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Abstract: Let (Σ, g) be a compact Riemannian surface without boundary and W 1,2(Σ) be the usual Sobolev space.
For any real number p > 1 and α ∈ R , we define a functional

Jα,8π(u) =
1

2

(∫
Σ

|∇gu|2dvg − α(

∫
Σ

|u|pdvg)2/p
)
− 8π log

∫
Σ

heudvg

on a function space H =
{
u ∈ W 1,2(Σ) :

∫
Σ
udvg = 0

}
, where h is a positive smooth function on Σ . Denote

λ1,p(Σ) = inf
u∈H,

∫
Σ |u|pdvg=1

∫
Σ

|∇gu|2dvg.

If α < λ1,p(Σ) and Jα,8π has no minimizer on H , then we obtain the exact value of infH Jα,8π by using a method
of blow-up analysis. Hence, if infH Jα,8π is not equal to that value, then Jα,8π|H has a critical point that satisfies a
Kazdan–Warner equation. This recovers a recent result of Yang and Zhu (DOI: 10.1007/s11425-017-9086-6).
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1. Introduction and main results
Let (Σ, g) be a compact Riemannian surface without boundary, ∇g and ∆g be its respective gradient operator
and Laplace–Beltrami operator, dvg be its volume element, and W 1,2(Σ) be the usual Sobolev space. We define
a function space

H =

{
u ∈W 1,2(Σ) :

∫
Σ

udvg = 0

}
. (1)

Let h be a positive smooth function on Σ and Jβ : W 1,2(Σ) → R be a fuctional defined by

Jβ(u) =
1

2

∫
Σ

|∇gu|2dvg − β log
∫
Σ

heudvg. (2)

In view of a manifold version of the Trudinger–Moser inequality [5], one can see that Jβ has lower bound on
the space H for all β ≤ 8π . Note that critical points of Jβ on H are solutions to Kazdan–Warner equations
[6]. In [4], Ding et al. proved that J8π must have a minimizer on H if

inf
u∈H

J8π ̸= −8π − 8π logπ − 4πmax
p∈Σ

(Ap + 2 logh(p)), (3)
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where Ap = limx→p(Gp + 4 log r) is a constant, r denotes the geodesic distance between x and p , and Gp is a
Green function satisfying {

∆gGp = 8πδp − 8π
Volg(Σ)∫

Σ
Gpdvg = 0,

where δp is the usual Dirac measure. Moreover they gave a geometric hypothesis that guarantees (3). Clearly
the minimizer of Jβ satisfies the following Kazdan–Warner equation:

∆gu =
8πheu∫
Σ
heudvg

− 8π

Volg(Σ)
. (4)

There are extensions of Ding et al.’s result. Among these, we mention [10], [11], [19] and [17]. Recently,
motivated by a series of works concerning Trudinger–Moser inequalities, some works [1, 9, 12–16], [18] considered
the functionals

Jα,β(u) =
1

2

(∫
Σ

|∇gu|2dvg − α

∫
Σ

u2dvg

)
− β log

∫
Σ

heudvg (5)

and proved that if α < λ1(Σ) , the first eigenvalue of the Laplace–Beltrami operator with respect to the mean
value zero condition, and

inf
u∈H

Jα,8π ̸= −8π − 8π logπ − 4πmax
p∈Σ

(Ap + 2 logh(p)), (6)

where Ap = limx→p(Gp + 4 log r) is a constant, r denotes the geodesic distance between x and p , and Gp is a
Green function satisfying {

∆gGp − αGp = 8πδp − 8π
Volg(Σ) ,∫

Σ
Gpdvg = 0,

then infu∈H Jα,8π can be attained by some function u ∈ H satisfying

∆gu− αu =
8πheu∫
Σ
heudvg

− 8π

Volg(Σ)
. (7)

Motivated by (5) and [8], we now consider the minimizing problem for the functional Jα,β defined by

Jα,β(u) =
1

2

(∫
Σ

|∇gu|2dvg − α(

∫
Σ

|u|pdvg)2/p
)
− β log

∫
Σ

heudvg, (8)

where p > 1 is a real number. To do this, we define λ1,p(Σ) by

λ1,p(Σ) = inf
u∈H,

∫
Σ

|u|pdvg=1

∫
Σ

|∇gu|2dvg. (9)

By the Poincaré–Sobolev inequality, when α < λ1,p(Σ) , the norm

∥u∥α,p =

(∫
Σ

|∇gu|2dvg − α(

∫
Σ

|u|pdvg)2/p
)1/2

(10)

is an equivalent Sobolev norm on H . Our main result reads as follows.
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Theorem 1 Let (Σ, g) be a compact Riemannian surface without boundary, h be a positive smooth function
on Σ , p > 1 be a real number, and H , λ1,p(Σ) and Jα,β be defined as in (1), (9), and (8). Then, for any
α < λ1,p(Σ) , if Jα,8π|H has no minimizer, then there holds

inf
u∈H

Jα,8π = −8π − 8π logπ − 4π max
x0∈Σ

(Ax0 + 2 logh(x0)),

where Ax0 = limx→x0(Gx0 +4 log r) is a constant, r denotes the geodesic distance between x and x0 , and Gx0

is a Green function satisfying{
∆gGx0

+ ζ(Gx0
) = 8πδx0

+ ζ(Gx0
)− 8π

Volg(Σ) ,∫
Σ
Gx0dvg = 0,

(11)

where
ζ(f(x)) = −α∥f(x)∥2−p

p |f(x)|p−2f(x), (12)

and ζ(f) = 1/Volg(Σ)
∫
Σ
ζ(f)(x)dvg is its integral average on Σ .

For the proof of Theorem 1, we follow the lines of [18], and thereby closely follow [4]. The difference is that in
the case p ̸= 2 , the Euler–Lagrange equation uϵ satisfies being nonlinear. If this case happens, the maximum
principle will become invalid. Fortunately, we can use the capacity estimate to calculate the infimum of Jα,8π .
This method was originally used in [7] and then in [11]. However, we cannot extend our results to higher
eigenfunction space cases because of the nonlinearity of the Euler–Lagrange equation uϵ being satisfied.

An interesting application of Theorem 1 reads as follows.

Corollary 2 For any α < λ1,p(Σ) , if

inf
u∈H

Jα,β(u) ̸= −8π − 8π logπ − 4π max
x0∈Σ

(Ax0
+ 2 logh(x0)), (13)

then the Kazdan–Warner equation

△gu+ ζ(u) =
8πheu∫
Σ
heudvg

+ ζ(u)− 8π

Volg(Σ)
(14)

has a solution on u0 in H , where ζ(u) is defined as in (12).

In the remaining part of this paper, we prove Theorem 1. Throughout this paper, we do not distinguish
between sequence and subsequence.

2. Proof of Theorem 1
For some fixed α < λ1,p , the proof of Theorem 1 will be divided into several steps. For simplicity, we assume
Volg(Σ) =

∫
Σ
dvg = 1 .

Step 1. Minimizers for subcritical functionals.

In this step we shall prove that infu∈H Jα,8π−ϵ(u) can be attained for any small ϵ > 0 . Precisely, we
have for any 0 < ϵ < 8π that there exists some function uϵ ∈ H ∩ C1(Σ) such that

Jα,8π−ϵ(uϵ) = inf
u∈H

Jα,8π−ϵ(u). (15)
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The proof is based on a direct method in the calculus of variations. However, for proving (15), we should
introduce a Trudinger–Moser inequality.

Lemma 3 Let (Σ, g) be a compact Riemannian surface without boundary and p > 1 be a real number. Then,
for any 0 ≤ α < λ1,p(Σ) and 0 < γ < 4π , we have the supremum

sup
u∈W 1,2(Σ),

∫
Σ
udvg=0, ∥u∥α,p≤1

∫
Σ

eγu
2

dvg <∞, (16)

where λ1,p(Σ) is defined by (9) and the norm ∥ · ∥α,p is defined by (10).

Proof. We refer readers to an argument of [14, p. 3168] to understand the proof of Lemma 3, and we omit the
proof here.

2

For any fixed 0 < ϵ < 8π , we take a sequence of functions uj ∈ H satisfying that

Jα,8π−ϵ(uj) → inf
u∈H

Jα,8π−ϵ(u) (17)

as j → ∞ .
It follows from Young’s inequality that

∫
Σ

heujdvg ≤
∫
Σ

he
(4π−ϵ/4)

u2
j

∥uj∥2α,p
+

∥uj∥
2
α,p

16π−ϵ
dvg. (18)

(18) together with (16) and (17) shows that

inf
u∈H

Jα,8π−ϵ(u) + oj(1) =
1

2
∥uj∥2α,p − (8π − ϵ) log

∫
Σ

heujdvg

≥ 1

2
∥uj∥2α,p −

8π − ϵ

16π − ϵ
∥uj∥2α,p − (8π − ϵ) log

∫
Σ

he
(4π−ϵ/4)

u2
j

∥uj∥2α,p dvg

≥ ϵ

32π
∥uj∥2α,p − C.

Therefore, uj is bounded in H . Thus, we can assume uj ⇀ uϵ weakly in H , uj → uϵ strongly in Lq(Σ) for
any q > 0 , and uj → uϵ a.e. in Σ . Weak convergence implies

∥uϵ∥2α,p ≤ lim
j→∞

∥uj∥2α,p. (19)

An analog of (18) shows that e|uj | is bounded in Ls(Σ) for any s > 0 , and then we have

lim
j→∞

∫
Σ

heujdvg =

∫
Σ

heuϵdvg. (20)

(20) together with (19) shows (15). Moreover, by using the method of Lagrange multiplier, we obtain that the
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Euler–Lagrange equation uϵ satisfies the following:
∆guϵ − α∥uϵ∥2−p

p |uϵ|p−2uϵ = (8π − ϵ)λϵ
−1heuϵ + µϵ inΣ,

λϵ =
∫
Σ
heuϵdvg,

µϵ = −(8π − ϵ)− α
∫
Σ
∥uϵ∥2−p

p |uϵ|p−2uϵdvg,∫
Σ
uϵdvg = 0.

(21)

Applying elliptic estimates to (21), we have uϵ ∈ C1(Σ) immediately. We also have lim infϵ→0 λϵ > 0 by using
Jensen’s inequality. Notice that for any γ > 0 , there exists some uγ ∈ H such that

inf
u∈H

Jα,8π(u) + γ > Jα,8π(uγ) = lim
ϵ→0

Jα,8π−ϵ(uγ) ≥ lim
ϵ→0

Jα,8π−ϵ(uϵ) = lim
ϵ→0

inf
u∈H

Jα,8π−ϵ(u).

Since γ > 0 is arbitrary, we have

lim
ϵ→0

inf
u∈H

Jα,8π−ϵ(u) ≤ inf
u∈H

Jα,8π(u) ≤ inf
u∈H

Jα,8π(uϵ) = lim
γ→0

inf
u∈H

Jα,8π−γ(uϵ).

Extracting a diagonal sequence, we obtain

lim
ϵ→0

inf
u∈H

Jα,8π−ϵ(u) = inf
u∈H

Jα,8π(u). (22)

Denote
cϵ = uϵ(xϵ) = max

Σ
uϵ.

At the end of this step, we prove that if λϵ or cϵ is bounded, then Jα,8π has a minimizer in H .
Supposing that λϵ is bounded, then

1

2
∥uϵ∥2α,p = Jα,8π−ϵ(uϵ) + (8π − ϵ) log

∫
Σ

heuϵdvg

≤ Jα,8π−ϵ(0) + (8π − ϵ) logλϵ

≤ 8π| log
∫
Σ

hdvg|+ (8π − ϵ) logλϵ

≤ C.

Therefore, uϵ is bounded in H. By the Sobolev embedding theorem and Lemma 3, we know uϵ is bounded in
Lr (Σ) (∀r > 1) and e|uϵ| is bounded in Ls (Σ) (∀s > 1) . Noting that lim inf

ϵ→0
λϵ > 0 and

|µϵ| ≤ 8π + α|
∫
Σ

∥uϵ∥2−p
p |uϵ|p−2uϵdvg| ≤ 8π + C∥uϵ∥p,

applying an elliptic estimate to (21), we obtain uϵ → u0 in H ∩ C1(Σ) . It follows from (22) that

Jα,8π(u0) = lim
ϵ→0

Jα,8π−ϵ(uϵ) = lim
ϵ→0

inf
u∈H

Jα,8π−ϵ(u) = inf
u∈H

Jα,8π(u).

Hence, we already have that u0 is a minimizer of Jα,8π . Supposing that uϵ is bounded, multiplying equation
(21) by uϵ , the Sobolev embedding theorem together with lim infϵ→0 λϵ > 0 tells us that

∥uϵ∥2α,p ≤ C

∫
Σ

|uϵ|dvg ≤ C∥uϵ∥α,p. (23)

2404



FANG and ZHANG/Turk J Math

Thus, uϵ is bounded in H . By a series of analyses, the same as λϵ being bounded, we can find a u0 in H∩C1(Σ)

as a minimizer of Jα,8π . Therefore, if we assume that Jα,8π has no minimizer on H , there must hold

λϵ → +∞, cϵ → +∞. (24)

We will precisely describe the converge of uϵ in the next step by using the method of blow-up analysis.

Step 2. Blow-up analysis for uϵ .

Assume xϵ → x0 in Σ . We set

rϵ =

√
λϵ√

(8π − ϵ)h(x0)
e−cϵ/2. (25)

It follows that for any η < 1/2 , there holds r2ϵ eηcϵ → 0 . In particular, we have for any s > 0 the following:

rϵc
s
ϵ → 0, (26)

where rϵ is defined in (25). The proof is an analogy of [18, Lemma 2.7]; we multiply both sides of equation (21)
by uϵ and obtain

∥uϵ∥2α,p =
(8π − ϵ)

λϵ

∫
Σ

huϵe
uϵdvg ≤ (8π − ϵ)cϵ. (27)

(27) together with the Trudinger–Moser inequality (16) leads to

∫
Σ

heuϵdvg ≤ C

∫
Σ

e
(4π−ϵ/2)

u2
ϵ

∥uϵ∥2α,p
+

∥uϵ∥2α,p
16π−2ϵ

dvg

≤ Ce
∥uϵ∥2α,p
16π−2ϵ ≤ Ce

1
2 cϵ .

We then obtain

r2ϵ =

∫
Σ
heuϵdvg

(8π − ϵ)h(x0)
e−cϵ ≤ Ce−

1
2 cϵ . (28)

This demonstrates the correctness of rϵcsϵ → 0 for any s > 0 . Define two blow-up functions,

φϵ(y) = uϵ
(
expxϵ

(rϵy)
)
− cϵ (29)

and
ψϵ(y) = c−1

ϵ uϵ
(
expxϵ

(rϵy)
)
. (30)

For y ∈ Bδr−1
ϵ

(0) , where 0 < δ < ig(Σ) is fixed and ig(Σ) is the injectivity radius of (Σ, g) , set

gϵ(y) =
(
exp∗

xϵ
g
)
(rϵy). (31)

As ϵ → 0 , gϵ → g0 , the standard Euclidean metric. Note that ψϵ(y) ≤ ψϵ(0) = 1 and φϵ(y) ≤ 0 . Combining
(29)–(31) with (21), by a direct computation, we have

△gϵψϵ = αr2ϵ∥c−1
ϵ uϵ∥2−p

p ψp−1
ϵ + c−1

ϵ

h(expxϵ
(rϵy))

h(x0)
euϵ(expxϵ

(rϵy))−cϵ + µϵr
2
ϵ c

−1
ϵ (32)
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and

△gϵφϵ = αr2ϵ cϵ∥c−1
ϵ uϵ∥2−p

p ψp−1
ϵ +

h(expxϵ
(rϵy))

h(x0)
eφϵ(y) − µϵr

2
ϵ . (33)

For any fixed R > 0 , by a change of variable we have

∥ψp−1
ϵ ∥

L
p

p−1 (BR(0))
= (1 + oϵ(1))r

−2+ 2
p

ϵ ∥c−1
ϵ uϵ∥p−1

Lp(BRrϵ (xϵ))
≤ r

−2+ 2
p

ϵ ∥c−1
ϵ uϵ∥p−1

Lp(Σ).

This together with 0 ≤ c−1
ϵ uϵ ≤ 1 gives

∥αr2ϵ∥c−1
ϵ uϵ∥2−p

p ψp−1
ϵ ∥

L
p

p−1 (BR(0))
≤ αr

2
p
ϵ Volg(Σ)

1
p .

It follows that
∥ −△gϵψϵ∥

L
p

p−1 (BR(0))
→ 0 as ϵ→ 0.

Using elliptic estimates, we can find some continuous function ψ such that ψϵ → ψ in C0(BR/2(0)) . Since
R > 0 is arbitrary, we have

ψϵ → ψ in C0
loc(R2). (34)

When 1 < p ≤ 2 , it is easy to see that

∥c−1
ϵ uϵ∥2−p

p ≤ Volg(Σ)
2
p−1.

When p > 2 , we have for any fixed R > 0 the following:

r2ϵ∥c−1
ϵ uϵ∥2−p

Lp(Σ) ≤ r2ϵ∥c−1
ϵ uϵ∥2−p

Lp(BRrϵ (xϵ))

= r
4
p
ϵ (∥ψ∥2−p

Lp(BR(0)) + oϵ(1)). (35)

Note that ∥ψ∥Lp(BR(0)) > 0 since ψ(0) = limϵ→0 ψϵ(0) = 1 and ψ is continuous. Therefore, we conclude the
following:

r2ϵ∥c−1
ϵ uϵ∥2−p

Lp(Σ) = oϵ(1), ∀p > 1. (36)

Applying elliptic estimates to (32) and (33) again, and combining with (36), we obtain

ψϵ → ψ in C1
loc(R2), (37)

where ψ is a bounded harmonic function as in (34) and satisfies ψ(0) = 1 = supR2 ψ . The Liouville theorem
immediately leads to

ψ ≡ 1 in R2.

It follow from (37) that

ψϵ → 1 in C1
loc(R2).

2406



FANG and ZHANG/Turk J Math

(35) inspires that

r2ϵ cϵ∥c−1
ϵ uϵ∥2−p

Lp(Σ) ≤ r2ϵ cϵ∥c−1
ϵ uϵ∥2−p

Lp(BRrϵ (xϵ))

= r
4
p
ϵ cϵ∥ψϵ∥2−p

Lp(BR(0))

= r
4
p
ϵ cϵ(∥ψ∥2−p

Lp(BR(0)) + oϵ(1)) → 0. (38)

The last line of (38) comes from (26). Applying elliptic estimates to (32) and (33), we have

φϵ → φ in C1
loc(R2),

where φ satisfies 
△g0φ = −eφ(y) in R2,

φ(0) = 0 = sup
R2

φ,∫
R2 e

φ(y)dy <∞.

By a result of [3], φ can be written as follow:

φ(y) = −2 log(1 + |y|2/8). (39)

Moreover, ∫
R2

eφ(y)dy = 8π. (40)

To understand the convergence behavior away from the blow-up point x0 , we shall next figure out how
uϵ converges. First, we will prove that λ−1

ϵ heuϵ ⇀ δx0
in the sense of measure, where δx0

is the usual Dirac
measure centered at x0 . For fixed R > 0 , in view of (25), we obtain

(8π − ϵ)

λϵ

∫
BRrϵ (xϵ)

heuϵdvg = r2ϵ
(8π − ϵ)

λϵ

∫
BR(0)

eφϵ(y)dy

= (1 + oϵ(1))

∫
BR(0)

eφdy.

Combining this with (39) and (40), we have

lim
R→∞

lim
ϵ→0

∫
BRrϵ (xϵ)

λϵ
−1heuϵdvg = 1. (41)

Therefore,

lim
R→∞

lim
ϵ→0

∫
Σ\BRrϵ (xϵ)

λϵ
−1heuϵdvg = 1− lim

R→∞
lim
ϵ→0

∫
BRrϵ (xϵ)

λϵ
−1heuϵdvg = 0. (42)

For any ν ∈ C0(Σ) , we have

lim
ϵ→0

λϵ
−1

∫
Σ

νheuϵdvg = ν(x0). (43)
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Secondly, we need to prove that ∥uϵ∥Lp(Σ) is bounded and demonstrate that uϵ is bounded in W 1,q(Σ) for all
1 < q < 2 . In fact, if we assume ∥uϵ∥Lp(Σ) → ∞ , we can construct ũϵ = uϵ/∥uϵ∥Lp(Σ) ∈ H verifying that
||ũϵ∥Lp(Σ) = 1 and

△gũϵ − α|ũϵ|p−2ũϵ =
(8π − ϵ)heuϵ

λϵ∥uϵ∥Lp(Σ)
− (8π − ϵ)

∥uϵ∥Lp(Σ)
− α

∫
Σ

∥uϵ∥1−p
p |uϵ|p−2uϵdvg := f (1)ϵ .

It is not difficult to see that
∫
Σ
∥uϵ∥1−p

p |uϵ|p−2uϵdvg is a uniformly bounded sequence. Assume

b = lim
ϵ→0

(
−α

∫
Σ

∥uϵ∥1−p
p |uϵ|p−2uϵdvg

)
. (44)

We get that ∥f (1)ϵ ∥L1(Σ) is bounded by letting ν = 1 in (43). Applying [18, Lemma 2.10], we obtain that ũϵ is
bounded in W 1,q(Σ) for any 1 < q < 2 with 2q/(2− q) > p . We assume the following:

ũϵ ⇀ ũ0 weakly in W 1,q(Σ),

ũϵ → ũ0 strongly in Ls(Σ) for any 0 < s <
2q

2− q
, (45)

ũϵ → ũ0 a.e. in Σ.

Moreover, ũ0 is a weak solution to the equation{
△gw − α|w|p−2w = b,∫
Σ
wdvg = 0.

This lead to ũ0 ≡ 0 , which is contradictory to (45) that ∥ũ0∥Lp(Σ) = limϵ→0 ∥ũϵ∥Lp(Σ) = 1 . Therefore,
∥uϵ∥Lp(Σ) is bounded. Then, for

△guϵ = α∥uϵ∥2−p
p |uϵ|p−2uϵ + (8π − ϵ)λϵ

−1heuϵ + µϵ := f (2)ϵ , (46)

we immediately obtain that f
(2)
ϵ is bounded in L1(Σ) . Applying [18, Lemma 2.10] again, ∥∇uϵ∥Lq(Σ) ≤ C .

Since uϵ is bounded in W 1,q(Σ) for all 1 < q < 2 , there exists some Gx0
such that uϵ converges to Gx0

weakly
in W 1,q(Σ) , strongly in Ls(Σ) for any 0 < s < 2q

2−q , and almost everywhere in Σ . One can check that Gx0
is

the distributional solution to the equation{
∆gGx0

− α∥Gx0
∥2−p
p |Gx0

|p−2Gx0
= 8πδx0

+ b− 8π,∫
Σ
Gx0

dvg = 0,
(47)

where b is the constant shown in (44). Integrating by (47) shows

b = −α
∫
Σ

∥Gx0
∥2−p
p |Gx0

|p−2Gx0
dvg.

Applying an elliptic estimate to (47), Gx0
can be locally represented by

Gx0
(x) = −4 log r +Ax0

+ ϑα(x), (48)
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where r denotes the geodesic distance between x and x0 , Ax0 is a real number depending only on x0 and α ,
ϑα(x) ∈ C1(Σ) , and ϑα(p) = 0 . Moreover,

uϵ → Gx0
in C1

loc (Σ\ {x0}) . (49)

For any domain Σ′ ⊂⊂ Σ \ {x0} , set uϵ = u
(1)
ϵ + u

(2)
ϵ , u(1)ϵ to be a solution to

△gu
(1)
ϵ − α∥u(1)ϵ ∥2−p

p |u(1)ϵ |p−2u(1)ϵ = b− 8π on Σ′ (50)

and u
(2)
ϵ to be a solution to △gu

(2)
ϵ = α∥u(2)ϵ ∥2−p

p |u(2)ϵ |p−2u
(2)
ϵ + λ−1

ϵ heuϵ in Σ′

u
(2)
ϵ = 0, on ∂Σ′,

(51)

In view of (50), referring to the proof of ∥uϵ∥Lp(Σ) being bounded, we have that ∥u(1)ϵ ∥Ls(Σ) is bounded for any

s > 0 . For any Σ′′ ⊂⊂ Σ′ , we obtain that u(1)ϵ is uniformly bounded in Σ′′ by applying elliptic estimate to

(50). Then α∥u(2)ϵ ∥2−p
p |u(2)ϵ |p−2u

(2)
ϵ is bounded in L1(Σ′) . This together with λ−1

ϵ heuϵ → 0 in L1(Σ′) , and a
result of [2], implies that for any s > 0 , there is a constant C such that

∥e|u
(2)
ϵ |∥Ls(Σ′) ≤ C.

Combining this with the uniform boundedness of u(1)ϵ in Σ′′ , we have that f (2)ϵ in (46) is bounded in Ls(Σ′′)

for any s > 2 . By applying an elliptic estimate to (46), we get uϵ → Gx0
in C1

loc(Σ
′′) . Since the choice of Σ′

and Σ′′ is arbitrary, we obtain (49).

Step 3. The lower bound estimate.

In this step we get the lower bound estimate by using the method of capacity estimate; the idea comes
from [7, 11]. We first introduce a new functional: Kα,β :W 1,2(Σ) → R ,

Kα,β(v) =
1

2

(∫
Σ

|∇gv|2dvg − α(

∫
Σ

|v − v̄|pdvg)2/p
)
+ β

∫
Σ

vdvg − β log
∫
Σ

hevdvg,

where h is the same as in (8) and v̄ = 1/Volg(Σ)
∫
Σ
vdvg is the integral average of v . It is not difficult to verify

that v − v̄ ∈ H and
Kα,β(v) = Jα,β(v − v̄).

Most importantly, for any real number a , there holds

Kα,β(v + a) = Kα,β(v). (52)

For any v ∈W 1,2(Σ) , we can choose u = v − v̄ ∈ H to make Kα,β(v) = Jα,β(u) stand, which leads to

inf
v∈W 1,2(Σ)

Kα,β(v) ≥ inf
u∈H

Jα,β(u). (53)
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On the other hand, for any u ∈ H we can still choose v = u ∈ W 1,2(Σ) to make Jα,β(u) = Kα,β(v) , which
shows

inf
u∈H

Jα,β(u) ≥ inf
v∈W 1,2(Σ)

Kα,β(v). (54)

Combining (53) with (54), we obtain

inf
v∈W 1,2(Σ)

Kα,β(v) = inf
u∈H

Jα,β(u).

Let vϵ be the minimizer for subcritical functional Kα,8π−ϵ(v) . In view of (52), we might assume vϵ in a function
space

Lh =

{
v ∈W 1,2(Σ) :

∫
Σ

hevdvg = 1

}
. (55)

Let
mϵ = v(xϵ) = max

Σ
vϵ.

Then redefine

rϵ =
1√

(8π − ϵ)h(x0)
e−mϵ/2. (56)

Analogous to step 2, if Kα,8π has no minimizer on Lh , we have φϵ(y) = vϵ
(
expxϵ

(rϵy)
)
−mϵ → −2 log(1 +

|y|2/8) , and vϵ − v̄ϵ → Gx0 , as ϵ→ 0 . Take any fixed R > 0 and small δ such that 2δ < ig(Σ) .

Set
iϵ = inf

∂BRrϵ (xϵ)
vϵ, sϵ = sup

∂Bδ(xϵ)

vϵ.

We let
iϵ − sϵ = mϵ + dϵ − v̄ϵ.

As ϵ→ 0 ,

dϵ = iϵ − sϵ −mϵ + v̄ϵ = inf
∂BRrϵ (xϵ)

(vϵ −mϵ)− sup
∂Bδ(xϵ)

(vϵ − v̄ϵ)

= inf
∂BRrϵ (xϵ)

(vϵ − v̄ϵ − cϵ)− sup
∂Bδ(xϵ)

(vϵ − v̄ϵ)

→ φ(R)− sup
∂Bδ(xϵ)

Gx0
.

Define a function space

Wϵ(a, b) =
{
v ∈W 1,2(Bδ(xϵ) \BRrϵ(xϵ)) : v |∂Bδ(xϵ)= a, v |∂BRrϵ (xϵ)= b

}
.

Clearly inf
v∈Wϵ(sϵ,iϵ)

∫
Bδ(xϵ)\BRrϵ (xϵ)

|∇gv|2dvg is attained by l(x) verifying


△gl = 0 in Bδ(xϵ) \BRrϵ(xϵ),

l |∂Bδ(xϵ)= sϵ,

l |∂BRrϵ (xϵ)= iϵ.
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Denote r as the geodesic distance between x and xϵ ; then

l =
iϵ − sϵ

logRrϵ − log δ log r − iϵ log δ − sϵ log rϵ
logRrϵ − log δ ,

and

inf
v∈Wϵ(sϵ,iϵ)

∫
Bδ(xϵ)\BRrϵ (xϵ)

|∇gv|2dvg =

∫
Bδ(xϵ)\BRrϵ (xϵ)

|∇gl|2dvg =
2π(sϵ − iϵ)

2

log δ − logRrϵ
.

Denote

ṽϵ = max {sϵ,min{vϵ, iϵ}} .

Then, if ϵ is sufficiently small, ṽ ∈ Wϵ(sϵ, iϵ) and |△ṽ| ≤ |△v| a.e. in Bδ(xϵ) \BRrϵ . Therefore,

∫
Bδ(xϵ)\BRrϵ (xϵ)

|∇gvϵ|2dvg ≥
∫
Bδ(xϵ)\BRrϵ (xϵ)

|∇g ṽϵ|2dvg ≥
∫
Bδ(xϵ)\BRrϵ (xϵ)

|∇gl|2dvg

=
4π(mϵ + dϵ − v̄ϵ)

2

log δ2 − logR2r2ϵ
=

4π(mϵ + dϵ − v̄ϵ)
2

mϵ + log δ2 − logR2 + log(8π − ϵ)h(x0)

≥ 4π
(mϵ + dϵ − v̄ϵ)

2

mϵ

(
1 +

logR2 − log δ2 + log(8π − ϵ)h(x0)

mϵ
+

C

m2
ϵ

)

≥ 4π
(mϵ − v̄ϵ)

2

mϵ
+ 8πdϵ(1−

v̄ϵ
mϵ

)

+ 4πdϵ

(
1− v̄ϵ

mϵ

)2 (
logR2 − log δ2 + log(8π − ϵ)h(x0)

)
+
C ′v̄ϵ
m2

ϵ

,

where C and C ′ are constants depending only on δ and R . We then have those estimates by (39):

1

2

∫
BRrϵ (xϵ)

|∇gvϵ|2dvg =
1

2

∫
BR(0)

|∇φ|2dvg + oϵ(1)

= 8π log(1 + R2

8
)− 8π + oϵ(1) +O

(
1

R2

)
, (57)

and by (47) and (49)

−α
2
(

∫
Σ

|v − v̄|pdvg)2/p = −α
2
∥Gx0

∥2p + oϵ(1). (58)
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Thus, we conclude

1

2

∫
Bδ(xϵ)\BRrϵ (xϵ)

|∇gvϵ|2dvg −
α

2
(

∫
Σ

|vϵ − v̄ϵ|pdvg)2/p + (8π − ϵ)v̄.

≥ 2π
(mϵ − v̄ϵ)

2

mϵ
+ 2πdϵ

(
1− v̄ϵ

mϵ

)2 (
logR2 − log δ2 + log(8π − ϵ)h(x0)

)
+4πdϵ(1−

v̄ϵ
mϵ

) +
C ′v̄ϵ
m2

ϵ

− α

2
∥Gx0∥2p + (8π − ϵ)v̄ + oϵ(1)

= 2π(1 +
v̄ϵ
mϵ

)2 + 2πdϵ

(
1− v̄ϵ

mϵ

)2 (
logR2 − log δ2 + log(8π − ϵ)h(x0)

)
+4πdϵ(1−

v̄ϵ
mϵ

) +
C ′v̄ϵ
m2

ϵ

− α

2
∥Gx0

∥2p + oϵ(1).

Set aϵ = 1 + v̄/mϵ . There holds

Kα,8π−ϵ(vϵ) ≥ 2πmϵ

(
aϵ +O

(
1

mϵ

))2

+ C,

for any fixed R and δ . On the other hand, Kα,8π−ϵ(vϵ) ≤ C , and we obtain aϵ = O
(

1√
mϵ

)
→ 0 . Thus,

1

2

∫
Bδ(xϵ)

|∇gvϵ|2dvg −
α

2
(

∫
Σ

|vϵ − v̄ϵ|pdvg)2/p + (8π − ϵ)v̄ϵ

≥ 1

2

∫
BR(0)

|∇φϵ|2dvg −
α

2
∥Gx0

∥2p + 8πdϵ

+8π(logR2 − log δ2 + log(8π − ϵ)h(x0)) + oϵ(1)

=
1

2

∫
BR(0)

|∇φϵ|2dvg −
α

2
∥Gx0

∥2p + 8πφ(R)− 8π sup
∂Bδ(p)

Gx0
(·)

+8π(logR2 − log δ2 + log(8π − ϵ)h(x0)) + oϵ(1)

=
1

2

∫
BR(0)

|∇φϵ|2dvg −
α

2
∥Gx0∥2p + 8π log( R2

1 +R2/8
)− 8π log(1 +R2/8)

+ log 8π + logh(x0) + 8π log δ − 8πAx0 + oϵ(1) + oδ(1). (59)

It also follows from (47) and (49) that

1

2

∫
Σ\Bδ(xϵ)

|∇gvϵ|2dvg =
1

2

∫
Σ\Bδ(xϵ)

|∇gGx0
(·)|2dvg + oϵ(1)

=
α

2
(

∫
Σ\Bδ(xϵ)

|∇gGx0
(·)|pdvg)2/p −

1

2

∫
∂Bδ(xϵ)

Gx0

∂Gx0

∂n
dsg + o(1)

=
α

2
∥Gx0

∥2p − 16π log δ + 4πAx0
+ o(1).
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This together with (59) implies

Kα,8π−ϵ(vϵ) =
1

2

∫
Bδ(xϵ)

|∇gvϵ|2dvg −
α

2
(

∫
Σ

|vϵ − v̄ϵ|pdvg)2/p + (8π − ϵ)v̄ϵ

≥ −8π − 8π logπ − 8π logh(x0)− 4πAx0
+ o(1) +O

(
1

R2

)
.

Hence, when ϵ→ 0 and R→ +∞ respectively,

inf
u∈H

Jα,8π(u) = inf
v∈W 1,2(Σ)

Kα,8π(v)

≥ −8π − 8π logπ − 4π max
x0∈Σ

(Ax0
+ 2 logh(x0)) . (60)

Step 4. Existence of extremal functions.

In this step we aim to construct a sequence of function (ϕϵ)ϵ>0 satisfying

lim
ϵ→0

Jα,8π(ϕϵ − ϕ̄ϵ) = −8π − 8π logπ − 4πmax
x∈Σ

(Ax + 2 logh(x)) . (61)

Assume Ax̃ + 2 logh(x̃) = 4πmaxx∈Σ(Ax + 2 logh(x)) . Denote r to be the geodesic distance between x̃ and
x . Combining (60) with (61), we complete the proof of Theorem 1.

Set

ϕϵ =


c− 2 log(1 + r2

8ϵ2 ) for x ∈ BRϵ(x̃),

G− ηϑα for x ∈ B2Rϵ(x̃) \BRϵ(x̃),

Gx̃ for x ∈ Σ \B2Rϵ(x̃),

(62)

Here, ϑα is the function in (48), η ∈ C∞
0 (B2Rϵ(x0)) is a cut-off function verifying that η = 1 on BRϵ(x0) , and

∥∇gη∥L∞(B2Rϵ(x̃)) = O( 1
Rϵ ) . It is clear that ϕ̄ϵ = oϵ(1) and ∥ϕϵ − ϕ̄ϵ∥2p = ∥Gx̃∥2p + oϵ(1) .

c is defined by

c = 2 log(1 +R2/8)− 4 logR− 4 log ϵ+Ax̃,

where R = R(ϵ) satisfies R→ ∞ and (Rϵ)2 logR→ 0 as ϵ→ 0 . It is easy to see that

1

2

∫
BRϵ(x̃)

|∇gϕϵ|2dvg = 8π log(1 +R2/8)− 8π + oϵ(1) (63)
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and

1

2

∫
Σ\BRϵ(x̃)

|∇gϕϵ|2dvg =
1

2

∫
Σ\BRϵ(x̃)

|∇gGx̃|2dvg +
1

2

∫
B2Rϵ(x̃)\BRϵ(x̃)

|∇g(ηϑα)|2dvg

−
∫
B2Rϵ(x̃)\BRϵ(x̃)

∇gGx̃∇g(ηϑα)dvg

=
1

2

∫
Σ\BRϵ(x̃)

Gx̃△gGx̃dvg −
1

2

∫
∂BRϵ (x̃)

Gx̃
∂Gx̃

∂n
dsg

+
1

2

∫
B2Rϵ(x̃)\BRϵ(x̃)

|∇g(ηϑα)|2dvg

−
∫
B2Rϵ(x̃)\BRϵ(x̃)

(ηϑα)△gGx̃dvg +

∫
BRϵ(x̃)

(ηϑα)
∂Gx̃

∂n
dsg. (64)

We obtain by (48)

−1

2

∫
∂BRϵ (x̃)

Gx̃
∂Gx̃

∂n
dsg = −16π log(Rϵ) + 4πAx̃ + oϵ(1). (65)

It follows from (47) and (48) that

1

2

∫
Σ\BRϵ(x̃)

Gx̃△gGx̃dvg =
α

2
∥Gx̃∥2p + oϵ(1). (66)

It is not difficult to see that the other three terms on the right-hand side of (64) converge to 0 as ϵ → 0 . This
together with (65) and (66) shows

1

2

∫
Σ\Bδ(xϵ)

|∇gϕϵ|2dvg = −16π log(Rϵ) + 4πAx̃ +
α

2
∥Gx̃∥2p + oϵ(1). (67)

We obtain the following by (63) and (67):

1

2

∫
Σ\Bδ(xϵ)

|∇gϕϵ|2dvg −
α

2
∥ϕϵ − ϕ̄ϵ∥2p = −16π log ϵ− 8π log 8− 8π + 4πAx̃ + oϵ(1). (68)

Then we need to give a estimate of
∫
Σ
heϕϵdvg . Choosing some δ > 0 sufficiently small such that Gx̃

has analogous local repression to (48) in Bδ(x̃) gives∫
Σ

heϕϵdvg = h(x̃)

∫
BRϵ(x̃)

eϕϵdvg +

∫
BRϵ(x̃)

(h− h(x̃))eϕϵdvg

+

∫
Bδ(x̃)\BRϵ(x̃)

heϕϵdvg +

∫
Σ\Bδ(x̃)

heϕϵdvg. (69)

A straightforward calculation shows

h(x̃)

∫
BRϵ(x̃)

eϕϵdvg = 8πh(x̃)e−2 log 8−2 log ϵ+Ax̃+oϵ(1) (70)
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and ∫
BRϵ(x̃)

(h− h(x̃))eϕϵdvg = ϵ−2oϵ(1). (71)

It also holds that

0 <

∫
Bδ(x̃)\BRϵ(x̃)

heϕϵdvg ≤ C(max
Σ

h)

∫
Bδ(x̃)\BRϵ(x̃)

eGx̃dvg

≤ C(max
Σ

h)

(
1

(Rϵ)2
− 1

δ2

)
(72)

and ∫
Σ\Bδ(x̃)

heϕϵdvg ≤ C(max
Σ

h)

∫
Σ\Bδ(x̃)

eGx̃dvg. (73)

(69)–(73) show that ∫
Σ

heϕϵdvg = (1 + oϵ(1))8πh(x̃)e
−2 log 8−2 log ϵ+Ax̃ ,

which leads to

log
∫
Σ

heϕϵdvg = − log 8 + log(πh(x̃))− 2 log ϵ+Ax̃ + oϵ(1). (74)

Combining (74) and (67), we have

Jα,8π(ϕϵ − ϕ̄ϵ) = −8π − 8π logπ − 4π(2 logh(x̃) +Ax̃) + oϵ(1),

which gives (61) by letting ϵ→ 0 .
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