∣2 hk+l(x)dx ≤ 3

2
∥F (x)∥2L∞

Ik+l

(ck+l).

In the above integral make l → ∞, and we have∫
I

∣∣∣F ′′
(x)

∣∣∣2 h(x)dx ≤ 3

2
∥F (x)∥2L∞

I
c∞ < ∞.

Since the above integral is bounded for each k , so∫
I

∣∣∣F ′′
(x)

∣∣∣2 h(x)dx < ∞.

2

Theorem 3.2 Let F (x) and G(x) be two arbitrary 4-convex vectors that belong to Υ
[i,j]

[j+1,n]
[a, b] and also belong

to χ
[i,j]

[j+1,n]
[a, b] and let h(x) be the nonnegative weight function defined in (1.6) over the interval I ; then the

following estimate is valid:

∫
I

∣∣∣F ′′
(x)−G

′′
(x)

∣∣∣2 h(x)dx ≤
n∑

i=1

1

2
∥fi(x)− gi(x)∥2L∞ + ∥fi(x)− gi(x)∥L∞

× (∥fi(x)∥L∞ + ∥gi(x)∥L∞ )

∫
I

h(iv)(x)dx. (3.3)

Proof For arbitrary 4-convex vectors F (x) and G(x) , which are continuous, take smooth approximation
Fm(x) and Gm(x) . There exist integer mk+l such that Fm and Gm(x) are smooth over the interval Ik+l

and Fm(x) and Gm(x) converge uniformly to F (x) and G(x) , respectively, for m ≥ mk+l. Let us write the
inequality (2.6) for the functions Fm(x) and Gm(x) on the interval Ik+l

∫
Ik+l

∣∣∣F ′′

m(x)−G
′′

m(x)
∣∣∣2 hk+ldx ≤

n∑
i=1

[∥∥f(m,i)(x)− g(m,i)(x)
∥∥2
L

∞
Ik+l

2

+
∥∥f(m,i)(x) − g(m,i)(x)

∥∥
L

∞
Ik+l

×
(
∥f(m,i)(x)∥L∞

Ik+l

+∥g(m,i)(x)∥L∞
Ik+l

)]
×

∫
Ik+l

h
(iv)
k+l(x)dx. (3.4)
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Applying limit m → ∞ , we get

∫
Ik+l

∣∣∣F ′′
(x)−G

′′
(x)

∣∣∣2 hk+ldx ≤
n∑

i=1

[∥fi(x)− gi(x)∥2L∞
Ik+l

2

+ ∥fi(x)− gi(x)∥L∞
Ik+l

×
(
∥fi(x)∥L∞

Ik+l

+∥gi(x)∥L∞
Ik+l

)]
∫

Ik+l

∣∣∣h(iv)
k+l(x)

∣∣∣ dx. (3.5)

Writing the left integral for Ik+l smaller interval Ik ⊂ Ik+l and taking the limit as l → ∞ , we obtain

∫
Ik

∣∣∣F ′′
(x)−G

′′
(x)

∣∣∣2 hk(x)dx ≤
[ n∑

i=1

∥fi(x)− gi(x)∥2L∞
I

2

+ ∥fi(x)− gi(x)∥L∞
I

(
∥fi(x)∥L∞

I

+ ∥gi(x)∥L∞
I

)] ∫
I

|h(iv)(x)|dx (3.6)

by the last theorem, we have ∫
I

∣∣∣F ′′
(x)−G

′′
(x)

∣∣∣2 h(x)dx < ∞.

Taking the limit as k → ∞ , we obtain the result (3.3). 2
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