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Abstract: Karoubi’s density theorem was first proved in Benayat’s thesis and then cited and used in several books and
articles. As K-theory is a special case of hermitian εL -theory, a natural question is whether such a theorem is still true
in the latter theory. The purpose of this article is to show that it is indeed the case.
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1. Introduction
Functors of algebraic topology are numerous and often easy to define. However, although their algebraic
properties are well known, the major task and the most difficult problem is to compute their values for interesting
objects. Karoubi’s density theorem [2,5,10] says that if A is densely and continuously included in the Banach
algebra B and units of A are those of B belonging to A , then K (A) and K (B) are isomorphic; it was
first proved in Benayat’s thesis [2] to compute the K-theory of the Banach algebra of absolutely summable
Laurent series in n variables. The theorem raises the question (known as Swan’s problem) whether, under the
same hypotheses, there is equality of stable ranks [8]. It also allows the extension of topological K-theory to
a whole class of dense subalgebras of the algebras involved and to Frechet algebras and dense subalgebras of
these [1,6–8]. Since K-theory is a special case of hermitian εL -theory, it is natural to ask whether the density
theorem is still valid for the latter, allowing us to extend the mentioned problems to the hermitian situation; in
this article, we answer the question positively. We refer to [4] for the basics concerning Banach categories.

2. Notations, definitions, review

Let C be a Banach group category, i.e. an additive category C such that the group of morphisms C (M,N)

is a Banach group and the composition of morphisms C (M,N) × C (N,P ) −→ C (M,P ) is continuous; a
transposition functor is a contravariant Banach functor t : C −→ C such that t ◦ t is naturally isomorphic to
the identity functor 1C . In the sequel, we will always identify t2 (M) and t2 (f) with M and f respectively
(M object and f morphism in C ). The pair (C, t) is called a hermitian category.

Example 1 A hermitian ring is a Banach ring endowed with a bounded involution (a −→ a) . Let P (A) be
the category of projective right A-modules of finite type. We can endow it with the following transposition: if P
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is an object in P (A) , we put

tP =

{
f : P −→ A : f is a homomorphism of abelian groups and f (xa) = af (x)

for a ∈ A and x ∈ P

}

The formula (fa) (x) = f (x) a endows tP with a right A-module structure. Since P is projective and
of finite type, tP is also of finite type and projective; t (tP ) is canonically isomorphic to P . If g :P −→ Q is
a morphism, then composition with g defines a morphism tg : tQ −→ tP.

Example 2 Let X be an involutive compact space (i.e. X is endowed with a continuous application σ : X −→
X such that σ2 = 1X) and A a hermitian ring. We consider the category E (X,A) of locally trivial fiber spaces
over X with fibers in P (A) . The previously defined functor, being continuous, induces a transposition functor
still written t : E (X,A) −→ E (X,A) .

Let M be an object in (C, t) . A sesquilinear form on M is a morphism φ :M −→ tM ; it is nondegenerate
if it is an isomorphism in the category. We write Sesq (M) for the abelian group of sesquilinear forms on M .

We have an involution T : Sesq (M) −→ Sesq (M) defined by T (φ) being the composition M ≈ t (tM)
tφ−→

tM. Let ε = (+1) or (−1) and consider the following complex of abelian groups: · · · −→ Sesq (M)
1+Tε−→

Sesq (M)
1−Tε−→ Sesq (M) −→ · · ·

We assume, once and for all, that we can divide by 2 in any Sesq (M) . Then the above complex is acyclic
for, if φ ∈ Ker (1− Tε) , then ψ = 1

2φ has image φ by (1 + Tε) . We have the obvious isomorphisms:
Coker (1− Tε) = Sesq (M)⧸Im (1− Tε) = Sesq (M)⧸Ker (1 + Tε) ≈ Im (1 + Tε) ≈ Ker (1− Tε) .

Definition 3 An ε-hermitian form on M is an element of Coker(1− Tε) .

From what precedes, we can identify an ε -hermitian form on M to a φ :M −→ tM such that tφ = εφ.

Definition 4 1. A hermitian object is a pair (M,φ) where M ∈ Ob (C) and φ : M −→ tM is an
isomorphism in C such that tφ = εφ.

2. Let (M,φ) and (N,ψ) be two hermitian objects; a C -morphism f :M −→ N is unitary if φ = tf ◦ψ ◦ f
and it is an isometry if, moreover, it is an isomorphism. We put Uφ (M) for the group of unitary
automorphisms (i.e. isometries) of (M,φ) .

The adjoint of f : M −→ N is f∗ = φ−1◦ tf ◦ ψ : N −→ M ; it is clear that if f ∈ Uφ (M) then
f∗ ◦ f = φ−1 ◦t f ◦ ψ ◦ f = 1M , that is f∗ = f−1.

2.1. Hyperbolic forms

The following
(

0 1tM

ε1M 0

)
: M⊕ tM −→ tM ⊕M is an ε -hermitian form on M⊕ tM and will be written(

0 1
ε 0

)
. This hermitian object is written H (M) and called a hyperbolic form on M. In the case of the two

fundamental examples, we know from [4] that any hermitian object (P, θ) is a direct factor of a hyperbolic form,
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i.e. there is a hermitian object (P ′, θ′) such that (P, θ)⊕ (P ′, θ′) is isometric to a hyperbolic form H (M) . An

isometry on H (M) is a morphism u : M⊕ tM −→ M⊕ tM such that its adjoint u∗ for
(
0 1
ε 0

)
satisfies

u∗ = u−1; we write U (H (M)) for the group of these isometries.

2.2. Definition of εL (C)

Let εQ (C) be the category whose objects are the hermitian objects and the morphisms are those which are
unitary. We define εL (C) as the Grothendieck group K (εQ (C)) . Explicitly, let M be the monoid of isometry
classes of hermitian objects in C; then εL (C) is the symmetrized group of M. An element of εL (C) is a
formal difference [M,φ] − [N,ψ] , where [M,φ] is the isometry class of (M,φ) . In particular, εL (P (A)) and
εL (E (X,A)) are written respectively as εL (A) and εL (X,A) . Recall that the addition law in εL (A) is the
obvious direct sum [M,φ]⊕[N,ψ] ≡ [M ⊕N,φ⊕ ψ] . Any element of εL (A) can be written as [H (An)]−[M,φ]

and a generator can be given in two ways:

1. As the image of a projector

Let (M,φ) be an ε -hermitian A -module; then there is a self-adjoint projector p : H (An) −→ H (An)

such that (M,φ) is isometric to
(

Imp,
(
0 1
ε 0

)
|Im p

)
.

2. As an involution
There is a self-adjoint involution ν : H (An) −→ H (An) , i.e. ν2 = 1 and ν∗ = ν, such that (M,φ) is

isometric to
(
Ker (ν − 1) ,

(
0 1
ε 0

)
|Ker(ν−1)

)
.

3. The density theorem for εL

Let k = R or C; R is endowed with the identity involution
(
λ −→ λ,∀λ ∈ R

)
while C can be provided with

either the identity involution or the complex conjugation. A k -hermitian algebra is a k -algebra A that is a
hermitian ring (a −→ a) complying with the following relation: λ · a = λ · a,∀λ ∈ k, ∀a ∈ A. We write U (A)

for the group of invertible elements of A .

Theorem 5 Let A and B be two k-hermitian algebras such that:

1. A is continuously and densely included in B

2. The involution of A is the restriction of that of B

3. U (A) = A ∩ U (B)

Then the natural homomorphism εL (A) −→ε L (B) is an isomorphism.

Proof Let MA and MB be the abelian monoids of isometry classes of ε -hermitian A - and B -modules respec-

tively. Extension of scalars gives the morphism of monoids T :MA −→MB , [M,φ] −→
[
MB =M ⊗

A
B,φB = φ⊗ 1

]
inducing the ring homomorphism T̃ : [M,φ]− [N,ψ] −→ [MB , φB ]− [NB , ψB ] from εL (A) to εL (B) . 2
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1. T̃ is injective
Let p : H (An) −→ H (An) be a self-adjoint projector; an element of εL (A) can be written H (An) −

[M,φ] . If T̃ (H (An)− [M,φ]) = 0, i.e. H (Bn) − [MB , φB ] = 0, then there exists m ∈ N such that
H (Bn)⊕H (Bm) is isometric to (MB , φB)⊕H (Bm) ; this means that H (Bn+m) is isometric to(

MB ⊕H (Bm) , φB ⊕
(
0 1
ε 0

))
. Thus, up to the addition of 0 = [H (Am)] − [H (Am)] to H (An) −

[M,φ] , we can assume that (MB , φB) = H (Bn) . Using the language of projectors, we have to prove that if pB =

p⊗1 : H (An)⊗B = H (Bn) −→ H (An)⊗B = H (Bn) complies with
(

ImpB ,
(
0 1
ε 0

)
|ImpB

)
isometric

≈ H (Bm)

for a certain m ∈ N, then
(

Imp,
(
0 1
ε 0

)
|Imp

)
is isometric to H (Am) . Therefore, let p0 : H (An) −→ H (An)

be the self-adjoint projector such that Imp0 = H (Am) looked as a direct factor of H (An) . We will show that

if p : H (An) −→ H (An) is such that
(

ImpB ,
(
0 1
ε 0

)
|ImpB

)
is isometric to H (Bm) , then p is isometric

to p0. By construction pB and (p0)B are isometric; so there is a unitary operator α ∈ U (H (Bn)) such that

pB = α◦(p0)B◦α−1. We put X = H (Bn) and φ =

(
0 1
ε 0

)
; the following diagram, in Figure 1, is commutative

since pB = α ◦ (p0)B ◦ α−1 and α−1 = α∗ = φ−1 ◦ (tα) ◦ φ. For every r ∈ N∗, hypothesis 1 implies that the
matrix group Glr (A) and the algebra Mr (A) are dense in Glr (B) and Mr (B) , respectively. Let τ > 0 and
α′ ∈ Gl (An ⊕ tAn) such that ∥α− α′∥ ≤ τ. We are going to approximate α′ by an α′′ ∈ U (H (An)) by using
the polar decomposition of α′. We recall lemma 4.1.4 from Rickart’s book [9]:

Figure 1. α is a unitary morphism of H (Bn) .

Lemma [9] Let U be a Banach algebra and h an element of U with ν (h) = lim
n−→∞

∥hn∥
1
n < 1. Then

there exists an element k in U such that k2 = h. If U is a Banach *-algebra with a locally continuous involution
and h is hermitian then k is also hermitian.
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k is written
√
h and is constructed as the limit of an absolutely convergent series . In our situation, let

us put u = α− α′; we have

α′α′∗ = (α− u) (α∗ − u∗)

= αα∗ − uα∗ − αu∗ + uu∗

= 1 + η,

where η = −uα−1 − αu∗ + uu∗. The norm of η satisfies

∥η∥B ≤
∥∥uα−1

∥∥
B
+ ∥αu∗∥B + ∥uu∗∥B ≤

∥∥α−1
∥∥
B
τ + ∥α∥B λτ + λτ2 ≤ Kτ2,

where ∥u∗∥B ≤ λτ for a constant λ > 0 and K is a constant independent from τ. Hence, if τ is taken

small enough,
√
α′α′∗ exists ; let us put α′′ =

(√
α′α′∗

)−1

◦ α′ ∈ U (H (An)) . Since the applications

β −→ β∗, β −→ β−1 , and β −→
√
β are continuous on their respective domains, α′′ is a unitary approximation

of α′ and thus of α too; we have ∥α′′ − α∥B ≤ Lτ and ∥α′′∗ − α∗∥B =
∥∥α′′−1 − α−1

∥∥
B

≤ L′τ , where L and
L′ are positive constants. If we put p′′ = α′′ ◦ p0 ◦ α′′∗ = α′′ ◦ p0 ◦ α′′−1, then it is a self-adjoint projector
on H (An) and the following diagram shown in Figure 2, where β = 1 − p − p′′ + 2pp′′, is commutative: β is
an isomorphism of modules but is not necessarily unitary; since ∥β∥ is close to 1,

√
ββ∗ does exist. Thus we

can proceed as we did for α′; we take the polar decomposition β′′ of β and we get β′′ ∈ U (H (An)) , which
commutes with β. We get the following commutative diagram in Figure 3: which shows that p′′ and p are
isometric. Since p′′ = α′′ ◦ p0 ◦ α′′∗, we have shown, by transitivity, that p and p0 are isometric.

Figure 2. Commutative diagram but not unitary.

4. T̃ is surjective
We assume the algebras A and B are real; if they are complex, then the following proof would go without
having to complexify. The complexifications A⊗

R
C = A⊕ iA and B ⊗

R
C = B ⊕ iB are written as AC and BC,
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Figure 3. Commutativity implies that p and p0 are isometric.

respectively. Let ν0 : H (Bn) −→ H (Bn) be a self-adjoint involution, defining a generator of εL (B) ; we have
to find a self-adjoint involution ν : H (An) −→ H (An) such that νB ≈ ν0. We recall that the ”spectrum” map

{
sp : A −→ 2C

x⇝ sp (x) = {z ∈ C : (x− z.1) is not inversible}

where A is a complex Banach algebra, is upper semicontinuous. In our case, if a ∈Mn (AC) , then hypothesis
2 implies that the spectrum of a as an element of Mn (AC) is the same as the spectrum of a as an element
of Mn (BC) . We have sp (ν0) = {+1,−1} , where ν0 ∈ Mn (B) ⊕ i0 ⊂ Mn (B) ⊕ iMn (B) = Mn (BC) . Let
us take V = sp (ν0) + B (0, ε) , where B (0, ε) is the open disk in C centered at 0 and with positive radius ε
much smaller than 1 as shown in Figure 4: Thus there is a neighborhood U of ν0 in End (Bn

C ⊕ tBn
C) such

that sp (ν) ⊂ V for any ν ∈ U. Let W = sp (ν0) + B (0, 2ε) and ∂W = γ+1 ∪ γ−1; we consider the following
application:

Figure 4. Special neighborhood of sp (ν0) .
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{
F : U −→ End (Bn

C ⊕ tBn
C)

F (ν) = 1
2iπ

∫
γ+1∪γ−1

f (z) [z.1− ν]
−1
dz,

where

f (z) =

{
+1 on (+1) +B (0, 2ε)
−1 on (−1) +B (0, 2ε)

Let us note that, although End (Bn
C ⊕ tBn

C) is not a commutative algebra, the integral is perfectly defined
since it is the limit of Riemann sums taking place in the closure of a commutative subalgebra of the latter.
The function f (z) is holomorphic on a neighborhood of sp (ν) for any ν ∈ U ⊂ End (Bn

C ⊕ tBn
C) . Hence

F (ν) is well defined and, by holomorphic functional calculus, the relation f (z)
2
= 1 implies (F (ν))

2
= 1

in End (Bn
C ⊕ tBn

C) . Thus F (ν) is an involution for any ν ∈ U. Let us show that F (ν0) = ν0; we put

p+ (ν0) =
1

2iπ

∫
γ+1

[z.1− ν0]
−1
dz and p− (ν0) =

1
2iπ

∫
γ−1

[z.1− ν0]
−1
dz. The holomorphic functional calculus

shows that p+ (ν0) and p− (ν0) are projection operators on the following spaces respectively:

E+ =
{
x ∈ Bn

C ⊕ tBn
C : ν0 (x) = x

}
and

E− =
{
x ∈ Bn

C ⊕ tBn
C : ν0 (x) = −x

}
.

Moreover, p+ (ν0) + p− (ν0) = 1 in End (Bn
C ⊕ tBn

C) ; composing by ν0, we get ν0 ◦ p+ (ν0) + ν0 ◦ p− (ν0) = ν0

that is, p+ (ν0) − p− (ν0) = ν0. On the other hand, we have p+ (ν0) − p− (ν0) = F (ν0) ; therefore, we get
F (ν0) = ν0. Since F is continuous, if we choose a ball B (ν0, η) with radius η small enough, we can find a
neighborhood U ′ ⊂ U of ν0 such that F (U ′) ⊂ B (ν0, η) . If we put EA = End (An

C ⊕ tAn
C) , which is not

empty, and EB = End (Bn
C ⊕ tBn

C) , then U ′∩EB ̸= ∅. It follows, since EA is dense in EB , that U ′∩EA ̸= ∅.
Thus let us take ν1 ∈ U ′ ∩ EA, assuming that it is self-adjoint (otherwise, we would take 1

2 (ν1 + ν∗1 )) .

Lemma 6 F (ν1) ∈ EA.

Proof Since the inclusion of EA ⊕ iEA in EB ⊕ iEB is continuous, the integral F (ν1) is the same in
EA ⊕ iEA and EB ⊕ iEB ; moreover, F (ν1) =

−1
2iπ

∫
γ+1∪γ−1

f (z) [z.1− ν1]
−1
dz; recall that ν1 = ν1 since ν1 ∈

EB + i0. If we put z = ξ and noting that complex conjugation reverses the orientations on γ±1, we have
F (ν1) =

−1
2iπ

∫
−(γ+1∪γ−1)

f (ξ) [ξ.1− ν1]
−1
dξ = F (ν1) . 2

Hence F (ν1) is an involution on H (An) ; it is self-adjoint since we have, putting ψ =

(
0 1
ε 0

)
:

F (ν1)
∗
= 1

2iπψ
−1 ◦

(∫
γ+1∪γ−1

f (z) t [z.1− ν1]
−1
dz
)
◦ ψ

= 1
2iπ

∫
γ+1∪γ−1

f (z)
[
z.1− ψ−1 ◦ tν1 ◦ ψ

]−1
dz

However, ψ−1◦ tν1 ◦ ψ = ν∗1 = ν1; so F (ν1)
∗
= F (ν1) .

We finish the proof by noting that, in Figure 5, β = 1 + ν0 ◦ F (ν1) is an isometry and the diagram in
Figure 5 is commutative:

Therefore, we have a self-adjoint involution F (ν1) on H (An) whose image by ⊗B is isometric to the

initial involution ν0 proving the surjectivity of T̃ .
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Figure 5. ν0 and F (ν1) are isometric.

5. Application

Let Tn = S1 × · · · × S1 (n factors) be the n-dimensional torus endowed with the continuous involution
x =

(
eiθ1 , · · · , eiθn

)
⇝ x =

(
e−iθ1 , · · · , e−iθn

)
and C = C (Tn,C) the complex Banach algebra of continuous

functions on Tn with the sup-norm. We endow C with the antiinvolution f̃ (x) = f (x); let us put C0 ={
f ∈ C : f̃ = f

}
and C1 =

{
f ∈ C : f̃ = −f

}
. C0 is a real Banach algebra and C1 = iC0 is a C0 -module of rank

1. If f ∈ C, let f (x) =
∑

p∈Zn

cpe
ipθ be its Laurent series, where p = (p1, · · · pn) ∈ Zn, x = eiθ =

(
eiθ1 , · · · , eiθn

)
,

and eipθ =
(
eip1θ1 , · · · , eipnθn

)
. We have f̃ (x) = f (x) =

∑
p∈Zn

cpe−ipθ =
∑

p∈Zn

cpe
ipθ. If f ∈ C0, we must

have cp = cp,∀p ∈ Zn, i.e. they are real. Let Cr, r ∈ N∗, be the complex Banach algebra of complex
functions on Tn of class Cr with the norm ∥f∥ =

∑
1≤|α|≤r

(∥∂αz f∥+ ∥∥∂αz f∥∥) , where, for example, ∥∂αz f∥ =

sup
x∈Tn

∣∣∣ ∂αf
∂z

α1
1 ···∂zαn

n
(x)
∣∣∣ . Of course, Cr is dense in C; let us put Cr

0 = C0 ∩ Cr, which is a real Banach algebra,

dense in C0. Let f ∈ Cr
0 , for r ≥ 2; its Fourier coefficients satisfy the relations cp (f) = (−1)

|α| 1
(ip)α cp (D

αf) ,

where α = (α1, · · ·αn) ∈ Nn, |α| =
∑
αi = r and (ip)

α
=

∏
j=1,...,n

(ipj)
αj . Thus, if r ≥ 2, the Laurent series

∑
p∈Zn

cp (f) z
p of f ∈ Cr

0 is absolutely summable; let us write R̂n for the real Banach algebra of absolutely

summable Laurent series
∑

p∈Zn

cp (f) z
p with real coefficients. We have a dense and continuous inclusion of Cr

0 in

R̂n, and the two pairs
(
Cr
0 , R̂n

)
and (Cr

0 , C0) satisfy the hypotheses of the density theorem; we conclude that

εL
(
R̂n

)
and εL (C0) are isomorphic.

Further work [2] , necessitating the definition of algebraic and topological Real εL -theories, gives the
following results:

1. For ε = 1, for the two possible involutions, we get
{
KR (Tn)⊕KR (Tn)
KOZ2

(Tn)
.

2. For ε = −1, −1L (A) and −1L (X,A) are new invariants, not expressible in term of usual K-theories.
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