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Abstract: In this paper, we first give some characterizations of e -symmetric rings. We prove that R is an e -symmetric
ring if and only if a1a2a3 = 0 implies that aσ(1)aσ(2)aσ(3)e = 0 , where σ is any transformation of {1, 2, 3} . With the
help of the Bott–Duffin inverse, we show that for e ∈ MEl(R) , R is an e -symmetric ring if and only if for any a ∈ R

and g ∈ E(R) , if a has a Bott–Duffin (e, g) -inverse, then g = eg . Using the solution of the equation axe = c , we show
that for e ∈ MEl(R) , R is an e -symmetric ring if and only if for any a, c ∈ R , if the equation axe = c has a solution,
then c = ec . Next, we study the properties of e -symmetric ∗ -rings. Finally we discuss when the upper triangular matrix
ring T2(R) (resp. T3(R, I)) becomes an e -symmetric ring, where e ∈ E(T2(R)) (resp. e ∈ E(T3(R, I))).
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1. Introduction
Throughout this paper, all rings are associative with unity. For a ring R , T2(R) denotes the 2 × 2 upper
triangular matrix ring over R , and E(R) , U(R) , Z(R) , and N(R) denote the set of all idempotents, the set
of all invertible elements, the center of R , and the set of all nilpotent elements of R , respectively. An element
e ∈ E(R) is called left minimal idempotent of R if Re is a minimal left ideal of R . Write MEl(R) to denote
the set of all left minimal idempotents of R . An idempotent e of a ring R is called left (right) semicentral
ae = eae (ea = eae) for each a ∈ R . A ring R is called (strongly) left min-abel [10] if either MEl(R) = ∅ or
every element e in MEl(R) is (right) left semicentral.

A ring R is symmetric [5] if abc = 0 implies acb = 0 for all a, b, c ∈ R . The study of symmetric rings
also can be found in [6]. Symmetric rings were generalized by Ouyang and Chen to weak symmetric rings in
[8]; that is, a ring R is said to be weak symmetric if for all a, b, c ∈ R , if abc ∈ N(R) , then acb ∈ N(R) .
Following [3], a ring R is called central symmetric if for any a, b, c ∈ R, abc = 0 implies bac ∈ Z(R) . Central
symmetric rings are another form of generalization of symmetric rings. In [11], Wei introduced generalized
weakly symmetric rings, which further generalized the concept of symmetric rings. In [7], a ring R is called
(strongly) e -symmetric if for any a, b, c ∈ R , abc = 0 implies (aceb = 0) acbe = 0 , where e ∈ E(R) . It is
shown that a ring R is e -symmetric if and only if e is left semicentral and eRe is symmetric [7, Theorem 2.2].
In [7, Theorem 3.1], it was shown that a ring R is strongly e -symmetric if and only if e is central and eRe
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is symmetric. Also, using e -symmetric rings, we gave some new characterizations of left min-abel rings in [10]
and [11].

This paper is organized as follows. In Section 2, we first discuss many properties of e -symmetric rings
and strongly e -symmetric rings. Then, with the help of e -symmetric rings, we give some characterizations of
left min-abel rings. In Section 3, we study the e -symmetricity of ∗ -rings. We show that for a ∗ -ring R , if R

is e -symmetric and 1 + (e∗ − e)∗(e∗ − e) ∈ U(R) , then R is strongly e -symmetric and e is a projection. In
Section 4, we discuss when the upper triangular matrix ring T2(R) (resp. T3(R, I)) becomes an e -symmetric
ring, where e ∈ E(T2(R)) (resp. e ∈ E(T3(R, I))).

2. Some characterizations of e-symmetric rings
Proposition 2.1 The following conditions are equivalent for a ring R :
(1) R is an e-symmetric ring;
(2) abc = 0 implies bace = 0 for all a, b, c ∈ R .

Proof (1) ⇒ (2) Since R is an e -symmetric ring, by [7, Theorem 2.2], e is left semicentral. Let a, b, c ∈ R

and satisfy abc = 0 . Then we have 1a(bc) = 0 , 1bcae = 0 ; that is, bcae = 0 . Again, the e -symmetricity of R

gives that b(ae)ce = 0 . Noting that e is left semicentral, then we get bace = 0 .
(2) ⇒ (1) Let x ∈ R . We have xe(1 − e)e = 0 ; by hypothesis, one obtains (1 − e)xeee = 0 , and it

follows that (1− e)Re = 0 . Thus, e is left semicentral. By (2) we know that eRe is a symmetric ring. By [7,
Theorem 2.2], R is an e -symmetric ring. 2

By Proposition 2.1, we get the following corollaries.

Corollary 2.2 Let R be an e-symmetric ring. If abc = 0 , then we have
(1) bace = 0 ; (2) cabe = 0 ; (3) cbae = 0 .

Corollary 2.3 R is an e-symmetric ring if and only if for any a1, a2, a3 ∈ R , a1a2a3 = 0 implies that
aσ(1)aσ(2)aσ(3)e = 0 , where σ is any transformation of {1, 2, 3} .

Let e, g ∈ E(R) . If Re ∼= Rg as left R -modules, then we say e and g are left isomorphic. Similarly, if
eR ∼= gR as right R -modules, then we say e and g are right isomorphic.

Theorem 2.4 Let R be an e-symmetric ring.
(1) If g and e are left isomorphic, then R is a g -symmetric ring.
(2) If g and e are right isomorphic, then R is a g -symmetric ring.
(3) If g and e are left isomorphic, then eR = gR .

Proof Since R is an e -symmetric ring, by [7, Theorem 2.2], e is left semicentral.
(1) Let σ : Re → Rg be the left R -module isomorphism and g = σ(xe) where x ∈ R ; then eg =

eσ(xe) = σ(exe) = σ(xe) = g . Let a, b, c ∈ R and satisfy abc = 0 . Then acbe = 0 (since R is an e -symmetric
ring), so we have acbg = acbeg = 0 . Thus, R is a g -symmetric ring.

(2) Let τ : eR → gR be the right R -module isomorphism. Then there exist x, y ∈ R such that τ(e) = gx

and τ(ey) = g , so we have g = τ(e)y = gxy . Let f = ygx . Then

f2 = ygxygx = yg2x = ygx = f,
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ef = eygx = τ−1(g)gx = τ−1(gx) = e,

fe = ygxe = yτ(e)e = yτ(e) = ygx = f,

and so Re = Rf , and e and f are left isomorphic. By (1), R is an f -symmetric ring. Then by [7, Theorem
2.2], f is left semicentral. Therefore,

g = g2 = gxygxy = gxfy = fgxfy = fg.

Let a, b, c ∈ R and satisfy abc = 0 ; then acbf = 0 (since R is an f -symmetric ring). We have acbg = acbfg = 0 .
Thus, R is a g -symmetric ring.

(3) Since g and e are left isomorphic, by (1), R is a g -symmetric ring. Hence, g is left semicentral by
[7, Theorem 2.2]. Observing the proof of (1) , we have e = ge and g = eg , and this gives eR = gR . 2

Corollary 2.5 Let R be a strongly e-symmetric ring.
(1) If g and e are left isomorphic, then e = g .
(2) If g and e are right isomorphic, then e = g .

Proof Since R is a strongly e -symmetric ring, by [7, Theorem 3.1], e is a central element and R is e -
symmetric.

(1) If g and e are left isomorphic, then eR = gR by Theorem 2.4(3). Hence, g = eg and ge = e . Noting
that e is central, then g = ge = e .

(2) If g and e are right isomorphic, then the proof of Theorem 2.4(2) implies that eR = gR , and by (1),
we know that e = g . 2

Let R be a ring and a ∈ R and e, f ∈ E(R) . If there exists an element y ∈ R satisfying

y = ey = yf, yae = e, fay = f,

then y is called a Bott–Duffin (e, f) -inverse of a (see [2]). If y exists, then it is unique. Denote it by a
(e,f)
BD .

Proposition 2.6 Let a ∈ R and e, f ∈ E(R) . If R is e-symmetric and a has a Bott–Duffin (e, f)-inverse y ,
then:

(1) R is f -symmetric and eR = fR ;

(2) y
(e,f)
BD = eaf .

Proof (1) Since a has a Bott–Duffin (e, f)− inverse y , y = ey = yf , yae = e , and fay = f . Noting that R

is e -symmetric, then e is left semicentral by [7, Theorem 2.2], so f = fay = fa(ey) = e(faey) = ef , and this
implies that R is f -symmetric. Hence, f is left semicentral, and it follows that e = yae = (yf)ae = (fyf)ae =

f(yfae) = fe . Therefore, eR = fR .
(2) Noting that e and f are left semicentral, then eafye = eafeye = eaeye = eaye = (fe)aye = faye =

fe = e and fyeaf = feyeaf = eyeaf = yeaf = yefaf = yfaf = yaf = yaef = ef = f . Then y
(e,f)
BD = eaf .2

Proposition 2.7 Let R be an e-symmetric ring and f ∈ E(R) . If R satisfies one of the following conditions,
then R is f -symmetric:
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(1) eR+ (1− f)R = R ;
(2) ea+ 1− f ∈ U(R) for some a ∈ R ;
(3) Re+R(1− f) = R ;
(4) ae+ 1− f ∈ U(R) for some a ∈ R .

Proof (1) Since R is e -symmetric, e is left semicentral by [7, Theorem 2.2]. Noting that eR+(1− f)R = R ,
then fR = feR = efeR ⊆ eR , and it follows that f = ef . The proof of Theorem 2.4(1) implies that R is
f -symmetric.

(2) Set ea + 1 − f = u ∈ U(R) . Then fu = fea and one obtains f = feau−1 . Noting that e is left
semicentral, then f = ef , and this gives that R is f -symmetric.

(3) If Re+R(1− f) = R , then Rf = Ref . Set f = cef for some c ∈ R . Then f = ecef = ef because
e is left semicentral. Therefore, R is f -symmetric.

(4) Set ae + 1 − f = v ∈ U(R) . Then fv = fae and one obtains f = faev−1 . Noting that e is left
semicentral, then f = ef , so R is f -symmetric. 2

Proposition 2.8 A ring R is a strongly left min-abel ring if and only if for e ∈ MEl(R) and a, b ∈ R , e = eab

implies that e = eba .

Proof (⇒) Assume that R is strongly left min-abel and e = eab . Then e is central, and it follows that
e = ee = eabeab = ea(eba)b . This implies that eba ̸= 0 , and one has Re = Reba . Set e = ceba for some c ∈ R .
Noting that e = eab , then be = beab = ebab . This gives eba = bea = ebaba , so e = ceba = (ceba)ba = eba .

(⇐) Let e ∈ MEl(R) and x ∈ R . Set g = e+ ex(1− e) . Then eg = g , ge = e , and g2 = g ∈ MEl(R) .
Since e = ege , by hypothesis, e = eeg = eg = g . Thus, ex(1 − e) = g − e = 0 for each x ∈ R , and this gives
that e is right semicentral. By [7, Lemma 3.3], e is central. Hence, R is strongly left min-abel. 2

Theorem 2.9 Let e ∈ MEl(R) . Then R is an e-symmetric ring if and only if for any a ∈ R and g ∈ E(R) ,
if a has a Bott–Duffin (e, g)-inverse, then g = eg .

Proof (⇒) Let R be an e -symmetric ring. Then e is left semicentral. Assume that a ∈ R and g ∈ E(R)

and a has a Bott–Duffin (e, g) -inverse. Letting a
(e,g)
BD = y , then y = ey = yg and

g = gay = gaey = egaey = eg.

(⇐) First we prove that e is left semicentral. For any x ∈ R , set g = e+ (1− e)xe ; then eg = e, ge =

g, g2 = g. Obviously, e is a Bott–Duffin (e, g) -invertible element and e
(e,g)
BD = e . By hypothesis g = eg = e ,

and then (1− e)xe for any x ∈ R . Thus, e is left semicentral.
Next, we prove that eRe is a symmetric ring. Any a, b, c ∈ eRe satisfy abc = 0 . Assuming that

acb ̸= 0 , then a ̸= 0 and b ̸= 0 , and so we have Ra = Re = Rb . Let e = ra = sb for some r, s ∈ R ; then
acb = aecb = asbcb = asebcb = asrabcb = 0 , which is a contradiction. Thus, eRe is a symmetric ring, and
hence R is an e -symmetric ring by [7, Theorem 2.2]. 2

Proposition 2.10 Let e ∈ MEl(R) . Then R is an e-symmetric ring if and only if for any a ∈ R and
g ∈ E(R) , if a has a Bott–Duffin (e, g)-inverse, then e = ge .
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Proof (⇒) From Theorem 2.9, we know g = eg . Since e ∈ MEl(R) , g ∈ MEl(R) , and R is a g -symmetric

ring, g is left semicentral. Thus, e = yae = ygae = gygae = ge , where y = a
(e,g)
BD .

(⇐) The proof is similar to Theorem 2.9. 2

Let R be a ring and a ∈ R . If there exists b ∈ R such that a = aba , then a is called a regular element
of R and b is called an inner inverse. Clearly, if b exists, it is not unique. We denote by a{1} the set of all
inner inverses of a regular element a . Let b ∈ a{1} . Then ab, ba ∈ E(R) .

Proposition 2.11 Let a be a regular element of R and b ∈ a{1} . If R is ab-symmetric, then R is ba-
symmetric.

Proof Since b ∈ a{1} , we have a = aba . Let e = ab and g = ba ; then e, g ∈ E(R) and ea = a = ag . Denote
σ : Re → Ra by σ(re) = rea for any r ∈ R . It is easy to prove that σ is a left R -module isomorphism. Since
Ra = Rg , we have Re ∼= Rg as left R -modules. By hypothesis, R is an e -symmetric ring, and thus R is a
g -symmetric ring by Theorem 2.4. That is, R is a ba -symmetric ring. 2

Lemma 2.12 Let a, b ∈ R and e ∈ MEl(R) satisfy abe = e . If e is left semicentral, then e = bae .

Proof Since abe = e and e is left semicentral, we have e = aebe . Then Re = Rae . Letting e = cae for some
c ∈ R , then ce = c(abe) = caebe = ebe = be and bae = beae = ceae = cae = e . 2

Lemma 2.13 Let e ∈ MEl(R) . If e is left semicentral, then eRe is a symmetic ring.

Proof Let a, b, c ∈ eRe and satisfy abc = 0 . If acb ̸= 0 , then Racb = Re , so e = dacbe for some
d ∈ R . By Lemma 2.12, e = bdace = cbdae . Thus, e = dacbe = daecbe = da(bdace)cbe = dabedacecbe =

dab(cbdae)dacecbe = d(abc)bdaedacecbe = 0 , which is a contradiction. Hence, acb = 0 and so eRe is a
symmmetic ring. 2

Proposition 2.14 Let e ∈ MEl(R) . Then R is an e-symmetric ring if and only if for any a ∈ R either
aRe = 0 or the equation axe = e has a solution.

Proof (⇒) Since R is an e -symmetric ring, e is left semicentral. Let a ∈ R . If aRe ̸= 0 , then abe ̸= 0 for
some b ∈ R . Thus, Rabe = Re . Set e = dabe for some d ∈ R . By Lemma 2.12, e = abde . Hence, x = bd is a
solution of the equation axe = e .

(⇐) Let e ∈ MEl(R) . If (1 − e)Re ̸= 0 , then by hypothesis we know (1 − e)xe = e has a solution.
However, (1 − e)xe = e does not have a solution and that is a contradiction. Thus, (1 − e)Re = 0 , e is left
semicentral. By Lemma 2.13, eRe is a symmetric ring. Hence, R is an e -symmetric ring by [7, Theorem 2.2].

2

Theorem 2.15 Let e ∈ MEl(R) . Then R is an e-symmetric ring if and only if for any a, c ∈ R , if the
equation axe = c has a solution, then c = ec .

Proof (⇒) Since R is an e -symmetric ring, e is left semicentral. If the equation axe = c has a solution
x = b , then c = abe = eabe = ec .
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(⇐) For any a ∈ R , denote h = (1− e)ae . If h ̸= 0 , then Rh = Re . Let e = ch for some c ∈ R . Then
h(ch)e = hch = he = h . Thus, the equation hxe = h has a solution, and then h = eh = e(1− e)ae = 0 , which
is a contradiction. Then (1− e)ae = 0 for any a ∈ R . Hence, e is left semicentral. By Lemma 2.13, eRe is a
symmetric ring. Hence, R is an e -symmetric ring. 2

3. Symmetricity of ∗-rings
An involution a 7−→ a∗ in a ring R is an antiisomorphism of degree 2 ; that is,

(a∗)∗ = a , (a+ b)∗ = a∗ + b∗ , (ab)∗ = b∗a∗ .

A ring R with an involution ∗ is called a ∗ -ring (see [1]).
Let R be a ∗ -ring and e ∈ E(R) . If e∗ = e , then e is called projection.
Let R be a ring and e ∈ E(R) . R is called left e -reflexive if aRe = 0 implies eRa = 0 for any a ∈ R .

Proposition 3.1 (1) R is strongly e-symmetric if and only if R is e-symmetric and left e-reflexive.
(2) If e is a projection element of a ∗-ring R , then R is strongly e-symmetric if and only if R is

e-symmetric.

Proof (1) (⇒) Assume that aRe = 0 . Since R is a strongly e -symmetric ring, by [7, Theorem 3.1], e is a
central element. Then we get eRa = eRae = 0 . Thus, R is left e -reflexive.

(⇐) Suppose that R is e -symmetric and left e -reflexive; by [7, Theorem 2.2], e is left semicentral. Then
we have (1− e)Re = 0 . Since R is left e -reflexive, we have eR(1− e) = 0 , so e is a central element. Thus, R

is a strongly e -symmetric ring by [7, Theorem 3.1].
(2) Noting that a projection element e in a ∗ -ring R is left semicentral if and only if it is central, (2)

holds. 2

Proposition 3.2 Let R be a ∗-ring and e ∈ E(R) . If R is an e-symmetric ring, then:
(1) e∗e is an idempotent element;
(2) the following conditions are equivalent:
(a) R is e∗e-symmetric,
(b) for each x ∈ R , e∗xe = xe∗e ,
(c) e∗e is central,
(d) ee∗e = e∗e .

Proof (1) Since R is an e -symmetric ring, e is left semicentral, and it follows that (e∗e)2 = e∗ee∗e = e∗e∗e =

e∗e .
(2) (a) =⇒ (c) By (1), we know that e∗e is a projection. Since R is e∗e -symmetric, by Proposition

3.1(2), R is strongly e∗e -symmetric, and by [7, Theorem 3.1], e∗e is central.
(c) =⇒ (b) For each x ∈ R , by (c), we have e∗ex = xe∗e , and this gives xe∗e = e∗exe . Noting that e is

left semicentral, xe∗e = e∗xe .
(b) =⇒ (d) Choose x = e ; we are done.
(d) =⇒ (a) Let a, b, c ∈ R and satisfy abc = 0 . Since R is e -symmetric, acbe = 0 , and this leads to

acbe∗e = acbee∗e = 0 . Hence, R is e∗e -symmetric. 2
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Proposition 3.3 Let R be a ∗-ring. If R is e-symmetric, then the following conditions are equivalent:
(1) ee∗ ∈ E(R) ;
(2) xee∗ = e∗xe for each x ∈ R ;
(3) ee∗ = e∗e ;
(4) ee∗ is central.

Proof (1) =⇒ (2) Since R is an e -symmetric ring and ee∗ ∈ E(R) , R is ee∗ -symmetric, and it follows that
ee∗ is left semicentral. Hence, xee∗ = ee∗xee∗ for each x ∈ R . Noting that e is left semicentral and e∗ is right
semicentral, then xee∗ = e∗xe .

(2) =⇒ (3) Choose x = e . Then, by (2), we have ee∗ = e∗e .
(3) =⇒ (4) Since R is e -symmetric and ee∗ = e∗e , R is e∗e -symmetric, and by Proposition 3.2(2), e∗e

is central. Hence, ee∗ is central.
(4) =⇒ (1) Trivial. 2

Theorem 3.4 Let R be a ∗-ring and an e-symmetric ring. If 1 + (e∗ − e)∗(e∗ − e) ∈ U(R) , then R is a
strongly e-symmetric ring and e is a projection.

Proof Set u = 1 + (e∗ − e)∗(e∗ − e) and v = u−1 . Then u∗ = u , eu = ee∗e = ue , and it follows that
ev = ve and v∗ = v , so e∗v = ve∗ . Choose f = ee∗v = vee∗ . Then f2 = (vee∗)(ee∗v) = v(ee∗e)e∗v =

veue∗v = evue∗v = ee∗v = f and f∗ = f , and this gives that f is a projection. Since R is e -symmetric and
f = ef , R is f -symmetric. By Proposition 3.1(2), R is strongly f -symmetric, so f is central and it follows
that f = ef = fe = vee∗e = vue = e . Hence, e is projection and R is a strongly e -symmetric ring. 2

Let R be a ∗ -ring and e ∈ E(R) . p ∈ R is said to be a range projection [4] if p is a projection satisfying
pe = e and ep = p . The range projection of e is denoted by e⊥ .

Proposition 3.5 Let R be a ∗-ring. If R is e-symmetric, then the following conditions are equivalent:
(1) 1 + (e∗ − e)∗(e∗ − e) ∈ U(R) ;
(2) e+ e∗ − 1 ∈ U(R) ;
(3) e⊥ exists.

Proof (1) =⇒ (2) By Theorem 3.4, e is a projection. Hence, e+ e∗ − 1 = 2e− 1 ∈ U(R) .
(2) =⇒ (3) Follows from [4, Theorem 2.1].
(3) =⇒ (1) Let p = e⊥ . Then ep = p . Noting that R is e -symmetric, then R is p−symmetric, and by

Proposition 3.1, p is central. It follows that e = pe = ep = p . Hence, 1 + (e∗ − e)∗(e∗ − e) = 1 ∈ U(R) . 2

An element a† in a ∗ -ring R is called the Moore–Pensor inverse (or MP-inverse) of a [9] if

aa†a = a , a†aa† = a† , aa† = (aa†)∗ , a†a = (a†a)∗ .

In this case, we call a MP-invertible in R . The set of all MP-invertible elements of R is denoted by R† .

Corollary 3.6 Let R be a ∗-ring and an e-symmetric ring. Then e ∈ R† if and only if e is a projection.
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Proof (⇒) Assume that e ∈ R† . By [4, Theorem 3.1], e + e∗ − 1 ∈ U(R) . By Proposition 3.5,
1 + (e∗ − e)∗(e∗ − e) ∈ U(R) , and by Theorem 3.4, e is a projection.

(⇐) Suppose that e is a projection. Then e+ e∗ − 1 = 2e− 1 ∈ U(R) . By [4, Theorem 3.1], e ∈ R† .2

Theorem 3.7 Let R be a ∗-ring and a ∈ R† . If R is aa† -symmetric, then a is EP .

Proof Note that R is aa† -symmetric and aa† is projection. Hence, by Proposition 3.1(2), R is strongly aa† -
symmetric, and it follows that aa† is central from [7, Theorem 3.1]. This gives that a = (aa†)a = a(aa†) = a2a† .
Noting that Ra = R(a†a) and Raa† ∼= Ra as left R -module, then Raa† ∼= Ra†a as left R -module. Since R

is aa† -symmetric, it follows that R is a†a -symmetric from Theorem 2.4. Noting that a†a - is projection, then
a†a is central, which implies that a = a(a†a) = a†a2 . Hence, a ∈ a2R∩Ra2 , and one obtains that a ∈ R♯ and
so a♯ exists. Now we have a♯a = a♯a2a† = aa† ; hence, a is EP. 2

4. Upper triangular matrix ring
Proposition 4.1 Let R be a ring and e ∈ E(R), r ∈ R . Then we have the following results:

(1) T2(R) is a
(

1 r
0 0

)
-symmetric ring if and only if R is a symmetric ring.

(2) T2(R) is a
(

e 0
0 0

)
-symmetric ring if and only if R is an e-symmetric ring.

(3) T2(R) is a
(

e e
0 0

)
-symmetric ring if and only if R is an e-symmetric ring.

Proof (1) (⇒) Let a, b, c ∈ R and satisfy abc = 0 . Then we have(
a 0
0 0

)(
b 0
0 0

)(
c 0
0 0

)
=

(
0 0
0 0

)
.

Since T2(R) is a
(

1 r
0 0

)
-symmetric ring, we have

(
a 0
0 0

)(
c 0
0 0

)(
b 0
0 0

)(
1 r
0 0

)
=

(
0 0
0 0

)
;

this is
(

acb acbr
0 0

)
=

(
0 0
0 0

)
. Then we get acb = 0 , and so R is a symmetric ring.

(⇐) Let A =

(
a1 b1
0 c1

)
, B =

(
a2 b2
0 c2

)
, C =

(
a3 b3
0 c3

)
∈ T2(R), and ABC =

(
0 0
0 0

)
; this

is ABC =

(
a1a2a3 ∗

0 c1c2c3

)
=

(
0 0
0 0

)
, and then we get a1a2a3 = c1c2c3 = 0 . Since R is a symmetric

ring, we have a1a3a2 = c1c3c2 = 0 , so ACB

(
1 r
0 0

)
=

(
a1a3a2 a1a3a2r

0 0

)
=

(
0 0
0 0

)
. Hence, T2(R)

is a
(

1 r
0 0

)
-symmetric ring.
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Similarly, we can prove (2) and (3). 2

Let R be a ring and I an ideal of R ,

T3(R, I) = {

 a1 a2 a3
0 a4 a5
0 0 a6

 |a1, a3, a4, a5, a6 ∈ R and a2 ∈ I}.

Then, by the usual matrix addition and multiplication, T3(R, I) is a ring.

Proposition 4.2 Let R be a ring, I an ideal of R , and e ∈ E(R) . Then T3(R, I) is a

 e 0 0
0 e 0
0 0 0

-

symmetric ring if and only if R is an e-symmetric ring and Ie = 0 .

Proof Let a ∈ I , A =

 1 0 0
0 0 0
0 0 0

 ∈ T3(R, I) , B =

 0 a 0
0 0 0
0 0 0

 ∈ T3(R, I) , and C =

 1 0 0
0 0 0
0 0 0

 ∈

T3(R, I) . Then ABC =

 0 0 0
0 0 0
0 0 0

 . Since T3(R, I) is a

 e 0 0
0 e 0
0 0 0

 -symmetric ring , we have

ACB

 e 0 0
0 e 0
0 0 0

 =

 0 ae 0
0 0 0
0 0 0

 =

 0 0 0
0 0 0
0 0 0

 . Hence, ae = 0 , and so Ie = 0 .

Let x, y, z ∈ R and satisfy xyz = 0 . Choose A =

 x 0 0
0 0 0
0 0 0

 ∈ T3(R, I) , B =

 y 0 0
0 0 0
0 0 0

 ∈

T3(R, I) , and C =

 z 0 0
0 0 0
0 0 0

 ∈ T3(R, I) . Then ABC =

 0 0 0
0 0 0
0 0 0

 . Since T3(R, I) is a

 e 0 0
0 e 0
0 0 0

 -

symmetric ring, we have ACB

 e 0 0
0 e 0
0 0 0

 =

 xzye 0 0
0 0 0
0 0 0

 =

 0 0 0
0 0 0
0 0 0

 . Hence, xzye = 0 , and R

is an e -symmetric ring.

Conversely, let A =

 a1 a2 a3
0 a4 a5
0 0 a6

 ∈ T3(R, I) , B =

 b1 b2 b3
0 b4 b5
0 0 b6

 ∈ T3(R, I) , C =

 c1 c2 c3
0 c4 c5
0 0 c6

 ∈

T3(R, I) , and ABC =

 0 0 0
0 0 0
0 0 0

 . We have

 a1b1c1 ∗ ∗
0 a4b4c4 ∗
0 0 a6b6c6

 =

 0 0 0
0 0 0
0 0 0

 ,

and then
a1b1c1 = a4b4c4 = a6b6c6 = 0.

2397



MENG and WEI/Turk J Math

Since R is an e -symmetric ring, we get that a1c1b1e = a4c4b4e = a6c6b6e = 0 . Since a2, b2, c2 ∈ I ,
a1c1b2 + a1c2b4 + a2c4b4 ∈ I , by hypothesis (a1c1b2 + a1c2b4 + a2c4b4)e = 0 . Hence,

ACB

 e 0 0
0 e 0
0 0 0

 =

 a1c1b1e (a1c1b2 + a1c2b4 + a2c4b4)e 0
0 a4c4b4e 0
0 0 0

 =

 0 0 0
0 0 0
0 0 0

 .

Thus, T3(R, I) is a

 e 0 0
0 e 0
0 0 0

 -symmetric ring. 2

The following corollary follows from Proposition 4.2.

Corollary 4.3 T3(R, I) is a

 1 0 0
0 1 0
0 0 0

-symmetric ring if and only if R is a symmetric ring and I = 0 .

Example 4.4 Let R be a symmetric ring and I = 0 . Take A =

 1 0 0
0 0 0
0 0 0

 ∈ T3(R, 0) , B =

 0 0 1
0 0 0
0 0 0

 ∈ T3(R, 0) , and C =

 1 0 0
0 0 0
0 0 0

 ∈ T3(R, 0) . Then ABC =

 0 0 0
0 0 0
0 0 0

 , but ACB ̸=

 0 0 0
0 0 0
0 0 0

 . This shows that T3(R, 0) is not a symmetric ring. Similarly, we can prove that for an e-

symmetric ring R , T3(R, 0) need not be a

 e 0 0
0 e 0
0 0 e

-symmetric ring.

Let R be a ring,

WV3(R) = {

 a 0 c
0 a b
0 0 a

 |a, b, c ∈ R},

WT3(R) = {

 a 0 b
0 c 0
0 0 d

 |a, b, c, d ∈ R}.

Then by the usual matrix addition and multiplication, WV3(R) and WT3(R) are rings. Obviously, WV3(R)

and WT3(R) are subrings of T3(R, I) . Similarly, we can prove that Proposition 4.2 and Corollary 4.3 also hold
for WV3(R) and WT3(R) .
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