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Abstract: We show existence results of positive solutions of Neumann problems for a discrete system:

η∆2(Ak−1 −A0
k−1)−Ak +A0

k +NkAk = 0, k ∈ [2, n− 1]Z,

∆
(
∆Nk−1 − 2Nk

∆Ak−1

Ak

)
−NkAk +A1

k −A0
k = 0, k ∈ [2, n− 1]Z,

∆A1 = 0 = ∆An−1, ∆N1 = 0 = ∆Nn−1,

where the assumptions on η, A0
k , and A1

k are motivated by some mathematics models for house burglary. Our results
are based on the topological degree theory.
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1. Introduction
We will denote the integer set by Z . For any a, b ∈ Z with a < b , setting [a, b]Z := {a, a+ 1, · · · , b}.

In this paper, we study the existence of positive solutions of the difference systems:

η∆2(Ak−1 −A0
k−1)−Ak +A0

k +NkAk = 0, k ∈ [2, n− 1]Z,

∆
(
∆Nk−1 − 2Nk

∆Ak−1

Ak

)
−NkAk +A1

k −A0
k = 0, k ∈ [2, n− 1]Z,

∆A1 = 0 = ∆An−1, ∆N1 = 0 = ∆Nn−1,

(1)

where η > 0 is a constant, A0 = (A0
1, · · · , A0

n) ∈ Rn , A1 = (A1
1, · · · , A1

n) ∈ Rn , and A1
k > A0

k > 0 for each
k ∈ [1, n]Z . The homogeneous Neumann boundary condition implies that the system is self-contained with zero
flux across the boundary.

A solution of (1) is a couple of real vector functions (A,N) ∈ Rn × Rn satisfying the system. We are
interested in positive solutions, that is, Ak > 0 and Nk ≥ 0 with Nk ̸≡ 0 for all k ∈ [1, n]Z .
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This problem is motivated by Neumann boundary value problems for differential systems:

η(A−A0(x))′′ −A+A0(x) +NA = 0, x ∈ (0, L),

(N ′ − 2N
A′

A
)′ −NA++A1(x)−+A0(x) = 0, x ∈ (0, L),

A′(0) = 0 = A′(L), N ′(0) = 0 = N ′(L),

(2)

which is a one-dimensional problem associated with a very successful model for house burglaries [17], see also
the related papers [2, 4, 11, 12, 16]. In most of these models, η > 0 is the diffusion rate of attractiveness, A0 is
the intrinsic (static) component of attractiveness, A1 is the average attractiveness, A is the attractiveness of a
house for burglary, and N is the density of burglars. Thus, in the discrete case, the restrictions Ak > 0 and
Nk ≥ 0 with Nk ̸≡ 0 for all k ∈ [1, n]Z appear as natural. Note that [5] is the consequence of the discretization
of differential problems [11]. For some results on nonlinear difference problems, see [1, 3, 5–10, 15] and the
references therein.

However, the discrete analogues of (2) have received almost no attention. In this article, we will discuss
them in detail. We assume that the following conditions are satisfied:

(H1) A0 = (A0
1, · · · , A0

n) ∈ Rn, ∆A0
1 = 0 = ∆A0

n−1 and A0
k > 0, k ∈ [1, n]Z .

(H2) A1 = (A1
1, · · · , A1

n) ∈ Rn and A1
k > 0, k ∈ [1, n]Z .

(H3) A1
k > A0

k, k ∈ [1, n]Z .
If A0,A1 are positive constants, i.e. A0 = (A0, · · · , A0),A1 = (A1, · · · , A1) , system (1) admits the

unique positive constant solution A = (A, · · · , A),N = (N, · · · , N) , where

A = A1, N =
A1 −A0

A1

under the condition that A1 > A0 .
A natural question is whether or not nonconstant positive solutions still exist when A0,A1 are no longer

constants? To this end, under the assumptions (H1)–(H3), we obtain the following result.

Theorem 1 Let η > 0 be a constant. Under the assumptions (H1)–(H3), system (1) admits at least one
nonconstant positive solution.

The purpose of this paper was to show that analogues of existence results of solutions for differential
problems proved in [12] hold for the corresponding difference systems. However, some basic ideas from differential
calculus are not necessarily available in the field of difference equations such as the intermediate value theorem,
the mean value theorem, and Rolle’s theorem. Thus, new challenges are faced and innovation is required. The
proof is elementary and relies on Brouwer degree theory [13, 14].

Throughout this paper, we use the following notations and conventions. Given n ∈ N(n ≥ 4) and
(x1, x2, · · · , xn) ∈ Rn . Define (∆x1, · · · ,∆xn−1) ∈ Rn−1 by ∆xm = xm+1 − xm, m ∈ [1, n − 1]Z. For every

l,m ∈ N with m > l , we set
∑l

k=m xk = 0 .
Let us introduce the vector space

V n−2 = {x ∈ Rn : ∆x1 = 0 = ∆xn−1}, (3)
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endowed with the orientation of Rn . Its elements can be associated with the coordinates (x2, · · · , xn−1) and
correspond to the elements of Rn of the form:

(x2, x2, x3, · · · , xn−2, xn−1, xn−1).

We use the norm ∥x∥ := max
k∈[2,n−1]Z

|xk| in V n−2 , and max
k∈[1,n−2]Z

|xk| in Rn−2 .

2. A priori estimates

Let us consider the homotopy corresponding to system (1) for λ ∈ (0, 1],

η∆2(Ak−1 −A0
k−1) = λ(Ak −A0

k −NkAk), k ∈ [2, n− 1]Z, ∆A1 = 0 = ∆An−1, (4)

∆
(
∆Nk−1 − 2λNk

∆Ak−1

Ak

)
= λ(NkAk −A1

k +A0
k), k ∈ [2, n− 1]Z, ∆N1 = 0 = ∆Nn−1. (5)

Obviously, for λ = 1 , (4) and (5) reduce to (1).
Setting

min B := min
k∈[1,p]Z

Bk, max B := max
k∈[1,p]Z

Bk and B =
1

n− 2

n−1∑
k=2

Bk, B ∈ Rp.

Lemma 1 Let (A,N) be a solution of (4) and (5) for some λ ∈ (0, 1] . Then,

A = A1. (6)

Proof Adding the two equations in (4) and (5), and then summing from k = 2 to n−1 , we are led to A = A1

by the Neumann boundary conditions. 2

Lemma 2 Let (A,N) be a positive solution of (4) and (5) for some λ ∈ (0, 1] . Then,

NA = A1 − A0. (7)

Proof Summing the equation of (4) from k = 2 to n− 1 , we have that

n−1∑
k=2

(Ak −A0
k) =

n−1∑
k=2

NkAk,

which combines with Lemma 1 yields (7). 2

Lemma 3 Let (H3) hold. Let (A,N) be a positive solution of (4) and (5) for some λ ∈ (0, 1] . Then, for any
k ∈ [2, n− 1]Z,

|∆Ak| ≤ (n− 2)max |∆2A0|+ 2(n− 2)

η
A1, (8)

Ak ≤ A1 + (n− 2)2 max |∆2A0|+ 2(n− 2)2

η
A1 := C1. (9)
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Proof According to (4), it is apparent that

|∆2Ak−1| ≤ |∆2A0
k−1|+

λ

η
|Ak −A0

k −NkAk| ≤ |∆2A0
k−1|+

1

η
(Ak +A0

k +NkAk), k ∈ [2, n− 1]Z.

Combining this with (6) and (7) implies that

|∆Ak| =|
k∑

i=2

∆2Ai−1| ≤
n−1∑
i=2

|∆2Ai−1|

≤(n− 2)max |∆2A0|+ n− 2

η
(A1 + A0 + A1 − A0)

=(n− 2)max |∆2A0|+ 2(n− 2)

η
A1.

(10)

On the other hand, there exists k1 ∈ [2, n− 1]Z such that min A = Ak1 , then Ak1 ≤ A. Thus, by virtue of (6)
and (10), it follows that for every k ∈ [2, n− 1]Z,

Ak =Ak1 +

k−1∑
i=k1

∆Ai ≤ A +

n−1∑
i=2

∆Ai

≤A1 + (n− 2)2 max |∆2A0|+ 2(n− 2)2

η
A1.

2

Lemma 4 Assume (H3). Let (A,N) be a positive solution of (4) and (5) for some λ ∈ (0, 1] . Then, for any
k ∈ [2, n− 1]Z,

Ak ≥ min A0 := C2. (11)

Proof Since there exists k1 ∈ [2, n− 1]Z such that min(A − A0) = Ak1 −A0
k1

, then

0 ≤ η∆2(Ak1 −A0
k1
) = λ(Ak1 −A0

k1
−Nk1Ak1) ≤ Ak1 −A0

k1
.

This implies that Ak ≥ A0
k for k ∈ [2, n− 1]Z . Now, we may deduce that

Ak ≥ min A ≥ min A0.

2

Corollary 1 Assume (H3). Let (A,N) be a positive solution of (4) and (5) for some λ ∈ (0, 1] , then, for any
k ∈ [2, n− 1]Z , ∣∣∣∆Ak

Ak

∣∣∣ ≤ (n− 2)max |∆2A0|+ 2(n− 2)A1

ηC2
:= C3. (12)

Lemma 5 Assume that (H3) holds. Let (A,N) be a positive solution of (4) and (5) for some λ ∈ (0, 1] . Then,

A1 − A0

C1
≤ N ≤ A1 − A0

C2
. (13)
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Proof From (7), (9), (11), and the inequalities

(min A)

n−1∑
k=2

Nk ≤
n−1∑
k=2

NkAk ≤ (max A)

n−1∑
k=2

Nk,

we may get the desired result. 2

Lemma 6 Assume (H3). Let (A,N) be a positive solution of (4) and (5) for some λ ∈ (0, 1] . Then,∣∣∣∆Nk − 2λNk+1
∆Ak

Ak+1

∣∣∣ ≤ 2(n− 2)(A1 − A0), k ∈ [2, n− 1]Z. (14)

Proof Owing to (5), it can be easily seen that

|∆(∆Nk−1 − 2λNk
∆Ak−1

Ak
)| ≤ |NkAk +A1

k −A0
k| = NkAk +A1

k −A0
k, k ∈ [2, n− 1]Z.

Hence, using the boundary conditions and (7), it is not difficult to prove that for every k ∈ [2, n− 1]Z ,

∣∣∣∆Nk − 2λNk+1
∆Ak

Ak+1

∣∣∣ = ∣∣∣ k∑
i=2

∆(∆Ni−1 − 2λNi
∆Ai−1

Ai
)
∣∣∣

≤
n−1∑
k=2

(NkAk +A1
k −A0

k) ≤ (n− 2)(A1 − A0 + A1 − A0)

= 2(n− 2)(A1 − A0).

2

Lemma 7 Assume (H3). Let (A,N) be a positive solution of (4) and (5) for some λ ∈ (0, 1] . Then,

|Nk − N| ≤ 2(n− 2)(A1 − A0)
[C3

C2
+ (n− 2)

]
:= C4, k ∈ [2, n− 1]Z. (15)

Proof From (14), we have

|∆Nk| ≤ 2Nk+1

∣∣∣∆Ak

Ak+1

∣∣∣+ 2(n− 2)(A1 − A0), k ∈ [2, n− 1]Z.

Let now k1 ∈ [2, n− 1]Z be a minimum point of N , then N ≥ Nk1
. Then it follows from (12) and (13) that for

any k ∈ [2, n− 1]Z ,

|Nk − N| ≤|Nk −Nk1
| = |

k−1∑
i=k1

∆Ni|

≤
n−1∑
k=2

|∆Nk| ≤ 2C3

n−1∑
k=2

Nk + 2(n− 2)2(A1 − A0)

≤2(n− 2)(A1 − A0)
[C3

C2
+ (n− 2)

]
.

2
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Corollary 2 Assume (H3). Let (A,N) be a positive solution of (4) and (5) for some λ ∈ (0, 1] . Then, for
any k ∈ [2, n− 1]Z ,

Nk ≤ C4 +
A1 − A0

C2
:= C5. (16)

3. Proof of the main result
This section is devoted to the existence of nonconstant positive solutions to system (1). For our purpose, we
need some preliminary results.

Lemma 8 For any λ ∈ (0, 1] , (A,N) is a solution of (4) and (5) if and only if (A,N) is a solution of the
following system:

Ak = A2 +A0
k −A0

2 − (A − A0 − NA) +
λ

η

k−1∑
j=2

j∑
i=2

(Ai −A0
i −NiAi), k ∈ [1, n]Z, (17)

Nk = N2 − (NA − A1 + A0) + λ

k∑
i=2

2Ni
∆Ai−1

Ai
+ λ

k−1∑
j=2

j∑
i=2

(NiAi −A1
i +A0

i ), k ∈ [1, n]Z. (18)

Proof Suppose (A,N) is a solution of the system (17) and (18). By taking k = 2 in both equations, we find
that

(A − A0 − NA) = 0, (NA − A1 + A0) = 0. (19)

On the other hand, according to (18) and (19), it becomes apparent that for any k ∈ [1, n− 1]Z ,

∆Ak = ∆A0
k +

λ

η

k∑
i=2

(Ai −A0
i −NiAi), (20)

∆Nk = λ[2Nk+1
∆Ak

Ak+1
+

k∑
i=2

(NiAi −A1
i +A0

i )]. (21)

It should be noted that we obtain ∆A1 = 0 = ∆N1 if k = 1 and ∆An−1 = 0 = ∆Nn−1 if k = n− 1 by using
(19). Finally, it is not difficult to verify that

∆2(Ak−1 −A0
k−1) =

λ

η
(Ak −A0

k −NkAk), k ∈ [2, n− 1]Z,

and

∆2Nk−1 = λ
[
∆
(
2Nk

∆Ak−1

Ak

)
+ (NkAk −A1

k +A0
k)
]
, k ∈ [2, n− 1]Z,

which is equivalent to systems (4) and (5). Similarly, the proof of the converse is valid. 2

Let us now take 0 < R2 < C2 ≤ C1 < R1 , C3C1 < R3 and C5 < R5 , where C1, C2, C3 and C5 are
respectively given in (9),(11),(12), and (16).
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Define the vector space E = V n−2 × V n−2 by the usual norm ∥(A,N)∥E = ∥A∥ + ∥∆A∥ + ∥N∥ . Set
the bounded set Ω ⊂ E ,

Ω = {(A,N) ∈ E : R2 < Ak < R1, |∆Ak| < R3, 0 ≤ Nk < R5, k ∈ [2, n− 1]Z}. (22)

Define the operator F : Ω× [0, 1] → E,

F(A,N, λ)

=

(
A2 +A0

k −A0
2 − (A − A0 − NA) + λ

η

∑k−1
j=2

∑j
i=2(Ai −A0

i −NiAi),

N2 − (NA − A1 + A0) + λ
∑k

i=2 2Ni
∆Ai−1

Ai
+ λ

∑k−1
j=2

∑j
i=2(NiAi −A1

i +A0
i )

)
.

(23)

By Lemma 8, we deduce that (A,N) is a positive solution of systems (4) and (5) if and only if (A,N) is a
fixed point of F .

Lemma 9 (A,N) ∈ Ω̄ is a fixed point of F(·, 0) if and only if A−A0 and N are constants, set A = A0 +B
and B = (B, · · · , B), N = (N, · · · , N) , where (B,N) satisfies the algebraic system

B −NA0 −NB = 0, NA0 +NB − A1 + A0 = 0, (24)

whose unique solution is given by:

B = A1 − A0, N =
A1 − A0

A1
. (25)

Proof Since (A,N) ∈ Ω̄ is a fixed point of F(·, 0) if and only if

Ak = A2 +A0
k −A0

2 − (A − A0 − NA), Nk = N2 − (NA − A1 + A0),

i.e. if and only if

(A − A0 − NA) = 0, (NA − A1 + A0) = 0, (26)

and Bk = Ak−A0
k ≡ A2−A0

2 and Nk ≡ N2 for any k ∈ [2, n−1]Z, that is, B and N are constants, combining
this with (26), we have that (24) and (25) hold. 2

Proof of Theorem 1 It is easy to see that solving (1) is equivalent to finding a fixed point of F(·, 1) in Ω̄ .
Furthermore, from the definition of Ω and Lemmas 3 and 4, Corollaries 1 and 2, we have that F(·, λ) has no
fixed point in ∂Ω for all λ ∈ (0, 1] . By using the homotopy invariance of degree, we can conclude that

deg[I −F(·, 1),Ω, 0] = deg[I −F(·, 0),Ω, 0]. (27)

On the other hand, by Lemma 9, any fixed point of F(·, 0) has the form (A0 + B,N) with B and N
are constants satisfying (25), so that R2 − A0

k < Ak − A0
k < R1 − A0

k and 0 ≤ Nk < R5. Set Ak = A0
k + B .

Now the invariance of the topological degree by translation yields that

deg[I −F(·, 0),Ω, 0] = deg[(I −F)(A0 + ·, ·, 0),Ω− (A0, 0), 0],
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where

(I −F)(A0 + B,N, 0) = (Bk −B2 + B − NA0 − NB, Nk −N2 + NA0 + NB − A1 + A0)

=: (I − F̃)(B,N).

Then it follows from the reduction theorem of the topological degree that

deg[I − F̃ ,Ω− (A0, 0), 0] = deg[(I − F̃)|R2 , (Ω− (A0, 0)) ∩ R2, 0]

= deg[G, (R2 − max A0, R1 − min A0)× [0, R5), 0],

where G : [R2 − max A0, R1 − min A0]× [0, R5] → R is defined by

G(B,N) = (B −NA0 −NB,NA0 +NB − A1 + A0).

Since the unique zero of G is given by (25). Therefore,

deg[G, (R2 − max A0, R1 − min A0)× (0, R5), 0] = 1.

Consequently,
deg[I −F(·, 1),Ω, 0] = 1,

and hence, the existence property of degree theory implies that F(·, 1) has at least one fixed point in Ω , i.e.
system (1) admits at least one nonconstant positive solution. 2
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