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Abstract: In this paper, we study certain multilinear operators of fractional integral type defined by

IA⃗α f⃗(x) =

∫
(Rn)m

f1(y1) · · · fm(ym)

|(x− y1, · · · , x− ym)|
mn−α+

m∑
i=1

(Ni−1)

m∏
i=1

RNi(Ai;x, yi)dy⃗,

where 0 < α < mn and RNi(Ai;x, yi) = Ai(x)−
∑

|γ|<Ni

1
γ!
DγAi(yi)(x− yi)

γ .

For the operator IA⃗α , we obtain an Olsen-type inequality on the Morrey space. Our proof is based on a complicated
multiple dyadic decomposition.
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1. Introduction
The classical fractional integral

Iα(f)(x) =

∫
Rn

f(y)

|x− y|n−α dy (0 < α < n)

plays important roles in many fields of mathematics. Its most significant feature is that Iα maps Lp(Rn)

continuously into Lq(Rn), with 1/p− 1/q = α
n and 1 < p < n/α, through the well known Hardy–Littlewood–

Sobolev embedding theorem (see [39]). The commutator Ibα of Iα is defined in the integral form by

Ibα(f)(x) = [b, Iα](f)(x) =

∫
Rn

(b(x)− b(y))

|x− y|n−α f(y)dy (0 < α < n),

where b is a function in the space BMO of bounded mean oscillation. The commutator Ibα inherits from Iα

the embedding relation Ibα (Lq(Rn)) ⊂ Lp(Rn) with 1/p− 1/q = α
n and 1 < p < n/α. This property was

proved by Chanillo [4] in 1982.
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In another direction, in 1965, Calderón [3] introduced the famous Calderón commutator defined by

SA,1
Ω (f)(x) = p.v.

∫
Rn

Ω(x− y)

|x− y|n
A(x)−A(y)

|x− y|
f(y)dy.

Later, Bajsanski and Coifman [2] studied the generalized Calderón commutator as follows:

SA,m
Ω (f)(x) = p.v.

∫
Rn

Ω(x− y)

|x− y|n
Rm(A;x, y)

|x− y|m
f(y)dy,

where Rm(A, x, y) is the difference between a function A(x) and its Taylor polynomial of degree m− 1 with
center y :

Rm(A, x, y) = A(x)−
∑

|ν|≤m−1

1

ν!
DνA(y)(x− y)ν .

Inspired by the above works, Cohen and Gosselin [8] introduced the following generalized commutator:

TA
Ω (f)(x) = p.v.

∫
Rn

Ω(x− y)

|x− y|n+m−1Rm(A, x, y)f(y)dy,

where Ω is a homogeneous function of degree 0 and satisfies the integral zero property over the unit sphere
Sn−1.

Hence, if m = 1, TA
Ω reduces to the commutator of TΩ :

[A, TΩ](f)(x) = p.v.
∫
Rn

Ω(x− y)

|x− y|n
(A(x)−A(y)) f(y)dy.

When m ≥ 2, Cohen and Gosselin in [8] showed that TA
Ω is a bounded operator on spaces Lp(Rn) for all

1 < p < ∞, provided that Ω ∈ Lip1(Sn−1) and A has derivatives of order m− 1 in the space BMO(Rn).

The operator TA
Ω later plays an important role in the study of PDEs. For instance, by using the W 1,p

estimate for the elliptic equation of divergence form with partial BMO coefficients and the Lp boundedness
for a generalized commutator of Cohen–Gosselin type (see [27, 45]), Wang and Zhang in [41] obtained a simple
proof for Wu’s theorem (the reader may see [43] for Wu’s theorem).

Motivated by the above background, in [11], Ding introduced the generalized commutator of fractional
integral

TA
Ω,α(f)(x) =

∫
Rn

Ω(x− y)

|x− y|n+N−1−α
Rm(A, x, y)f(y)dy,

where 0 < α < n. As an expectation from the easy case N = 1 , Ding proved in [11] that if A has derivatives
of order N − 1 in Lr(Rn), 1 < r ≤ ∞, and Ω ∈ Ls(Sn−1) with s > n/(n − α) , then TA

Ω,α is bounded
from Lp(Rn) to Lq(Rn) with 1/p− 1/q − 1/r = α

n and 1 < p < n/α. As a consequence, in [42], Wu and
Yang extended Ding’s result at the end point q = ∞ by replacing DνA ∈ L∞(Rn) by DνA ∈ BMO(Rn)

for all multiindices ν satisfying |ν| = m − 1. Moreover, Gürbüz [17] established the BMO estimates for the
generalized commutators of rough fractional maximal and integral operators on generalized weighted Morrey
spaces, respectively.
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On the other hand, the theory of multilinear analysis has received extensive studies in the last 3 decades.
Among numerous references, in the following we list a few of them about the multilinear fractional integral that
are related to the study in this article.

In 1992, Grafakos [16] studied the multilinear fractional integral

Iα,θ⃗f⃗(x) =

∫
Rn

1

|y|n−α

m∏
i=1

fi(x− θiy)dy,

where
f⃗ = (f1, · · · , fm)

and
θ⃗ = (θ1, θ2, ..., θm)

is a fixed vector with distinct nonzero components.
Another multilinear fractional integral is

Iα,mf⃗(x) =

∫
(Rn)m

1

|(y1, ..., ym)|mn−α

m∏
i=1

fi(x− yi)dy1...dym,

where 0 < α < nm. Assume 1/s = −α/mn+
m∑
j=1

1/tj > 0 and 1 ≤ tj < ∞. Kenig and Stein in [24] proved

that if tj = 1 for some j then there exists a positive constant C independent of fi , such that

∥∥∥Iα,mf⃗
∥∥∥
Ls,∞(Rn)

≤ C

m∏
i=1

∥fi∥Lti (Rn) ,

and that if each tj > 1 then ∥∥∥Iα,mf⃗
∥∥∥
Ls(Rn)

≤ C

m∏
i=1

∥fi∥Lti (Rn) .

The commutator theory for the multilinear fractional integral operators can be found in [5, 44], among
others. Recently, Mo et al. [28] studied the following generalized commutator of the multilinear fractional
integral defined by

IA⃗α f⃗(x) =

∫
(Rn)m

f1(y1) · · · fm(ym)

|(x− y1, · · · , x− ym)|
mn−α+

m∑
i=1

(Ni−1)

m∏
i=1

RNi(Ai;x, yi)dy⃗,

where 0 < α < mn and RNi(Ai;x, yi) = Ai(x)−
∑

|γ|<Ni

1
γ!D

γA(yi)(x− yi)
γ with Ni ∈ Z+ .

Mo et al. [28] proved the boundedness of IA⃗α with DγiAi ∈ Λ̇βi
(|γi| = Ni − 1, 0 < βi < 1) where Λ̇βi

is
the homogeneous Lipschitz space. However, for the case where Ai has derivatives of order Ni−1 in BMO(Rn) ,

the boundedness of IA⃗α is still unknown. In this paper, we will try to study this question in some sense. Before
giving the main results of this paper, we introduce another space that plays important roles in PDEs.

Besides the Lebesgue space Lp, the Morrey space Mp
q (Rn) is another important function space with

definition as follows:
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Definition 1.1 ([29]) For 0 < q ≤ p < ∞, the Morrey space Mp
q (Rn) is the collection of all measurable

functions f whose Morrey space norm is

∥f∥Mp
q(Rn) = sup

Q⊂Rn

Q:cubes

|Q|1/p−1/q ∥fχQ∥Lq(Rn) < ∞.

This space was introduced in 1938 by Morrey in [29] in order to study the local behavior of solutions to second-
order elliptic partial differential equations. In [12], by means of the theories of singular integrals and linear
commutators, the authors established the regularity in Morrey spaces of strong solutions to the Dirichlet problem
of nondivergence elliptic equations with VMO coefficients. For more applications of the Morrey spaces to the
elliptic partial differential equations, one may see [13] for more details.

Here, we would like to mention that in many research papers, such as in [17, 19], the Morrey space is
defined in another way.

Definition 1.2 Let 0 ≤ λ ≤ n and 1 ≤ q < ∞ . Then for f ∈ Lq
loc(Rn) and any cube B = B(x, r) , the

Morrey space Lq,λ(Rn) is defined by

Lq,λ(Rn) =

{
f ∈ Lq,λ(Rn) : ∥f∥Lq,λ(Rn) = sup

x∈Rn,r>0
r−

λ
q ∥f∥Lq(B(x,r)) < ∞

}
.

Recall that 0 < q ≤ p < ∞ and 0 ≤ λ ≤ n . By checking the definitions of Mp
q(Rn) and Lp,λ(Rn) , it

is easy to see that if we take λ = (1 − q
p )n ∈ [0, n] , then Lq,n(1− q

p )(Rn) = Mp
q(Rn) . Moreover, if we choose

p = qn
n−λ ≤ q , then M

qn
n−λ
q (Rn) = Lq,λ(Rn) . Thus, we conclude that Mp

q(Rn) is equivalent to Lq,λ(Rn) .

Many authors studied the boundedness of fractional-type integral operators on Morrey-type spaces. One
may see [1, 17, 19, 32] for more details. For example, in [32], Spanne (but published by Peetre) proved the
following theorem.

Theorem A ([32]) Let 0 < α < n , 1 < p < n
α , 0 < λ < n− αp . Moreover, let 1/p− 1/q = α/n and λ

p = µ
q .

Then we have
∥Iαf∥Lq,µ ≤ C∥f∥Lp,λ .

Later, Adams proved the following theorem.

Theorem B ([1]) Let 1 < p < n−λ
α , 0 < λ < n− αp , 0 < α < n , and 1/p− 1/q = α

n−λ . Then we have

∥Iα(f)∥Lq,µ ≤ C∥f∥Lp,λ .

From [18], we have the following remark.

Remark C ([18]) Let 1/q1 = 1/p− α/n and 1/q2 = 1/p− α
n−λ . Moreover, we assume µ

q1
= λ

p . Then, using
the Hölder inequality, there is

∥Iαf∥Lq1,µ ≤ ∥Iαf∥Lq2,λ .

Thus, from Theorem B, we see that Theorem B improves Theorem A with 1 < p < n−λ
α .

2351



YU and LU/Turk J Math

Recently, Gürbüz and Güzel [19] improved Theorem B to a general case. Before giving the main results
of [19], the generalized Morrey space Lp,φ(Rn) is defined:

Definition 1.3 ([19]) Let φ(x, r) be a positive measurable function on Rn × (0,∞) . If 0 < p < ∞ , then the
generalized Morrey space Lp,φ(Rn) is defined by

Lp,φ(Rn) =

{
f ∈ Lp,φ(Rn) : ∥f∥Lp,φ(Rn) = sup

x∈Rn,r>0
φ(x, r)−1|B(x, r)|−1/p∥f∥Lp(B(x,r)) < ∞

}
,

where |B(x, r)| is the Lebesgue measure of the B(x, r) and |B(x, r)| = νnr
n with νn = |B(0, 1)| .

Obviously, if we take φ(x, r) = r
λ−n

p , then Lp,φ(Rn) becomes Lp,λ(Rn) .
Gürbüz and Güzel [19] proved the following theorem.

Theorem D ([19]) Suppose that Ω ∈ Ls(Sn−1) , 1 < s ≤ ∞ , is homogeneous of degree zero. Let 1 < s′ < p <

q < ∞ , 0 < α < n
p and let φ(x, t) satisfy the conditions

sup
r<t<∞

ess inf
t<τ<∞

φ(x, τ)tn ≤ Cφ(x, r)

and ∫ ∞

r

tαφ(x, t)1/p
dt

t
≤ Cr−

αp
q−p ,

where C does not depend on x ∈ Rn and r > 0 . Let also IΩ,α be a sublinear operator satisfying

∣∣∣∣IΩ,αf(x) ≤ c0

∫
Rn

|Ω(x− y)|
|x− y|n−α

|f(y)|dy
∣∣∣∣

and ∣∣IΩ,α

(
fχB(x0,r)

)
(x)
∣∣ ≤ rαMΩf(x)

holds for any ball B(x0, r) and the definition of MΩf(x) is

MΩ,αf(x) = sup
t>0

|B(x, t)|αn−1

∫
B(x,t)

|Ω(x− y)||f(y)|dy.

Then we have
∥IΩ,αf∥Lq,φ1/q ≤ C∥f∥

Lp,φ1/p .

Remark E Obviously, Theorem E is the essential improvement of Theorem B as the authors only assume
1 < p < q < ∞ .

Nowadays, Theorem B and its variants are called Adams-type inequalities since the inequality plays
significant roles in studying the boundedness for the fractional integral and its commutators on the Morrey
spaces (see [6, 10, 17, 19, 46] and others). Particularly, recently Sawano et al. obtained the following result.
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Theorem F ([36]) Suppose that the indices α, p0, q0, r0, p, q, r satisfy

1 < p ≤ p0 < ∞, 1 < q ≤ q0 < ∞, 1 < r ≤ r0 < ∞

and
q > r, 1/p0 > α/n ≥ 1/q0.

Also assume
r/r0 = p/p0, 1/p0 + 1/q0 − α/n = 1/r0.

Then, for all f ∈ Mp0
p (Rn) and g ∈ Mq0

q (Rn),

∥g · Iα(f)∥Mr0
r (Rn) ≤ C ∥f∥Mp0

p (Rn) ∥g∥Mq0
q (Rn) ,

where C is a positive constant independent of f and g . The above inequality is called an inequality of Olsen
type, since it was initially proposed by Olsen in [31], and Olsen found that this inequality plays important roles
in the study of the Schrödinger equation. Moreover, the Olsen-type inequality was proved in the case n = 3 by
Conlon and Redondo in [9] essentially. In fact, an analogous inequality on a generalized case was obtained in
[36]. Moreover, in [38] the authors obtained an Olsen-type inequality for the commutator Ibα with a quite elegant
method of dyadic decomposition. The reader also can see [23] on an Olsen-type inequality on the multilinear
fractional integral Iα,m. For more applications of Olsen-type inequalities to PDEs, one may see [14, 15, 37]
for details.

Motivated by the above background, we will give the Olsen-type inequalities of IA⃗α on the Morrey space
where Ai has derivatives of order Ni − 1 in BMO(Rn) .

Our results can be stated as follows.

Theorem 1.4 Suppose that there exist real numbers α, q, p, qi, pi (i = 1, · · · ,m), s , and t satisfying 0 < α <

mn, 1 < qi ≤ pi < ∞, 1 < q ≤ p < ∞, 1 < t ≤ s < ∞ , and

q > t, 1/p ≤ α/n < 1/p1 + · · ·+ 1/pm < 1.

Furthermore, we assume that

1/s = 1/p+ 1/p1 + · · ·+ 1/pm − α/n,
t

s
=

q1
p1

= · · · = qm
pm

.

If Ai has derivatives of order Ni − 1 in BMO(Rn) with Ni ≥ 2 and Ni ∈ Z+ , then there exists a positive
constant C independent of fi (i = 1, · · · ,m) and g , such that

∥g · IA⃗α f⃗∥Ms
t
≤ C

m∏
i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO∥g∥Mp
q

m∏
i=1

∥fi∥Mpi
qi
.

The method of the proof of Theorem 1.1 is also adapted to the case q = ∞ and g ≡ 1 . We have the
following corollary, which is also a new result and has its independent interest.
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Corollary 1.5 (The Spanne type estimate for IA⃗α ) Suppose that there exist real numbers α, qi, pi (i =

1, · · · ,m), s , and t satisfying 0 < α < mn, 1 < qi ≤ pi < ∞, 1 < t ≤ s < ∞ , and

α/n < 1/p1 + · · ·+ 1/pm < 1.

Furthermore, we assume that

1/s = 1/p1 + · · ·+ 1/pm − α/n,
t

s
=

q1
p1

= · · · = qm
pm

.

Then there exists a positive constant C independent of fi (i = 1, · · · ,m) , such that

∥IA⃗α f⃗∥Ms
t
≤ C

m∏
i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO∥fi∥Mpi
qi
.

Remark 1.6 As mentioned in Remarks C and E and comparing Theorems B and D with Corollary 1.2, it is

natural to ask whether we can prove the Adams-type estimate for IA⃗α on Morrey space and generalized Morrey
space. We will try to solve this problem in our future works.

Remark 1.7 If we take s = t and pi = qi in Corollary 1.2, we can obtain the boundedness of IA⃗α on the
product Lp spaces with Ai having derivatives of order Ni − 1 in BMO(Rn) on product Lp spaces.

Remark 1.8 Here we would like to mention that Theorem 1.1 is not an easy consequence of Corollary 1.2 and
the Hölder inequality for functions on the Morrey spaces (see (2.1) in [23, p. 1377]). Readers may see [35, 36]
for details. In fact, if we want to use Corollary 1.2 and the Hölder inequality for functions on the Morrey spaces

to get the Olsen-type inequality for IA⃗α , we will have

∥g · IA⃗α f⃗∥Ms
t
≤ C

m∏
i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO∥g∥Mp
q

m∏
i=1

∥fi∥Mpi
qi
,

where q
p = t

s = q1
p1

= · · · = qm
pm

and the other conditions are the same as in Theorem 1.1.

Remark 1.9 Theorem 1.1 is also true if we take Ni = 1 (i = 1, · · · ,m) . Thus, we get the Olsen-type inequality
for the irritated commutators of multilinear fractional integral operator Iα,A⃗ , which is defined by

Iα,A⃗f⃗(x) =

∫
(Rn)m

f1(y1) · · · fm(ym)

|(x− y1, · · · , x− ym)|mn−α

m∏
i=1

(Ai(x)−Ai(yi))dy⃗,

where Ai ∈ BMO(Rn) . Then we conclude that our results improve [23, Theorem 7.2] and [38, Theorem 1.1].

Remark 1.10 As far as we know, Theorem 1.1 is also a new result even if we take m = 1 .

Remark 1.11 Some basic ideas of this paper come from [33, 34, 38, 40] by using a decomposition of dyadic
cubes. However, the execution of this paper becomes technically more difficult due to the fact that the structures
of the multilinear operators and the Cohen–Gosselin-type operators are much more complicated than the classical
commutators of fractional integrals.
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Remark 1.12 Recently, Iida [20, 21] studied the weighted norm inequalities for the (multilinear) Hardy–
Littlewood maximal operator and the (multilinear) fractional integral operator with a rough kernel on the weighted
Morrey spaces by using the decomposition of dyadic cubes. As the basic ideas of [20, 21] are similar to our
paper, it is natural to ask whether we can get the Olsen-type inequalities for two such operators and we will try
to answer this question in our future works.

2. Preliminaries
In this section, we will give some lemmas and definitions that will be useful throughout this paper.

Lemma 2.1 ([8]) Let b be a function on Rn with m th order derivatives in Lq
loc(Rn) for some q > n . Then

|Rm(b;x, y)| ≤ Cm,n|x− y|m
∑

|γ|=m

(
1

|Q̃(x, y)|

∫
Q̃(x,y)

|Dγb(z)|qdz

)1/q

,

where Q̃(x, y) is the cube centered at x and having diameter 5
√
n|x− y| .

Lemma 2.2 ([30]) Let 1 ≤ p < ∞ . Then for any cube Q , there exists a constant C > 0 such that

(
1

|Q|

∫
Q

|b(x)−mQ(b)|pdx
)1/p

≤ C∥b∥BMO

for all b ∈ BMO(Rn) where mQ(b) is defined by

mQ(b) =
1

|Q|

∫
Q

b(x)dx.

Next, we introduce some maximal functions (see [26, 30]).

For a cube Q that runs over all cubes containing x , the maximal function M is defined by

Mf(x) = sup
Q∋x

1

|Q|

∫
Q

|f(y)|dy

and the definition of fractional maximal function Mα is

Mαf(x) = sup
Q∋x

1

|Q|1−α/n

∫
Q

|f(y)|dy

with 0 < α < n .
Furthermore, for any p > 1 , we denote

Mpf(x) = sup
Q∋x

(
1

|Q|

∫
Q

|f(y)|pdy
)1/p

.

For f⃗ = (f1, f2, · · · , fm) , the multilinear maximal function M is defined by

Mf⃗(x) = sup
Q∋x

m∏
i=1

1

|Q|

∫
Q

|fi(yi)|dyi.
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Before giving the next lemma, which is the most important in this paper, we introduce the set of all
dyadic grids as follows.

A dyadic grid D is a countable collection of cubes that satisfies the following properties:
(i) Q ∈ D ⇒ l(Q) = 2−k for some k ∈ Z .
(ii) For each k ∈ Z , the set {Q ∈ D : l(Q) = 2−k} forms a partition of Rn .
(iii) Q,P ∈ D ⇒ Q ∩ P ∈ {P,Q, ∅} .
One very clear example (see [25]) for this concept is the dyadic grid that is formed by translating and

then dilating the unit cube [0, 1)n all over Rn . More precisely, it is formulated as

D = {2−k([0, 1)n +m) : k ∈ Z,m ∈ Zn}.

In practice, we also make extensive use of the following family of dyadic grids:

Dt = {2−k([0, 1)n +m+ (−1)kt) : k ∈ Z,m ∈ Zn}, t ∈ {0, 1/3}n.

In [25], Lerner proved the following theorem.

Lemma 2.3 ([25]) Given any cube in Rn , there exists a t ∈ {0, 1/3}n and a cube Qt ∈ Dt , such that Q ⊂ Qt

and l(Qt) ≤ 6l(Q) .

Next, let us give a decomposition result about cubes. Suppose that Q0 is a cube and let f be a function
belonging to L1

loc(Rn) . Then we set
D(Q0) ≡ {Q ∈ D : Q ⊂ Q0}.

Furthermore, we denote that 3Q0 is the unique cube concentric to Q0 and having the volume 3n|Q0| .
Denote

m3Q0
(|f⃗ |p)1/p =

m∏
i=1

(
1

|3Q0|

∫
3Q0

|fi(yi)|pdyi
)1/p

.

Next, we introduce the sparse family of Calderón–Zygmund cubes. More precisely, for each k ∈ Z+ ,

Dk ≡
∪{

Q : Q ∈ D(Q0),m3Q(|f⃗ |p)1/p > γ0A
k
}
,

with γ0 = m3Q0(|f⃗ |p)1/p(p > 1) and A = (2m · 9n2pn)m .
Considering the maximal cubes with respect to inclusion, we may write

Dk =
∪
j

Qk,j , (2.1)

where the cubes {Qk,j} ⊂ D(Q0) are nonoverlapping. That is, {Qk,j} is a family of cubes satisfying∑
j

χQk,j
≤ χQ0

(2.2)

for almost everywhere. By the maximality of Qk,j , we get

γ0A
k < m3Qk,j

(|f⃗ |p)1/p < 2
mn
p γ0A

k < 2mnγ0A
k. (2.3)
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Moreover, we have the following properties for Qk,j :
(iv) For any fixed k , Qk,j are nonoverlapping for different j .
(v) If k1 < k2 , then there exists i such that Qk2,j ⊂ Qk1,i for any j ∈ Z .
Next, we will use a clever idea proposed by Tanaka in [40] to decompose Q0 as follows.
Let E0 = Q0 \D1, Ek,j = Qk,j \Dk+1 . Then we have the following lemma.

Lemma 2.4 The set {E0}
∪
{Ek,j} forms a disjoint family of sets, which decomposes Q0 , and satisfies

|Q0| ≤ 2|E0|, |Qk,j | ≤ 2|Ek,j |. (2.4)

Proof After our paper was finished, we found that Lemma 2.4 for p in a narrow range was essentially proved
by Iida [20, p. 175–176]. Here, we still give the main steps to prove Lemma 2.3 for the sake of completeness.

For the case when p = 1 , this lemma was proved by Iida et al. [22, p. 161]. Here we only prove the case
for p > 1 .

For a fixed Qk,j , we denote

Ai =

(
m∏
l=1

∫
3Qk,j

|fl(yl)|pdyl

)− 1
pm (

γ0A
k+1
)1/m(∫

3Qk,j

|fi(yi)|pdyi

)1/p

.

Obviously, there is
m∏
i=1

Ai = γ0A
k+1 . Then, using (2.3), we have

Qk,j ∩Dk+1 ⊂
{
x ∈ Qk,j : M

(
χ3Qk,j

|f1|p, · · · , χ3Qk,j
|fm|p

)
> (γ0A

k+1)p
}

⊂

{
x ∈ Qk,j :

m∏
i=1

M(χ3Qk,j
|fi|p)(x) > (γ0A

k+1)p

}

⊂
m∪
i=1

{
x ∈ Qk,j : M(χ3Qk,j

|fi|p)(x) > Ap
i

}
.

By the L1 − L1,∞ boundedness of M , we get

|Qk,j ∩Dk+1| ≤
m∑
i=1

∣∣{x : M(χ3Qk,j
|fi|p)(x) > Ap

i

}∣∣

≤
m∑
i=1

3n

Ap
i

∫
3Qk,j

|fi(yi)|pdyi = m3n

 1

γ0Ak+1

m∏
i=1

(∫
3Qk,j

|fi(yi)|pdyi

)1/p


p
m

.

Using (2.3) again, we obtain

|Qk,j ∩Dk+1| ≤ m3n
(

1
γ0Ak+1m3Qk,j

(|f⃗ |p)1/p
)p/m

|3Qk,j |

≤ m3n
(

2mnγ0A
k

γ0Ak+1

)p/m
|3Qk,j | = m3n3n2pn

A
p
m

|Qk,j | ≤ 1
2 |Qk,j |.

(2.5)

Similarly, we have
|D1| ≤ 1

2 |Q0|. (2.6)
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Obviously, we obtain (2.4) from (2.5) and (2.6). 2

Lemma 2.5 ([1]) Let 0 < α < n , 1 < q ≤ p < ∞ , and 1 < t ≤ s < ∞ . Assume 1/s = 1/p − α
n , t

s = q
p .

Then there exists a positive constant C such that

∥Iαf∥Ms
t
≤ C∥f∥Mp

q
.

Lemma 2.6 Suppose that there exists real numbers t, q, p satisfying 1 < t < q ≤ p < ∞ . Then we have

∥f t∥1/t
Mp/t

q/t

= ∥f∥Mp
q

.

Proof By the definition of Morrey space, we can easily prove Lemma 2.6 and we omit the details here.

3. Dyadic grids theory for IA⃗α

From Lemma 2.3 and the fact t ≤ s , we know that for any cube Q ⊂ Rn , there is

|Q|1/s−1/t
(∫

Q
|g(x)IA⃗α (f⃗)(x)|tdx

)1/t
≤ 6n

3n∑
δ=1

|Qδ|1/s−1/t
(∫

Qδ
|g(x)IA⃗α (f⃗)(x)|tdx

)1/t
,

(3.1)

where Qδ ∈ Dδ , Q ⊂ Qδ , and l(Qδ) ≤ 6l(Q) . 2

Thus, we only need to estimate |Q0|1/s−1/t
(∫

Q0
|g(x)IA⃗α (f⃗)(x)|tdx

)1/t
with Q0 ∈ Dδ .

4. Decomposition of the operator ∥g · IA⃗α f⃗∥Ms
t

To prove Theorem 1.1, for simplicity, we only prove for the case m = 2 since there is no essential difference for the
general case. From (ii) in Section 2, we know that for a fixed δ and each ν ∈ Z , the set {Q ∈ Dδ : l(Q) = 2−ν}
forms a partition of Rn . Moreover, we denote Q ∈ Dδ

ν with l(Q) = 2−ν and let 3Q be made up of 3n dyadic

cubes of equal size and having the same center of Q . Thus, by notations as in Section 2, we decompose IA⃗α as
follows:

IA⃗α f⃗(x) ≤
∫
R2n

2∏
i=1

|fi(yi)RNi
(Ai;x, yi)|

|(x− y1, x− y2)|2n−α+N1−1+N2−1
dy1dy2

≤ C
∑
ν∈Z

∫
2−ν−1<

2∑
i=1

|x−yi|≤2−ν

2∏
i=1

|fi(yi)RNi
(Ai;x, yi)|

|(x− y1, x− y2)|2n−α+N1−1+N2−1
dy1dy2

=
∑
ν∈Z

∑
Q∈Dδ

ν

2ν(2n−α)χQ(x)

∫
2−ν−1<

2∑
i=1

|x−yi|≤2−ν

2∏
i=1

|fi(yi)RNi
(Ai;x, yi)|

|(x− y1, x− y2)|N1+N2−2
dy1dy2.
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Now we denote Ai
Q(x) = Ai(x)−

∑
|γi|=Ni−1

mQ(D
γi(Ai)Q)x

γi . It is obvious that

RNi(Ai;x, yi) = RNi(A
i
Q;x, yi).

Thus, using Lemma 2.1 and the fact 2−ν−1 < |x− yi| ≤ 2−ν with i = 1, 2 , we have

|RNi
(Ai

Q;x, yi)| ≤ |RNi−1(A
i
Q;x, yi)|+

∑
|γi|=Ni−1

1

γi!
|DγiAi

Q(yi)||x− yi|Ni−1

≤ C|x− yi|Ni−1
∑

|γi|=Ni−1

{(
1

|Q|

∫
Q

|DγiAi
Q(z)|qdz

)1/q

+
∣∣DγiAi

Q(x)
∣∣}

≤ C|x− yi|Ni−1
∑

|γi|=Ni−1

(
∥DγiAi∥BMO +DγiAi

Q(yi)
)
.

Then, by a geometric observation, there is B(x, 2−ν) ⊂ 3Q if x ∈ Q ∈ Dδ
ν . Thus, we obtain

IA⃗α f⃗(x) ≤
∑
ν∈Z

∑
Q∈Dδ

ν

2ν(2n−α)χQ(x)

×
∫
(B(x,2−ν))2

2∏
i=1

(
|fi(yi)|||x− yi|Ni−1

∑
|γi|=Ni−1

(
∥DγiAi∥BMO +DγiAi

Q(yi)
)
|

)
|(x− y1, x− y2)|N1+N2−2

dy1dy2

≤
∑
ν∈Z

∑
Q∈Dδ

ν

2ν(2n−α)χQ(x)

∫
(3Q)2

2∏
i=1

|fi(yi)|
2∏

i=1

∑
|γi|=Ni−1

(
∥DγiAi∥BMO +DγiAi

Q(yi)
)
dy1dy2.

Next, we define

I = g(x)
∑
ν∈Z

∑
Q∈Dδ

ν

2ν(2n−α)
2∏

i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO

∫
3Q

|fi(yi)|dyi,

II = g(x)
∑
ν∈Z

∑
Q∈Dδ

ν

2ν(2n−α)χQ(x)
∑

|γ1|=N1−1

∥Dγ1A1∥BMO

∫
3Q

|f1(y1)|dy1

×
∑

|γ2|=N2−1

∫
3Q

|f2(y2)Dγ2A2
Q(y2)|dy2,

III = g(x)
∑
ν∈Z

∑
Q∈Dδ

ν

2ν(2n−α)χQ(x)
∑

|γ2|=N2−1

∥Dγ2A2∥BMO

∫
3Q

|f2(y2)|dy2

×
∑

|γ1|=N1−1

∫
3Q

|f1(y1)Dγ1A1
Q(y1)|dy1,
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and

IV = g(x)
∑
ν∈Z

∑
Q∈Dδ

ν

2ν(2n−α)χQ(x)
∑

|γ1|=N1−1

∫
3Q

|f1(y1)Dγ1A1
Q(y1)|dy1

×
∑

|γ2|=N2−1

∫
3Q

|f2(y2)Dγ2A2
Q(y2)|dy2.

By the above estimates and notations, it is easy to get

∥g · IA⃗α f⃗∥Ms
t
≤ ∥I∥Ms

t
+ ∥II∥Ms

t
+ ∥III∥Ms

t
+ ∥IV ∥Ms

t
.

Next, we will give the estimates of ∥I∥Ms
t
, ∥II∥Ms

t
, ∥III∥Ms

t
, and ∥IV ∥Ms

t
respectively.

5. Estimates of ∥I∥Ms
t

For I , we have

I ≤
2∏

i=1

∑
|γi|=Ni−1

∥DγiAi∥BMOχQ(x)g(x)
∑
ν∈Z

∑
Q∈Dδ

ν

2ν(n−α)|Q||Q| inf
y1∈Q

Mf1(y1) inf
y2∈Q

Mf2(y2)

≤
2∏

i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO|g(x)|
∑
ν∈Z

∫
2−ν−1<

2∑
i=1

|x−yi|≤2−ν

2∏
i=1

Mfi(yi)

|(x− y1, x− y2)|2n−α
dy1dy2

≤
2∏

i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO|g(x)|
∫
(Rn)2

2∏
i=1

M(Mfi)(yi)

|(x− y1, x− y2)|2n−α
dy1dy2

=

2∏
i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO|g(x)|Iα,2(
2∏

i=1

M(Mfi))(x).

Now, by [23, Theorem 7.2] and the boundedness of the Hardy–Littlewood maximal function on the Morrey
space (see [7]), we obtain

∥I∥Ms
t

≤ C
2∏

i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO∥g∥Mp
q

2∏
i=1

∥M(Mfi)∥Mpi
qi

≤ C
2∏

i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO∥g∥Mp
q

2∏
i=1

∥fi∥Mpi
qi
.

(3.2)
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6. Estimates for ∥IV ∥Ms
t

6.1. Decomposition of IV

Next we give the estimates of ∥IV ∥Ms
t
. For any fixed cube Q0 ∈ Dδ , as Q ∈ Dδ

ν , we may denote IV1 and IV2

as follows:

IV1 = g(x)
∑
ν∈Z

∑
Q∈Dδ

ν ,Q⊃Q0

χQ(x)2
ν(2n−α)

∑
|γ1|=N1−1

∫
3Q

|f1(y1)Dγ1A1
Q(y1)|dy1

×
∑

|γ2|=N2−1

∫
3Q

|f2(y2)Dγ2A2
Q(y2)|dy2

and

IV2 = g(x)
∑
ν∈Z

∑
Q∈Dδ

ν ,Q⊂Q0

χQ(x)2
ν(2n−α)

∑
|γ1|=N1−1

∫
3Q

|f1(y1)Dγ1A1
Q(y1)|dy1

×
∑

|γ2|=N2−1

∫
3Q

|f2(y2)Dγ2A2
Q(y2)|dy2.

Thus, we may decompose IV as IV = IV1 + IV2 .

6.2. Estimates of ∥IV1∥Ms
t
.

For IV1 , let Qk be the unique cube containing Q0 and satisfying |Qk| = 2kn|Q0| . Set ν = −log2|Qk|
1
n . Then

we will give the estimates of Ek , where Ek is defined by

Ek = |Q0|1/s−1/t


∫
Q0

∣∣∣∣∣∣2ν(2n−α)g(x)

2∏
i=1

∑
|γi|=Ni−1

∫
3Qk

|fi(yi)||DγiAQk
(yi)|dyi

∣∣∣∣∣∣
t

dx


1/t

.

By the Hölder inequality, we obtain

Ek ≤ |Q0|1/s−1/t

(∫
Q0

|2ν(2n−α)g(x)|tdx
)1/t 2∏

i=1

∑
|γi|=Ni−1

∫
3Qk

|fi(yi)||DγiAQk
(yi)|dyi
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≤ |Q0|1/s−1/t

(∫
Q0

|2ν(2n−α)g(x)|tdx
)1/t 2∏

i=1

∑
|γi|=Ni−1

(∫
3Qk

|fi(yi)|qidyi
)1/qi

×
(∫

3Qk

|DγiAQk
(yi)|

qi
qi−1 dyi

)1−1/qi

= |Q0|1/s−1/t

(∫
Q0

|2ν(2n−α)g(x)|tdx
)1/t 2∏

i=1

∑
|γi|=Ni−1

(∫
3Qk

|fi(yi)|qidyi
)1/qi

×
(∫

3Qk

|DγiAi(yi)−mQk
(DγiAi)|

qi
qi−1 dyi

)1−1/qi

≤ C|Q0|1/s−1/t

(∫
Q0

|2ν(2n−α)g(x)|tdx
)1/t 2∏

i=1

(∫
3Qk

|fi(yi)|qidyi
)1/qi

×
∑

|γi|=Ni−1

∥DγiAi∥BMO|Qk|1−1/qi

≤
2∏

i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO|3Qk|1/pi−1/qi

(∫
3Qk

|fi(yi)|qidyi
)1/qi

|3Qk|1/qi−1/pi

× |Qk|1−1/qi2ν(2n−α)|Q0|1/p−1/q

(∫
Q0

|g(x)|qdx
)1/q

|Q0|1/s−1/q|Q0|1/q−1/p

≤ C∥g∥Mp
q

2∏
i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO∥fi∥Mpi
qi

× |3Qk|1−1/p1 |3Qk|1−1/p22ν(2n−α)|Q0|1/s−1/p.

As 2ν(2n−α) =
(
2−log2|Qk|

1
n

)2n−α

= |Qk|−
1
n (2n−α) = |Qk|

α
n−2 , we obtain

|3Qk|1−1/p1 |3Qk|1−1/p22ν(2n−α)|Q0|1/s−1/p = 2kn(
α
n−1/p1−1/p2).

Recall that Qk is the unique cube containing Q0 and satisfying |Qk| = 2kn|Q0| . By the condition that
α
n < 1/p1 + 1/p2 and the definitions of Ek and IV1 , we have

|Q0|1/s−1/t

(∫
Q0

|IV1|tdx
)1/t

≤ C∥g∥Mp
q

2∏
i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO∥fi∥Mpi
qi
,

which implies

∥IV1∥Ms
t

≤ C∥g∥Mp
q

2∏
i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO∥fi∥Mpi
qi
. (3.3)

6.3. Estimates of ∥IV2∥Ms
t
.

Finally, we will give the estimates of ∥IV2∥Ms
t
. We decompose this procession into five parts.
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6.3.1. Duality theory for IV2 .

As t > 1 , we may choose a function ω ∈ Lt′(Q0) , such that

(∫
Q0

|IV2|tdt
)1/t

≤ 2
∫
Q0

|IV2|ω(x)dx. (3.4)

6.3.2. Decomposition for
∫
Q0

|IV2|ω(x)dx .

Now we recall some notations in Section 2. For any p > 1 , we set

Dδ
0(Q0) ≡ {Q ∈ Dδ(Q0) : m3Q(|f⃗ |p)1/p ≤ γ0A}

and
Dδ

k,j(Q0) ≡ {Q ∈ Dδ(Q0) : Q ⊂ Qk,j , γ0A
k < m3Q(|f⃗ |p)1/p ≤ γ0A

k+1},

where γ0 and A are the same as in Section 2 and Dδ(Q0) ≡ {Q ∈ Dδ : Q ⊂ Q0} . Thus, we have

Dδ(Q0) = Dδ
0(Q0) ∪

∪
k,j

Dδ
k,j(Q0).

We obtain ∫
Q0

|IV2|ω(x)dx =
∑

Q∈Dδ
0(Q0)

2ν(2n−α)
∫
Q
g(x)ω(x)dx

×
2∏

i=1

∑
|γi|=Ni−1

∫
3Q

|fi(yi)||DγiAi
Q(yi)|dyi

+
∑
k,j

∑
Q∈Dδ

k,j(Q0)

2ν(2n−α)
∫
Q
g(x)ω(x)dx

×
2∏

i=1

∑
|γi|=Ni−1

∫
3Q

|fi(yi)||DγiAi
Q(yi)|dyi

= A+B.

(3.5)

6.3.3. Estimates of B .
To estimate B , first we assume that ℓ is a positive number slightly larger than 1 . Then, using the Hölder
inequality and Lemma 2.2, we have

2∏
i=1

∫
3Q

|fi(yi)||DγiAi
Q(yi)|dyi

≤
2∏

i=1

∫
3Q

|fi(yi)||DγiAi(yi)−mQ(D
γiAi)|dyi

≤
2∏

i=1

(∫
3Q

|fi(yi)|ℓdyi
)1/ℓ(∫

3Q

|DγiAi(yi)−mQ(D
γiAi)|

ℓ
ℓ−1 dyi

)1−1/ℓ

≤ C

2∏
i=1

[(
1

|3Q|

∫
3Q

|fi(yi)|ℓdyi
)1/ℓ

|3Q|1/ℓ+1−1/ℓ∥DγiAi∥BMO

]

= C

2∏
i=1

∥DγiAi∥BMOm3Q(|f⃗ |ℓ)1/ℓ|Q|2.

2363



YU and LU/Turk J Math

Moreover, by a simple computation, we have the following facts:

∫
Q

g(x)ω(x)dx =
|Q|
|Q|

∫
Q

g(x)ω(x)dx ≤
∫
Q

M(gω)(x)dx.

Thus, by the above estimates, Lemma 2.4, inequality (2.3), the definition of Dk,j , and the fact that α/n < 1 ,
we obtain

B =
∑

Q∈Dδ
k,j(Q0)

2ν(2n−α)

∫
Q

g(x)ω(x)dx

2∏
i=1

∑
|γi|=Ni−1

∫
3Q

|fi(yi)||DγiAi
Q(yi)|dyi

≤
2∏

i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO
∑

Q∈Dk,j(Q0)

|Q|αn
∫
Q

M(gω)(x)dxm3Q(|f⃗ |ℓ)1/ℓ

≤ C

2∏
i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO|Qk,j |
α
n

∫
Qk,j

M(gω)(x)dxm3Qk,j
(|f⃗ |ℓ)1/ℓ

≤ C

2∏
i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO|Qk,j |
α
nmQk,j

[M(gω)]m3Qk,j
(|f⃗ |ℓ)1/ℓ|Qk,j |

≤ C

2∏
i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO|Qk,j |
α
nmQk,j

[M(gω)]m3Qk,j
(|f⃗ |ℓ)1/ℓ|Ek,j |.

By the Hölder inequality, there exists a real number θ satisfying 1 < t < θ < q , such that

M(gω) ≤ Mθ′
ω ·Mθg.

Thus, we can conclude that

mQk,j
[M(gω)] ≤

(
mQk,j

((Mθω)q
′
)
)1/q′ (

mQk,j
((Mθω)q)

)1/q
.

Now we give the following estimates, which will be used later:

|Qk,j |1/p
(
mQk,j

((Mθω)q)
)1/q

= |Qk,j |1/p
(

1

|Qk,j |

∫
Qk,j

∣∣Mθg(x)
∣∣q dx)1/q

=

|Qk,j |
θ
p

(
1

|Qk,j |

∫
Qk,j

M(|g|θ)(x)q/θdx

)θ/q
1/θ

≤ C

(
|Qk,j |

θ
pq

∫
Qk,j

|g(x)|θ
q
θ dx

) 1
θ

θ
q

= |Qk,j |1/p−1/q

(∫
Qk,j

|g(x)|qdx

)1/q

≤ C∥g∥Mp
q
,

where we have used the boundedness of the Hardy–Littlewood maximal function on the Morrey space in the
third inequality (see [7]).
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Thus, we get
B =

∑
Q∈Dδ

k,j(Q0)

2ν(2n−α)
∫
Q
g(x)ω(x)dx

×
2∏

i=1

∑
|γi|=Ni−1

∫
3Q

|fi(yi)||DγiAi
Q(yi)|dyi

≤ C
2∏

i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO∥g∥Mp
q
|Qk,j |

α
n− 1

p (m3Qk,j
(|f⃗ |ℓ))1/ℓ

×
(
mQk,j

((Mθ′
ω)q)

)1/q′
|Ek,j |.

(3.6)

6.3.4. Estimates of A .
Similarly, we have

A =
∑

Q∈Dδ
0(Q0)

2ν(2n−α)
∫
Q
g(x)ω(x)dx

×
2∏

i=1

∑
|γi|=Ni−1

∫
3Q

|fi(yi)||DγiAi
Q(yi)|dyi

≤ C
2∏

i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO∥g∥Mp
q
|Q0|

α
n− 1

p (m3Q0
(|f⃗ |ℓ))1/ℓ

×
(
mQ0

((Mθ′
ω)q)

)1/q′
|E0|.

(3.7)

6.3.5. Estimates of |Q0|1/s−1/t
∫
Q0

|IV2|ω(x)dx .

Combining the estimates of (3.5)–(3.7) and using the fact that {E0}
∪
{Ek,j} forms a disjoint family of

decompositions for Q0 , we have

|Q0|1/s−1/t

∫
Q0

|IV2|ω(x)dx

≤ C|Q0|1/s−1/t
2∏

i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO∥g∥Mp
q

∫
Q0

Mq′(Mθ′
ω)(x)

2∏
i=1

(Mβi
(|fi|ℓ)(x)1/ℓdx

≤ C|Q0|1/s−1/t
2∏

i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO∥g∥Mp
q

(∫
Q0

Mq′(Mθ′
ω)(x)t

′
dx

)1/t′

×

(∫
Q0

2∏
i=1

(Mβi
(|fi|ℓ)(x)t/ℓdx

)1/t

,

where Mβi denotes the fractional maximal function and
2∑

i=1

βi = ℓα− nℓ
p > 0 .

By the fact that t′

θ′ > 1 and t′

q′ > 1 , we can easily get
(∫

Q0
Mq′(Mθ′

ω)(x)t
′
dx
)1/t′

≤ C and it remains

to give the estimate of |Q0|1/s−1/t

(∫
Q0

2∏
i=1

(Mβi(|fi|ℓ)(x)t/ℓdx
) 1

t

.

Recall that ℓ is slightly larger than 1 . Then by Lemmas 2.5–2.6, the fact that Mβi
(|fi|ℓ)(x) ≤
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CIβi(|fi|ℓ)(x) , the conditions of Theorem 1.1, and the Hölder inequality for functions on the Morrey space
(see (2.1) in [23, p. 1377]), we obtain

|Q0|1/s−1/t

(∫
Q0

2∏
i=1

(Mβi
(|fi|ℓ)(x)t/ℓdx

) 1
t

≤ sup
Q0

|Q0|
1

s/ℓ
− 1

t/ℓ

(∫
Q0

2∏
i=1

Iβi
(|fi|ℓ)(x)t/ℓdx

) ℓ
t

1/ℓ

=

∥∥∥∥∥
2∏

i=1

Iβi(|fi|ℓ)

∥∥∥∥∥
1/ℓ

M
s
ℓ
t
ℓ

≤ ∥Iβ1(|f1|ℓ)∥Mµ1/ℓ

ν1/ℓ

∥Iβ2(|f2|ℓ)∥Mµ2/ℓ

ν2/ℓ

≤ C∥f ℓ
1∥

1/ℓ

Mp1/ℓ

q1/ℓ

∥f ℓ
2∥

1/ℓ

Mp2/ℓ

q2/ℓ

= C

2∏
i=1

∥fi∥Mpi
qi
,

where 1
µi/ℓ

= 1
pi/ℓ

− βi/n and s
t = pi

qi
= µi

νi
≥ 1 with i = 1, 2 .

Combining the above estimates, we get

|Q0|1/s−1/t

∫
Q0

|IV2|ω(x)dx ≤ C∥g∥Mp
q

2∏
i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO∥fi∥Mpi
qi
,

which implies

∥IV2∥Ms
t
≤ C∥g∥Mp

q

2∏
i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO∥fi∥Mpi
qi
. (3.8)

Thus, by (3.3) and (3.8), we conclude that

∥IV ∥Ms
t
≤ C∥g∥Mp

q

2∏
i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO∥fi∥Mpi
qi
. (3.9)

7. Estimates of ∥II∥Ms
t

and ∥III∥Ms
t

Now it remains to give the estimates of ∥II∥Ms
t

and ∥III∥Ms
t
, respectively. Using similar arguments as in the

estimates of ∥I∥Ms
t

and ∥III∥Ms
t
, we can easily get

∥II∥Ms
t
≤ C∥g∥Mp

q

2∏
i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO∥fi∥Mpi
qi

(3.10)

and

∥III∥Ms
t
≤ C∥g∥Mp

q

2∏
i=1

∑
|γi|=Ni−1

∥DγiAi∥BMO∥fi∥Mpi
qi
. (3.11)

8. Proof of Theorem 1.1
Recalling (3.1) and combining the estimates of (3.2) and (3.9)–(3.11), we finish the proof of Theorem 1.1.
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9. A final remark
In [14], Gala et al. proved the following Olsen-type inequality.

Theorem 9.1 ([14]) Let 0 < α < 3
2 . Then for n = 3 and p > 1 , there is

∥g · Iα(f)∥L2(R3) ≤ C∥f∥L2(R3)∥g∥M3/α

L2 logpL(R3)

.

Here M3/α
L2logpL(R3) denotes the Orlicz–Morrey space and one may find its definition from [14, p. 1322].

Using Theorem 9.1, Gala et al. [14] improved the known regularity criterion of the weak solution for the

magneto-micropolar fluid equations in the Orlicz–Morrey space M3/α
L2logpL(R3) ([14, Theorem 1.3]).

Moreover, Gala et al. [15] also showed that Theorem 9.1 can also be applied to the 3D incompressible
magneto-hydrodynamic (MHD) equations and they established Serrin’s uniqueness result of the Leray weak
solution for the 3D incompressible MHD equations in Orlicz–Morrey spaces ([15, Theorem 3.1]).

As the variation problem plays important roles in the study of Schrödinger equations, Sawano et al. [37]
used Theorem F to solve a problem related to the variation problem (see [37, Theorem 6.1]). Moreover, Sawano
et al. [37] also used Theorem F to improve the famous Sobolev–Hardy inequalities (see [37, Theorem 6.3]).

Thus, it is natural to ask the whether the multilinear version of the Olsen-type inequalities can be applied
to PDEs and we will consider this problem in our future works.

10. Appendix
In this appendix, we recall some definitions of Orlicz–Morrey spaces, nondivergence elliptic equations, magneto-
micropolar fluid equations, 3D incompressible MHD equations, and the Sobolev–Hardy inequality from [12, 14,
15, 37].

Definition G ([12], Dirichlet problem on the second-order elliptic equation in nondivergence form)

 Lu ≡
n∑

i,j=1

ai,j(x)uxi,xj
= f a.e. in Ω

u = 0 on ∂Ω

where x = (x1, · · · , xn) ∈ Rn ; Ω is a bounded domain C1,1 of Rn ; the coefficients {ai,j} of L are symmetric
and uniformly elliptic, i.e. for some ν ≥ 1 and every ξ ∈ Rn ,

ai,j(x) = aj,i(x) and ν−1|ξ|2 ≤
n∑

i,j=1

ai,j(x)ξiξj ≤ ν|ξ|2

with a.e. x ∈ Ω .

Definition H ([14], Orlicz–Morrey space) For p ∈ R and 1 < µ < ν < ∞ , the Orlicz–Morrey space
Mν

LµlogpL(Rn) is defined by

Mν
LµlogpL(Rn) =

{
f ∈ Mν

LµlogpL(Rn) : ∥f∥Mν
Lµ logpL

(Rn) := sup
r>0,x∈Rn

rn/ν∥f∥B(x,r)LµlogpL < ∞
}
,
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where ∥f∥B(x,r)LµlogpL denotes the tµlogp(3 + t) average given by

∥f∥B(x,r)LµlogpL := inf
{
λ > 0 :

1

|B(x, r)|

∫
B(x,r)

(
|f(x)|
λ

)µ

log
(
3 +

|f(x)|
λ

)p

dx ≤ 1

}
.

Definition I ([14], Three-dimensional magneto-micropolar fluid equations) Let u = (u1(x, t),

u2(x, t), u3(x, t)) the velocity of the fluids at a point x ∈ R3 , t ∈ [0, T ) . The functions ω = (ω1(x, t), ω2(x, t), ω3(x, t)) ,
b = (b1(x, t), b2(x, t)b3(x, t)) , and p = p(x, t) denote respectively the microrotational velocity, the magnetic field,
and the hydrostatic pressure. Then the three-dimensional magneto-micropolar fluid equations can be stated as


∂tu− (u · ∇)u− (µ+ χ)∆u− (b · ∇)b+∇(p+ b2)− χ∇× ω = 0,
∂tω − γ∆ω − k∇divω + 2kω + (u · ∇)ω − χ∇× u = 0,
∂tb− ν∆b+ (u · ∇)b− (b · ∇)u = 0,
divu = divb = 0,
u(x, 0) = u0(x), b(x, 0) = b0(x), ω(x, 0) = ω0(x),

where u0 , ω0 , and b0 are the prescribed initial data for the velocity and angular velocity and magnetic field
such that u0 and b0 are divergence-free; divu0 = 0 and divb0 = 0 . The constant µ is the kinematic viscosity,
χ denotes the vortex viscosity, and k and γ are spin viscosities.

Definition J ([15], 3D incompressible MHD equations)


∂tu−∆u+ (u · ∇)u+∇p+ 1

2∇|b|2 − (b · ∇)b = 0,
∂tb−∆b+ (u · ∇)b− (b · ∇)u = 0,
div(u) = div(b) = 0,
u(·, 0) = u0, b(·, 0) = b0,

where u = u(x, t) is the velocity field, b ∈ R3 is the magnetic field, and p = p(x, t) is the scalar pressure while
u0 and b0 are given initial velocity and initial magnetic field with divu0=divb0=0 in the sense of distribution.

Definition K ([37], Sobolev–Hardy inequality) Let 0 ≤ s ≤ 2 . Then we have

∥u∥
L

2n−2s
n−2 (|x|−sdx)

≤ C∥∇u∥L2 .
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