Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2018) 42: 2400 - 2416
© TÜBİTAK
doi:10.3906/mat-1803-103

On a class of Kazdan-Warner equations

Yu FANG ${ }^{\text {© }}$, Mengjie ZHANG* ${ }^{\text {(}}$ (

Department of Mathematics, Renmin University of China, Beijing, P.R. China

Received: 22.03.2018

- Accepted/Published Online: 04.07.2018
- Final Version: 27.09 .2018

Abstract: Let (Σ, g) be a compact Riemannian surface without boundary and $W^{1,2}(\Sigma)$ be the usual Sobolev space. For any real number $p>1$ and $\alpha \in \mathbb{R}$, we define a functional

$$
J_{\alpha, 8 \pi}(u)=\frac{1}{2}\left(\int_{\Sigma}\left|\nabla_{g} u\right|^{2} d v_{g}-\alpha\left(\int_{\Sigma}|u|^{p} d v_{g}\right)^{2 / p}\right)-8 \pi \log \int_{\Sigma} h e^{u} d v_{g}
$$

on a function space $\mathcal{H}=\left\{u \in W^{1,2}(\Sigma): \int_{\Sigma} u d v_{g}=0\right\}$, where h is a positive smooth function on Σ. Denote

$$
\lambda_{1, p}(\Sigma)=\inf _{u \in \mathcal{H}, \int_{\Sigma}|u|^{p} d v_{g}=1} \int_{\Sigma}\left|\nabla_{g} u\right|^{2} \mathrm{~d} v_{g}
$$

If $\alpha<\lambda_{1, p}(\Sigma)$ and $J_{\alpha, 8 \pi}$ has no minimizer on \mathcal{H}, then we obtain the exact value of $\inf _{\mathcal{H}} J_{\alpha, 8 \pi}$ by using a method of blow-up analysis. Hence, if $\inf _{\mathcal{H}} J_{\alpha, 8 \pi}$ is not equal to that value, then $\left.J_{\alpha, 8 \pi}\right|_{\mathcal{H}}$ has a critical point that satisfies a Kazdan-Warner equation. This recovers a recent result of Yang and Zhu (DOI: 10.1007/s11425-017-9086-6).

Key words: Trudinger-Moser inequality, blow-up analysis, Kazdan-Warner equation

1. Introduction and main results

Let (Σ, g) be a compact Riemannian surface without boundary, ∇_{g} and Δ_{g} be its respective gradient operator and Laplace-Beltrami operator, $d v_{g}$ be its volume element, and $W^{1,2}(\Sigma)$ be the usual Sobolev space. We define a function space

$$
\begin{equation*}
\mathcal{H}=\left\{u \in W^{1,2}(\Sigma): \int_{\Sigma} u d v_{g}=0\right\} \tag{1}
\end{equation*}
$$

Let h be a positive smooth function on Σ and $J_{\beta}: W^{1,2}(\Sigma) \rightarrow \mathbb{R}$ be a fuctional defined by

$$
\begin{equation*}
J_{\beta}(u)=\frac{1}{2} \int_{\Sigma}\left|\nabla_{g} u\right|^{2} d v_{g}-\beta \log \int_{\Sigma} h e^{u} d v_{g} \tag{2}
\end{equation*}
$$

In view of a manifold version of the Trudinger-Moser inequality [5], one can see that J_{β} has lower bound on the space \mathcal{H} for all $\beta \leq 8 \pi$. Note that critical points of J_{β} on \mathcal{H} are solutions to Kazdan-Warner equations [6]. In [4], Ding et al. proved that $J_{8 \pi}$ must have a minimizer on \mathcal{H} if

$$
\begin{equation*}
\inf _{u \in \mathcal{H}} J_{8 \pi} \neq-8 \pi-8 \pi \log \pi-4 \pi \max _{p \in \Sigma}\left(A_{p}+2 \log h(p)\right) \tag{3}
\end{equation*}
$$

[^0]where $A_{p}=\lim _{x \rightarrow p}\left(G_{p}+4 \log r\right)$ is a constant, r denotes the geodesic distance between x and p, and G_{p} is a Green function satisfying
\[

\left\{$$
\begin{array}{l}
\Delta_{g} G_{p}=8 \pi \delta_{p}-\frac{8 \pi}{\operatorname{Vol}_{g}(\Sigma)} \\
\int_{\Sigma} G_{p} d v_{g}=0
\end{array}
$$\right.
\]

where δ_{p} is the usual Dirac measure. Moreover they gave a geometric hypothesis that guarantees (3). Clearly the minimizer of J_{β} satisfies the following Kazdan-Warner equation:

$$
\begin{equation*}
\Delta_{g} u=\frac{8 \pi h e^{u}}{\int_{\Sigma} h e^{u} d v_{g}}-\frac{8 \pi}{\operatorname{Vol}_{\mathrm{g}}(\Sigma)} \tag{4}
\end{equation*}
$$

There are extensions of Ding et al.'s result. Among these, we mention [10], [11], [19] and [17]. Recently, motivated by a series of works concerning Trudinger-Moser inequalities, some works [1, 9, 12-16], [18] considered the functionals

$$
\begin{equation*}
J_{\alpha, \beta}(u)=\frac{1}{2}\left(\int_{\Sigma}\left|\nabla_{g} u\right|^{2} d v_{g}-\alpha \int_{\Sigma} u^{2} d v_{g}\right)-\beta \log \int_{\Sigma} h e^{u} d v_{g} \tag{5}
\end{equation*}
$$

and proved that if $\alpha<\lambda_{1}(\Sigma)$, the first eigenvalue of the Laplace-Beltrami operator with respect to the mean value zero condition, and

$$
\begin{equation*}
\inf _{u \in \mathcal{H}} J_{\alpha, 8 \pi} \neq-8 \pi-8 \pi \log \pi-4 \pi \max _{p \in \Sigma}\left(A_{p}+2 \log h(p)\right) \tag{6}
\end{equation*}
$$

where $A_{p}=\lim _{x \rightarrow p}\left(G_{p}+4 \log r\right)$ is a constant, r denotes the geodesic distance between x and p, and G_{p} is a Green function satisfying

$$
\left\{\begin{array}{l}
\Delta_{g} G_{p}-\alpha G_{p}=8 \pi \delta_{p}-\frac{8 \pi}{\operatorname{Vol}_{g}(\Sigma)} \\
\int_{\Sigma} G_{p} d v_{g}=0
\end{array}\right.
$$

then $\inf _{u \in \mathcal{H}} J_{\alpha, 8 \pi}$ can be attained by some function $u \in \mathcal{H}$ satisfying

$$
\begin{equation*}
\Delta_{g} u-\alpha u=\frac{8 \pi h e^{u}}{\int_{\Sigma} h e^{u} d v_{g}}-\frac{8 \pi}{\operatorname{Vol}_{\mathrm{g}}(\Sigma)} \tag{7}
\end{equation*}
$$

Motivated by (5) and [8], we now consider the minimizing problem for the functional $J_{\alpha, \beta}$ defined by

$$
\begin{equation*}
J_{\alpha, \beta}(u)=\frac{1}{2}\left(\int_{\Sigma}\left|\nabla_{g} u\right|^{2} d v_{g}-\alpha\left(\int_{\Sigma}|u|^{p} d v_{g}\right)^{2 / p}\right)-\beta \log \int_{\Sigma} h e^{u} d v_{g} \tag{8}
\end{equation*}
$$

where $p>1$ is a real number. To do this, we define $\lambda_{1, p}(\Sigma)$ by

$$
\begin{equation*}
\lambda_{1, p}(\Sigma)=\inf _{u \in \mathcal{H}, \int_{\Sigma}|u|^{p} d v_{g}=1} \int_{\Sigma}\left|\nabla_{g} u\right|^{2} \mathrm{~d} v_{g} \tag{9}
\end{equation*}
$$

By the Poincaré-Sobolev inequality, when $\alpha<\lambda_{1, p}(\Sigma)$, the norm

$$
\begin{equation*}
\|u\|_{\alpha, p}=\left(\int_{\Sigma}\left|\nabla_{g} u\right|^{2} d v_{g}-\alpha\left(\int_{\Sigma}|u|^{p} d v_{g}\right)^{2 / p}\right)^{1 / 2} \tag{10}
\end{equation*}
$$

is an equivalent Sobolev norm on \mathcal{H}. Our main result reads as follows.

Theorem 1 Let (Σ, g) be a compact Riemannian surface without boundary, h be a positive smooth function on $\Sigma, p>1$ be a real number, and $\mathcal{H}, \lambda_{1, p}(\Sigma)$ and $J_{\alpha, \beta}$ be defined as in (1), (9), and (8). Then, for any $\alpha<\lambda_{1, p}(\Sigma)$, if $\left.J_{\alpha, 8 \pi}\right|_{\mathcal{H}}$ has no minimizer, then there holds

$$
\inf _{u \in \mathcal{H}} J_{\alpha, 8 \pi}=-8 \pi-8 \pi \log \pi-4 \pi \max _{x_{0} \in \Sigma}\left(A_{x_{0}}+2 \log h\left(x_{0}\right)\right)
$$

where $A_{x_{0}}=\lim _{x \rightarrow x_{0}}\left(G_{x_{0}}+4 \log r\right)$ is a constant, r denotes the geodesic distance between x and x_{0}, and $G_{x_{0}}$ is a Green function satisfying

$$
\left\{\begin{array}{l}
\Delta_{g} G_{x_{0}}+\zeta\left(G_{x_{0}}\right)=8 \pi \delta_{x_{0}}+\overline{\zeta\left(G_{x_{0}}\right)}-\frac{8 \pi}{\operatorname{Vol}_{g}(\Sigma)}, \tag{11}\\
\int_{\Sigma} G_{x_{0}} d v_{g}=0
\end{array}\right.
$$

where

$$
\begin{equation*}
\zeta(f(x))=-\alpha\|f(x)\|_{p}^{2-p}|f(x)|^{p-2} f(x) \tag{12}
\end{equation*}
$$

and $\overline{\zeta(f)}=1 / \operatorname{Vol}_{g}(\Sigma) \int_{\Sigma} \zeta(f)(x) d v_{g}$ is its integral average on Σ.
For the proof of Theorem 1, we follow the lines of [18], and thereby closely follow [4]. The difference is that in the case $p \neq 2$, the Euler-Lagrange equation u_{ϵ} satisfies being nonlinear. If this case happens, the maximum principle will become invalid. Fortunately, we can use the capacity estimate to calculate the infimum of $J_{\alpha, 8 \pi}$. This method was originally used in [7] and then in [11]. However, we cannot extend our results to higher eigenfunction space cases because of the nonlinearity of the Euler-Lagrange equation u_{ϵ} being satisfied.

An interesting application of Theorem 1 reads as follows.
Corollary 2 For any $\alpha<\lambda_{1, p}(\Sigma)$, if

$$
\begin{equation*}
\inf _{u \in \mathcal{H}} J_{\alpha, \beta}(u) \neq-8 \pi-8 \pi \log \pi-4 \pi \max _{x_{0} \in \Sigma}\left(A_{x_{0}}+2 \log h\left(x_{0}\right)\right) \tag{13}
\end{equation*}
$$

then the Kazdan-Warner equation

$$
\begin{equation*}
\triangle_{g} u+\zeta(u)=\frac{8 \pi h e^{u}}{\int_{\Sigma} h e^{u} d v_{g}}+\overline{\zeta(u)}-\frac{8 \pi}{\operatorname{Vol}_{g}(\Sigma)} \tag{14}
\end{equation*}
$$

has a solution on u_{0} in \mathcal{H}, where $\zeta(u)$ is defined as in (12).
In the remaining part of this paper, we prove Theorem 1. Throughout this paper, we do not distinguish between sequence and subsequence.

2. Proof of Theorem 1

For some fixed $\alpha<\lambda_{1, p}$, the proof of Theorem 1 will be divided into several steps. For simplicity, we assume $\operatorname{Vol}_{g}(\Sigma)=\int_{\Sigma} d v_{g}=1$.

Step 1. Minimizers for subcritical functionals.

In this step we shall prove that $\inf _{u \in \mathcal{H}} J_{\alpha, 8 \pi-\epsilon}(u)$ can be attained for any small $\epsilon>0$. Precisely, we have for any $0<\epsilon<8 \pi$ that there exists some function $u_{\epsilon} \in \mathcal{H} \cap C^{1}(\Sigma)$ such that

$$
\begin{equation*}
J_{\alpha, 8 \pi-\epsilon}\left(u_{\epsilon}\right)=\inf _{u \in \mathcal{H}} J_{\alpha, 8 \pi-\epsilon}(u) \tag{15}
\end{equation*}
$$

The proof is based on a direct method in the calculus of variations. However, for proving (15), we should introduce a Trudinger-Moser inequality.

Lemma 3 Let (Σ, g) be a compact Riemannian surface without boundary and $p>1$ be a real number. Then, for any $0 \leq \alpha<\lambda_{1, p}(\Sigma)$ and $0<\gamma<4 \pi$, we have the supremum

$$
\begin{equation*}
\sup _{u \in W^{1,2}(\Sigma), \int_{\Sigma} u \mathrm{~d} v_{g}=0,\|u\|_{\alpha, p} \leq 1} \int_{\Sigma} e^{\gamma u^{2}} \mathrm{~d} v_{g}<\infty \tag{16}
\end{equation*}
$$

where $\lambda_{1, p}(\Sigma)$ is defined by (9) and the norm $\|\cdot\|_{\alpha, p}$ is defined by (10).
Proof. We refer readers to an argument of [14, p. 3168] to understand the proof of Lemma 3, and we omit the proof here.

For any fixed $0<\epsilon<8 \pi$, we take a sequence of functions $u_{j} \in \mathcal{H}$ satisfying that

$$
\begin{equation*}
J_{\alpha, 8 \pi-\epsilon}\left(u_{j}\right) \rightarrow \inf _{u \in \mathcal{H}} J_{\alpha, 8 \pi-\epsilon}(u) \tag{17}
\end{equation*}
$$

as $j \rightarrow \infty$.
It follows from Young's inequality that

$$
\begin{equation*}
\int_{\Sigma} h e^{u_{j}} d v_{g} \leq \int_{\Sigma} h e^{(4 \pi-\epsilon / 4) \frac{u_{j}^{2}}{\left\|u_{j}\right\|_{\alpha, p}^{2}}+\frac{\left\|u_{j}\right\|_{\alpha, p}^{2}}{16 \pi-\epsilon}} d v_{g} \tag{18}
\end{equation*}
$$

(18) together with (16) and (17) shows that

$$
\begin{aligned}
\inf _{u \in \mathcal{H}} J_{\alpha, 8 \pi-\epsilon}(u)+o_{j}(1) & =\frac{1}{2}\left\|u_{j}\right\|_{\alpha, p}^{2}-(8 \pi-\epsilon) \log \int_{\Sigma} h e^{u_{j}} d v_{g} \\
& \geq \frac{1}{2}\left\|u_{j}\right\|_{\alpha, p}^{2}-\frac{8 \pi-\epsilon}{16 \pi-\epsilon}\left\|u_{j}\right\|_{\alpha, p}^{2}-(8 \pi-\epsilon) \log \int_{\Sigma} h e^{(4 \pi-\epsilon / 4) \frac{u_{j}^{2}}{\left\|u_{j}\right\|_{\alpha, p}^{2}} d v_{g}} \\
& \geq \frac{\epsilon}{32 \pi}\left\|u_{j}\right\|_{\alpha, p}^{2}-C
\end{aligned}
$$

Therefore, u_{j} is bounded in \mathcal{H}. Thus, we can assume $u_{j} \rightharpoonup u_{\epsilon}$ weakly in $\mathcal{H}, u_{j} \rightarrow u_{\epsilon}$ strongly in $L^{q}(\Sigma)$ for any $q>0$, and $u_{j} \rightarrow u_{\epsilon}$ a.e. in Σ. Weak convergence implies

$$
\begin{equation*}
\left\|u_{\epsilon}\right\|_{\alpha, p}^{2} \leq \lim _{j \rightarrow \infty}\left\|u_{j}\right\|_{\alpha, p}^{2} \tag{19}
\end{equation*}
$$

An analog of (18) shows that $e^{\left|u_{j}\right|}$ is bounded in $L^{s}(\Sigma)$ for any $s>0$, and then we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{\Sigma} h e^{u_{j}} d v_{g}=\int_{\Sigma} h e^{u_{\epsilon}} d v_{g} \tag{20}
\end{equation*}
$$

(20) together with (19) shows (15). Moreover, by using the method of Lagrange multiplier, we obtain that the

Euler-Lagrange equation u_{ϵ} satisfies the following:

$$
\left\{\begin{array}{l}
\Delta_{g} u_{\epsilon}-\alpha\left\|u_{\epsilon}\right\|_{p}^{2-p}\left|u_{\epsilon}\right|^{p-2} u_{\epsilon}=(8 \pi-\epsilon) \lambda_{\epsilon}^{-1} h e^{u_{\epsilon}}+\mu_{\epsilon} \quad \text { in } \Sigma \tag{21}\\
\lambda_{\epsilon}=\int_{\Sigma} h e^{u_{\epsilon}} d v_{g} \\
\mu_{\epsilon}=-(8 \pi-\epsilon)-\alpha \int_{\Sigma}\left\|u_{\epsilon}\right\|_{p}^{2-p}\left|u_{\epsilon}\right|^{p-2} u_{\epsilon} d v_{g} \\
\int_{\Sigma} u_{\epsilon} d v_{g}=0
\end{array}\right.
$$

Applying elliptic estimates to (21), we have $u_{\epsilon} \in C^{1}(\Sigma)$ immediately. We also have $\lim \inf _{\epsilon \rightarrow 0} \lambda_{\epsilon}>0$ by using Jensen's inequality. Notice that for any $\gamma>0$, there exists some $u_{\gamma} \in \mathcal{H}$ such that

$$
\inf _{u \in \mathcal{H}} J_{\alpha, 8 \pi}(u)+\gamma>J_{\alpha, 8 \pi}\left(u_{\gamma}\right)=\lim _{\epsilon \rightarrow 0} J_{\alpha, 8 \pi-\epsilon}\left(u_{\gamma}\right) \geq \lim _{\epsilon \rightarrow 0} J_{\alpha, 8 \pi-\epsilon}\left(u_{\epsilon}\right)=\lim _{\epsilon \rightarrow 0} \inf _{u \in \mathcal{H}} J_{\alpha, 8 \pi-\epsilon}(u)
$$

Since $\gamma>0$ is arbitrary, we have

$$
\lim _{\epsilon \rightarrow 0} \inf _{u \in \mathcal{H}} J_{\alpha, 8 \pi-\epsilon}(u) \leq \inf _{u \in \mathcal{H}} J_{\alpha, 8 \pi}(u) \leq \inf _{u \in \mathcal{H}} J_{\alpha, 8 \pi}\left(u_{\epsilon}\right)=\lim _{\gamma \rightarrow 0} \inf _{u \in \mathcal{H}} J_{\alpha, 8 \pi-\gamma}\left(u_{\epsilon}\right)
$$

Extracting a diagonal sequence, we obtain

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \inf _{u \in \mathcal{H}} J_{\alpha, 8 \pi-\epsilon}(u)=\inf _{u \in \mathcal{H}} J_{\alpha, 8 \pi}(u) . \tag{22}
\end{equation*}
$$

Denote

$$
c_{\epsilon}=u_{\epsilon}\left(x_{\epsilon}\right)=\max _{\Sigma} u_{\epsilon}
$$

At the end of this step, we prove that if λ_{ϵ} or c_{ϵ} is bounded, then $J_{\alpha, 8 \pi}$ has a minimizer in \mathcal{H}.
Supposing that λ_{ϵ} is bounded, then

$$
\begin{aligned}
\frac{1}{2}\left\|u_{\epsilon}\right\|_{\alpha, p}^{2} & =J_{\alpha, 8 \pi-\epsilon}\left(u_{\epsilon}\right)+(8 \pi-\epsilon) \log \int_{\Sigma} h e^{u_{\epsilon}} d v_{g} \\
& \leq J_{\alpha, 8 \pi-\epsilon}(0)+(8 \pi-\epsilon) \log \lambda_{\epsilon} \\
& \leq 8 \pi\left|\log \int_{\Sigma} h d v_{g}\right|+(8 \pi-\epsilon) \log \lambda_{\epsilon} \\
& \leq C
\end{aligned}
$$

Therefore, u_{ϵ} is bounded in \mathcal{H}. By the Sobolev embedding theorem and Lemma 3, we know u_{ϵ} is bounded in $L^{r}(\Sigma)(\forall r>1)$ and $e^{\left|u_{\epsilon}\right|}$ is bounded in $L^{s}(\Sigma)(\forall s>1)$. Noting that $\liminf _{\epsilon \rightarrow 0} \lambda_{\epsilon}>0$ and

$$
\left|\mu_{\epsilon}\right| \leq 8 \pi+\left.\alpha\left|\int_{\Sigma}\left\|u_{\epsilon}\right\|_{p}^{2-p}\right| u_{\epsilon}\right|^{p-2} u_{\epsilon} \mathrm{d} v_{g} \mid \leq 8 \pi+C\left\|u_{\epsilon}\right\|_{p}
$$

applying an elliptic estimate to (21), we obtain $u_{\epsilon} \rightarrow u_{0}$ in $\mathcal{H} \cap C^{1}(\Sigma)$. It follows from (22) that

$$
J_{\alpha, 8 \pi}\left(u_{0}\right)=\lim _{\epsilon \rightarrow 0} J_{\alpha, 8 \pi-\epsilon}\left(u_{\epsilon}\right)=\lim _{\epsilon \rightarrow 0} \inf _{u \in \mathcal{H}} J_{\alpha, 8 \pi-\epsilon}(u)=\inf _{u \in \mathcal{H}} J_{\alpha, 8 \pi}(u)
$$

Hence, we already have that u_{0} is a minimizer of $J_{\alpha, 8 \pi}$. Supposing that u_{ϵ} is bounded, multiplying equation (21) by u_{ϵ}, the Sobolev embedding theorem together with $\lim _{\inf }^{\epsilon \rightarrow 0} \lambda_{\epsilon}>0$ tells us that

$$
\begin{equation*}
\left\|u_{\epsilon}\right\|_{\alpha, p}^{2} \leq C \int_{\Sigma}\left|u_{\epsilon}\right| d v_{g} \leq C\left\|u_{\epsilon}\right\|_{\alpha, p} \tag{23}
\end{equation*}
$$

Thus, u_{ϵ} is bounded in \mathcal{H}. By a series of analyses, the same as λ_{ϵ} being bounded, we can find a u_{0} in $\mathcal{H} \cap C^{1}(\Sigma)$ as a minimizer of $J_{\alpha, 8 \pi}$. Therefore, if we assume that $J_{\alpha, 8 \pi}$ has no minimizer on \mathcal{H}, there must hold

$$
\begin{equation*}
\lambda_{\epsilon} \rightarrow+\infty, \quad c_{\epsilon} \rightarrow+\infty \tag{24}
\end{equation*}
$$

We will precisely describe the converge of u_{ϵ} in the next step by using the method of blow-up analysis.

Step 2. Blow-up analysis for \mathbf{u}_{ϵ}.

Assume $x_{\epsilon} \rightarrow x_{0}$ in Σ. We set

$$
\begin{equation*}
r_{\epsilon}=\frac{\sqrt{\lambda_{\epsilon}}}{\sqrt{(8 \pi-\epsilon) h\left(x_{0}\right)}} e^{-c_{\epsilon} / 2} \tag{25}
\end{equation*}
$$

It follows that for any $\eta<1 / 2$, there holds $r_{\epsilon}^{2} e^{\eta c_{\epsilon}} \rightarrow 0$. In particular, we have for any $s>0$ the following:

$$
\begin{equation*}
r_{\epsilon} c_{\epsilon}^{s} \rightarrow 0 \tag{26}
\end{equation*}
$$

where r_{ϵ} is defined in (25). The proof is an analogy of [18, Lemma 2.7]; we multiply both sides of equation (21) by u_{ϵ} and obtain

$$
\begin{equation*}
\left\|u_{\epsilon}\right\|_{\alpha, p}^{2}=\frac{(8 \pi-\epsilon)}{\lambda_{\epsilon}} \int_{\Sigma} h u_{\epsilon} e^{u_{\epsilon}} d v_{g} \leq(8 \pi-\epsilon) c_{\epsilon} . \tag{27}
\end{equation*}
$$

(27) together with the Trudinger--Moser inequality (16) leads to

$$
\begin{aligned}
\int_{\Sigma} h e^{u_{\epsilon}} d v_{g} & \leq C \int_{\Sigma} e^{(4 \pi-\epsilon / 2) \frac{u_{\epsilon}^{2}}{\left\|u_{\epsilon}\right\|_{\alpha, p}^{2}}+\frac{\left\|u_{\epsilon}\right\|_{\alpha, p}^{2}}{16 \pi-2 \epsilon}} d v_{g} \\
& \leq C e^{\frac{\left\|u_{\epsilon}\right\|_{\alpha, p}^{2}}{16 \pi-2 \epsilon}} \leq C e^{\frac{1}{2} c_{\epsilon}}
\end{aligned}
$$

We then obtain

$$
\begin{equation*}
r_{\epsilon}^{2}=\frac{\int_{\Sigma} h e^{u_{\epsilon}} d v_{g}}{(8 \pi-\epsilon) h\left(x_{0}\right)} e^{-c_{\epsilon}} \leq C e^{-\frac{1}{2} c_{\epsilon}} \tag{28}
\end{equation*}
$$

This demonstrates the correctness of $r_{\epsilon} c_{\epsilon}^{s} \rightarrow 0$ for any $s>0$. Define two blow-up functions,

$$
\begin{equation*}
\varphi_{\epsilon}(y)=u_{\epsilon}\left(\exp _{x_{\epsilon}}\left(r_{\epsilon} y\right)\right)-c_{\epsilon} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{\epsilon}(y)=c_{\epsilon}^{-1} u_{\epsilon}\left(\exp _{x_{\epsilon}}\left(r_{\epsilon} y\right)\right) \tag{30}
\end{equation*}
$$

For $y \in \mathbb{B}_{\delta r_{\epsilon}^{-1}}(0)$, where $0<\delta<i_{g}(\Sigma)$ is fixed and $i_{g}(\Sigma)$ is the injectivity radius of (Σ, g), set

$$
\begin{equation*}
g_{\epsilon}(y)=\left(\exp _{x_{\epsilon}}^{*} g\right)\left(r_{\epsilon} y\right) \tag{31}
\end{equation*}
$$

As $\epsilon \rightarrow 0, g_{\epsilon} \rightarrow g_{0}$, the standard Euclidean metric. Note that $\psi_{\epsilon}(y) \leq \psi_{\epsilon}(0)=1$ and $\varphi_{\epsilon}(y) \leq 0$. Combining (29)-(31) with (21), by a direct computation, we have

$$
\begin{equation*}
\triangle_{g_{\epsilon}} \psi_{\epsilon}=\alpha r_{\epsilon}^{2}\left\|c_{\epsilon}^{-1} u_{\epsilon}\right\|_{p}^{2-p} \psi_{\epsilon}^{p-1}+c_{\epsilon}^{-1} \frac{h\left(\exp _{x_{\epsilon}}\left(r_{\epsilon} y\right)\right)}{h\left(x_{0}\right)} e^{u_{\epsilon}\left(\exp _{x_{\epsilon}}\left(r_{\epsilon} y\right)\right)-c_{\epsilon}}+\mu_{\epsilon} r_{\epsilon}^{2} c_{\epsilon}^{-1} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\triangle_{g_{\epsilon}} \varphi_{\epsilon}=\alpha r_{\epsilon}^{2} c_{\epsilon}\left\|c_{\epsilon}^{-1} u_{\epsilon}\right\|_{p}^{2-p} \psi_{\epsilon}^{p-1}+\frac{h\left(\exp _{x_{\epsilon}}\left(r_{\epsilon} y\right)\right)}{h\left(x_{0}\right)} e^{\varphi_{\epsilon}(y)}-\mu_{\epsilon} r_{\epsilon}^{2} \tag{33}
\end{equation*}
$$

For any fixed $R>0$, by a change of variable we have

$$
\left\|\psi_{\epsilon}^{p-1}\right\|_{L^{\frac{p}{p-1}}\left(\mathbb{B}_{R}(0)\right)}=\left(1+o_{\epsilon}(1)\right) r_{\epsilon}^{-2+\frac{2}{p}}\left\|c_{\epsilon}^{-1} u_{\epsilon}\right\|_{L^{p}\left(B_{R r_{\epsilon}}\left(x_{\epsilon}\right)\right)}^{p-1} \leq r_{\epsilon}^{-2+\frac{2}{p}}\left\|c_{\epsilon}^{-1} u_{\epsilon}\right\|_{L^{p}(\Sigma)}^{p-1}
$$

This together with $0 \leq c_{\epsilon}^{-1} u_{\epsilon} \leq 1$ gives

$$
\left\|\alpha r_{\epsilon}^{2}\right\| c_{\epsilon}^{-1} u_{\epsilon}\left\|_{p}^{2-p} \psi_{\epsilon}^{p-1}\right\|_{L^{\frac{p}{p-1}}\left(\mathbb{B}_{R}(0)\right)} \leq \alpha r_{\epsilon}^{\frac{2}{p}} \operatorname{Vol}_{g}(\Sigma)^{\frac{1}{p}}
$$

It follows that

$$
\left\|-\triangle_{g_{\epsilon}} \psi_{\epsilon}\right\|_{L^{\frac{p}{p-1}}\left(\mathbb{B}_{R}(0)\right)} \rightarrow 0 \quad \text { as } \quad \epsilon \rightarrow 0
$$

Using elliptic estimates, we can find some continuous function ψ such that $\psi_{\epsilon} \rightarrow \psi$ in $C^{0}\left(\mathbb{B}_{R / 2}(0)\right)$. Since $R>0$ is arbitrary, we have

$$
\begin{equation*}
\psi_{\epsilon} \rightarrow \psi \quad \text { in } \quad C_{\mathrm{loc}}^{0}\left(\mathbb{R}^{2}\right) \tag{34}
\end{equation*}
$$

When $1<p \leq 2$, it is easy to see that

$$
\left\|c_{\epsilon}^{-1} u_{\epsilon}\right\|_{p}^{2-p} \leq \operatorname{Vol}_{g}(\Sigma)^{\frac{2}{p}-1}
$$

When $p>2$, we have for any fixed $R>0$ the following:

$$
\begin{align*}
r_{\epsilon}^{2}\left\|c_{\epsilon}^{-1} u_{\epsilon}\right\|_{L^{p}(\Sigma)}^{2-p} & \leq r_{\epsilon}^{2}\left\|c_{\epsilon}^{-1} u_{\epsilon}\right\|_{L^{p}\left(B_{R r_{\epsilon}}\left(x_{\epsilon}\right)\right)}^{2-p} \\
& =r_{\epsilon}^{\frac{4}{p}}\left(\|\psi\|_{L^{p}\left(\mathbb{B}_{R}(0)\right)}^{2-p}+o_{\epsilon}(1)\right) \tag{35}
\end{align*}
$$

Note that $\|\psi\|_{L^{p}\left(\mathbb{B}_{R}(0)\right)}>0$ since $\psi(0)=\lim _{\epsilon \rightarrow 0} \psi_{\epsilon}(0)=1$ and ψ is continuous. Therefore, we conclude the following:

$$
\begin{equation*}
r_{\epsilon}^{2}\left\|c_{\epsilon}^{-1} u_{\epsilon}\right\|_{L^{p}(\Sigma)}^{2-p}=o_{\epsilon}(1), \quad \forall p>1 \tag{36}
\end{equation*}
$$

Applying elliptic estimates to (32) and (33) again, and combining with (36), we obtain

$$
\begin{equation*}
\psi_{\epsilon} \rightarrow \psi \quad \text { in } \quad C_{\mathrm{loc}}^{1}\left(\mathbb{R}^{2}\right) \tag{37}
\end{equation*}
$$

where ψ is a bounded harmonic function as in (34) and satisfies $\psi(0)=1=\sup _{\mathbb{R}^{2}} \psi$. The Liouville theorem immediately leads to

$$
\psi \equiv 1 \quad \text { in } \quad \mathbb{R}^{2}
$$

It follow from (37) that

$$
\psi_{\epsilon} \rightarrow 1 \quad \text { in } \quad C_{\mathrm{loc}}^{1}\left(\mathbb{R}^{2}\right)
$$

(35) inspires that

$$
\begin{align*}
r_{\epsilon}^{2} c_{\epsilon}\left\|c_{\epsilon}^{-1} u_{\epsilon}\right\|_{L^{p}(\Sigma)}^{2-p} & \leq r_{\epsilon}^{2} c_{\epsilon}\left\|c_{\epsilon}^{-1} u_{\epsilon}\right\|_{L^{p}\left(B_{R r_{\epsilon}}\left(x_{\epsilon}\right)\right)}^{2-p} \\
& =r_{\epsilon}^{\frac{4}{p}} c_{\epsilon}\left\|\psi_{\epsilon}\right\|_{L^{p}\left(\mathbb{B}_{R}(0)\right)}^{2-p} \\
& =r_{\epsilon}^{\frac{4}{p}} c_{\epsilon}\left(\|\psi\|_{L^{p}\left(\mathbb{B}_{R}(0)\right)}^{2-p}+o_{\epsilon}(1)\right) \rightarrow 0 \tag{38}
\end{align*}
$$

The last line of (38) comes from (26). Applying elliptic estimates to (32) and (33), we have

$$
\varphi_{\epsilon} \rightarrow \varphi \quad \text { in } \quad C_{\mathrm{loc}}^{1}\left(\mathbb{R}^{2}\right)
$$

where φ satisfies

$$
\left\{\begin{array}{l}
\triangle_{g_{0}} \varphi=-e^{\varphi(y)} \quad \text { in } \quad \mathbb{R}^{2}, \\
\varphi(0)=0=\sup _{\mathbb{R}^{2}} \varphi \\
\int_{\mathbb{R}^{2}} e^{\varphi(y)} d y<\infty
\end{array}\right.
$$

By a result of [3], φ can be written as follow:

$$
\begin{equation*}
\varphi(y)=-2 \log \left(1+|y|^{2} / 8\right) \tag{39}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} e^{\varphi(y)} d y=8 \pi \tag{40}
\end{equation*}
$$

To understand the convergence behavior away from the blow-up point x_{0}, we shall next figure out how u_{ϵ} converges. First, we will prove that $\lambda_{\epsilon}^{-1} h e^{u_{\epsilon}} \rightharpoonup \delta_{x_{0}}$ in the sense of measure, where $\delta_{x_{0}}$ is the usual Dirac measure centered at x_{0}. For fixed $R>0$, in view of (25), we obtain

$$
\begin{aligned}
\frac{(8 \pi-\epsilon)}{\lambda_{\epsilon}} \int_{B_{R r_{\epsilon}}\left(x_{\epsilon}\right)} h e^{u_{\epsilon}} d v_{g} & =r_{\epsilon}^{2} \frac{(8 \pi-\epsilon)}{\lambda_{\epsilon}} \int_{\mathbb{B}_{R(0)}} e^{\varphi_{\epsilon}(y)} d y \\
& =\left(1+o_{\epsilon}(1)\right) \int_{\mathbb{B}_{R(0)}} e^{\varphi} d y
\end{aligned}
$$

Combining this with (39) and (40), we have

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{B_{R r_{\epsilon}}\left(x_{\epsilon}\right)} \lambda_{\epsilon}^{-1} h e^{u_{\epsilon}} d v_{g}=1 \tag{41}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{\Sigma \backslash B_{R r_{\epsilon}}\left(x_{\epsilon}\right)} \lambda_{\epsilon}^{-1} h e^{u_{\epsilon}} d v_{g}=1-\lim _{R \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{B_{R r_{\epsilon}\left(x_{\epsilon}\right)}} \lambda_{\epsilon}^{-1} h e^{u_{\epsilon}} d v_{g}=0 \tag{42}
\end{equation*}
$$

For any $\nu \in C^{0}(\Sigma)$, we have

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \lambda_{\epsilon}^{-1} \int_{\Sigma} \nu h e^{u_{\epsilon}} d v_{g}=\nu\left(x_{0}\right) \tag{43}
\end{equation*}
$$

Secondly, we need to prove that $\left\|u_{\epsilon}\right\|_{L^{p}(\Sigma)}$ is bounded and demonstrate that u_{ϵ} is bounded in $W^{1, q}(\Sigma)$ for all $1<q<2$. In fact, if we assume $\left\|u_{\epsilon}\right\|_{L^{p}(\Sigma)} \rightarrow \infty$, we can construct $\tilde{u}_{\epsilon}=u_{\epsilon} /\left\|u_{\epsilon}\right\|_{L^{p}(\Sigma)} \in \mathcal{H}$ verifying that $\left\|\tilde{u}_{\epsilon}\right\|_{L^{p}(\Sigma)}=1$ and

$$
\triangle_{g} \tilde{u}_{\epsilon}-\alpha\left|\tilde{u}_{\epsilon}\right|^{p-2} \tilde{u}_{\epsilon}=\frac{(8 \pi-\epsilon) h e^{u_{\epsilon}}}{\lambda_{\epsilon}\left\|u_{\epsilon}\right\|_{L^{p}(\Sigma)}}-\frac{(8 \pi-\epsilon)}{\left\|u_{\epsilon}\right\|_{L^{p}(\Sigma)}}-\alpha \int_{\Sigma}\left\|u_{\epsilon}\right\|_{p}^{1-p}\left|u_{\epsilon}\right|^{p-2} u_{\epsilon} d v_{g}:=f_{\epsilon}^{(1)} .
$$

It is not difficult to see that $\int_{\Sigma}\left\|u_{\epsilon}\right\|_{p}^{1-p}\left|u_{\epsilon}\right|^{p-2} u_{\epsilon} d v_{g}$ is a uniformly bounded sequence. Assume

$$
\begin{equation*}
b=\lim _{\epsilon \rightarrow 0}\left(-\alpha \int_{\Sigma}\left\|u_{\epsilon}\right\|_{p}^{1-p}\left|u_{\epsilon}\right|^{p-2} u_{\epsilon} d v_{g}\right) . \tag{44}
\end{equation*}
$$

We get that $\left\|f_{\epsilon}^{(1)}\right\|_{L^{1}(\Sigma)}$ is bounded by letting $\nu=1$ in (43). Applying [18, Lemma 2.10], we obtain that \tilde{u}_{ϵ} is bounded in $W^{1, q}(\Sigma)$ for any $1<q<2$ with $2 q /(2-q)>p$. We assume the following:

$$
\begin{align*}
& \tilde{u}_{\epsilon} \rightharpoonup \tilde{u}_{0} \text { weakly in } W^{1, q}(\Sigma), \\
& \tilde{u}_{\epsilon} \rightarrow \tilde{u}_{0} \quad \text { strongly in } L^{s}(\Sigma) \text { for any } 0<s<\frac{2 q}{2-q}, \tag{45}\\
& \tilde{u}_{\epsilon} \rightarrow \tilde{u}_{0} \quad \text { a.e. in } \Sigma .
\end{align*}
$$

Moreover, \tilde{u}_{0} is a weak solution to the equation

$$
\left\{\begin{array}{l}
\triangle_{g} w-\alpha|w|^{p-2} w=b \\
\int_{\Sigma} w d v_{g}=0
\end{array}\right.
$$

This lead to $\tilde{u}_{0} \equiv 0$, which is contradictory to (45) that $\left\|\tilde{u}_{0}\right\|_{L^{p}(\Sigma)}=\lim _{\epsilon \rightarrow 0}\left\|\tilde{u}_{\epsilon}\right\|_{L^{p}(\Sigma)}=1$. Therefore, $\left\|u_{\epsilon}\right\|_{L^{p}(\Sigma)}$ is bounded. Then, for

$$
\begin{equation*}
\triangle_{g} u_{\epsilon}=\alpha\left\|u_{\epsilon}\right\|_{p}^{2-p}\left|u_{\epsilon}\right|^{p-2} u_{\epsilon}+(8 \pi-\epsilon) \lambda_{\epsilon}^{-1} h e^{u_{\epsilon}}+\mu_{\epsilon}:=f_{\epsilon}^{(2)} \tag{46}
\end{equation*}
$$

we immediately obtain that $f_{\epsilon}^{(2)}$ is bounded in $L^{1}(\Sigma)$. Applying [18, Lemma 2.10] again, $\left\|\nabla u_{\epsilon}\right\|_{L^{q}(\Sigma)} \leq C$. Since u_{ϵ} is bounded in $W^{1, q}(\Sigma)$ for all $1<q<2$, there exists some $G_{x_{0}}$ such that u_{ϵ} converges to $G_{x_{0}}$ weakly in $W^{1, q}(\Sigma)$, strongly in $L^{s}(\Sigma)$ for any $0<s<\frac{2 q}{2-q}$, and almost everywhere in Σ. One can check that $G_{x_{0}}$ is the distributional solution to the equation

$$
\left\{\begin{array}{l}
\Delta_{g} G_{x_{0}}-\alpha\left\|G_{x_{0}}\right\|_{p}^{2-p}\left|G_{x_{0}}\right|^{p-2} G_{x_{0}}=8 \pi \delta_{x_{0}}+b-8 \pi \tag{47}\\
\int_{\Sigma} G_{x_{0}} d v_{g}=0
\end{array}\right.
$$

where b is the constant shown in (44). Integrating by (47) shows

$$
b=-\alpha \int_{\Sigma}\left\|G_{x_{0}}\right\|_{p}^{2-p}\left|G_{x_{0}}\right|^{p-2} G_{x_{0}} d v_{g}
$$

Applying an elliptic estimate to (47), $G_{x_{0}}$ can be locally represented by

$$
\begin{equation*}
G_{x_{0}}(x)=-4 \log r+A_{x_{0}}+\vartheta_{\alpha}(x), \tag{48}
\end{equation*}
$$

where r denotes the geodesic distance between x and $x_{0}, A_{x_{0}}$ is a real number depending only on x_{0} and α, $\vartheta_{\alpha}(x) \in C^{1}(\Sigma)$, and $\vartheta_{\alpha}(p)=0$. Moreover,

$$
\begin{equation*}
u_{\epsilon} \rightarrow G_{x_{0}} \quad \text { in } \quad C_{\mathrm{loc}}^{1}\left(\Sigma \backslash\left\{x_{0}\right\}\right) \tag{49}
\end{equation*}
$$

For any domain $\Sigma^{\prime} \subset \subset \Sigma \backslash\left\{x_{0}\right\}$, set $u_{\epsilon}=u_{\epsilon}^{(1)}+u_{\epsilon}^{(2)}, u_{\epsilon}^{(1)}$ to be a solution to

$$
\begin{equation*}
\triangle_{g} u_{\epsilon}^{(1)}-\alpha\left\|u_{\epsilon}^{(1)}\right\|_{p}^{2-p}\left|u_{\epsilon}^{(1)}\right|^{p-2} u_{\epsilon}^{(1)}=b-8 \pi \quad \text { on } \quad \Sigma^{\prime} \tag{50}
\end{equation*}
$$

and $u_{\epsilon}^{(2)}$ to be a solution to

$$
\begin{cases}\triangle_{g} u_{\epsilon}^{(2)}=\alpha\left\|u_{\epsilon}^{(2)}\right\|_{p}^{2-p}\left|u_{\epsilon}^{(2)}\right|^{p-2} u_{\epsilon}^{(2)}+\lambda_{\epsilon}^{-1} h e^{u_{\epsilon}} & \text { in } \Sigma^{\prime} \tag{51}\\ u_{\epsilon}^{(2)}=0, & \text { on } \partial \Sigma^{\prime}\end{cases}
$$

In view of (50), referring to the proof of $\left\|u_{\epsilon}\right\|_{L^{p}(\Sigma)}$ being bounded, we have that $\left\|u_{\epsilon}^{(1)}\right\|_{L^{s}(\Sigma)}$ is bounded for any $s>0$. For any $\Sigma^{\prime \prime} \subset \subset \Sigma^{\prime}$, we obtain that $u_{\epsilon}^{(1)}$ is uniformly bounded in $\Sigma^{\prime \prime}$ by applying elliptic estimate to (50). Then $\alpha\left\|u_{\epsilon}^{(2)}\right\|_{p}^{2-p}\left|u_{\epsilon}^{(2)}\right|^{p-2} u_{\epsilon}^{(2)}$ is bounded in $L^{1}\left(\Sigma^{\prime}\right)$. This together with $\lambda_{\epsilon}^{-1} h e^{u_{\epsilon}} \rightarrow 0$ in $L^{1}\left(\Sigma^{\prime}\right)$, and a result of [2], implies that for any $s>0$, there is a constant C such that

$$
\left\|e^{\left|u_{\epsilon}^{(2)}\right|}\right\|_{L^{s}\left(\Sigma^{\prime}\right)} \leq C
$$

Combining this with the uniform boundedness of $u_{\epsilon}^{(1)}$ in $\Sigma^{\prime \prime}$, we have that $f_{\epsilon}^{(2)}$ in (46) is bounded in $L^{s}\left(\Sigma^{\prime \prime}\right)$ for any $s>2$. By applying an elliptic estimate to (46), we get $u_{\epsilon} \rightarrow G_{x_{0}}$ in $C_{\mathrm{loc}}^{1}\left(\Sigma^{\prime \prime}\right)$. Since the choice of Σ^{\prime} and $\Sigma^{\prime \prime}$ is arbitrary, we obtain (49).

Step 3. The lower bound estimate.

In this step we get the lower bound estimate by using the method of capacity estimate; the idea comes from $[7,11]$. We first introduce a new functional: $K_{\alpha, \beta}: W^{1,2}(\Sigma) \rightarrow \mathbb{R}$,

$$
K_{\alpha, \beta}(v)=\frac{1}{2}\left(\int_{\Sigma}\left|\nabla_{g} v\right|^{2} d v_{g}-\alpha\left(\int_{\Sigma}|v-\bar{v}|^{p} d v_{g}\right)^{2 / p}\right)+\beta \int_{\Sigma} v d v_{g}-\beta \log \int_{\Sigma} h e^{v} d v_{g}
$$

where h is the same as in (8) and $\bar{v}=1 / \operatorname{Vol}_{g}(\Sigma) \int_{\Sigma} v d v_{g}$ is the integral average of v. It is not difficult to verify that $v-\bar{v} \in \mathcal{H}$ and

$$
K_{\alpha, \beta}(v)=J_{\alpha, \beta}(v-\bar{v}) .
$$

Most importantly, for any real number a, there holds

$$
\begin{equation*}
K_{\alpha, \beta}(v+a)=K_{\alpha, \beta}(v) \tag{52}
\end{equation*}
$$

For any $v \in W^{1,2}(\Sigma)$, we can choose $u=v-\bar{v} \in \mathcal{H}$ to make $K_{\alpha, \beta}(v)=J_{\alpha, \beta}(u)$ stand, which leads to

$$
\begin{equation*}
\inf _{v \in W^{1,2}(\Sigma)} K_{\alpha, \beta}(v) \geq \inf _{u \in \mathcal{H}} J_{\alpha, \beta}(u) \tag{53}
\end{equation*}
$$

On the other hand, for any $u \in \mathcal{H}$ we can still choose $v=u \in W^{1,2}(\Sigma)$ to make $J_{\alpha, \beta}(u)=K_{\alpha, \beta}(v)$, which shows

$$
\begin{equation*}
\inf _{u \in \mathcal{H}} J_{\alpha, \beta}(u) \geq \inf _{v \in W^{1,2}(\Sigma)} K_{\alpha, \beta}(v) \tag{54}
\end{equation*}
$$

Combining (53) with (54), we obtain

$$
\inf _{v \in W^{1,2}(\Sigma)} K_{\alpha, \beta}(v)=\inf _{u \in \mathcal{H}} J_{\alpha, \beta}(u)
$$

Let v_{ϵ} be the minimizer for subcritical functional $K_{\alpha, 8 \pi-\epsilon}(v)$. In view of (52), we might assume v_{ϵ} in a function space

$$
\begin{equation*}
L_{h}=\left\{v \in W^{1,2}(\Sigma): \int_{\Sigma} h e^{v} d v_{g}=1\right\} \tag{55}
\end{equation*}
$$

Let

$$
m_{\epsilon}=v\left(x_{\epsilon}\right)=\max _{\Sigma} v_{\epsilon}
$$

Then redefine

$$
\begin{equation*}
r_{\epsilon}=\frac{1}{\sqrt{(8 \pi-\epsilon) h\left(x_{0}\right)}} e^{-m_{\epsilon} / 2} \tag{56}
\end{equation*}
$$

Analogous to step 2, if $K_{\alpha, 8 \pi}$ has no minimizer on L_{h}, we have $\varphi_{\epsilon}(y)=v_{\epsilon}\left(\exp _{x_{\epsilon}}\left(r_{\epsilon} y\right)\right)-m_{\epsilon} \rightarrow-2 \log (1+$ $\left.|y|^{2} / 8\right)$, and $v_{\epsilon}-\bar{v}_{\epsilon} \rightarrow G_{x_{0}}$, as $\epsilon \rightarrow 0$. Take any fixed $R>0$ and small δ such that $2 \delta<i_{g}(\Sigma)$.

Set

$$
i_{\epsilon}=\inf _{\partial B_{R r_{\epsilon}}\left(x_{\epsilon}\right)} v_{\epsilon}, \quad s_{\epsilon}=\sup _{\partial B_{\delta}\left(x_{\epsilon}\right)} v_{\epsilon}
$$

We let

$$
i_{\epsilon}-s_{\epsilon}=m_{\epsilon}+d_{\epsilon}-\bar{v}_{\epsilon} .
$$

As $\epsilon \rightarrow 0$,

$$
\begin{aligned}
d_{\epsilon}=i_{\epsilon}-s_{\epsilon}-m_{\epsilon}+\bar{v}_{\epsilon} & =\inf _{\partial B_{R r_{\epsilon}}\left(x_{\epsilon}\right)}\left(v_{\epsilon}-m_{\epsilon}\right)-\sup _{\partial B_{\delta}\left(x_{\epsilon}\right)}\left(v_{\epsilon}-\bar{v}_{\epsilon}\right) \\
& =\inf _{\partial B_{R r_{\epsilon}\left(x_{\epsilon}\right)}\left(v_{\epsilon}-\bar{v}_{\epsilon}-c_{\epsilon}\right)-\sup _{\partial B_{\delta}\left(x_{\epsilon}\right)}\left(v_{\epsilon}-\bar{v}_{\epsilon}\right)} \\
& \rightarrow \varphi(R)-\sup _{\partial B_{\delta}\left(x_{\epsilon}\right)} G_{x_{0}}
\end{aligned}
$$

Define a function space

$$
\mathscr{W}_{\epsilon}(a, b)=\left\{v \in W^{1,2}\left(B_{\delta}\left(x_{\epsilon}\right) \backslash B_{R r_{\epsilon}}\left(x_{\epsilon}\right)\right):\left.v\right|_{\partial B_{\delta}\left(x_{\epsilon}\right)}=a,\left.v\right|_{\partial B_{R r_{\epsilon}}\left(x_{\epsilon}\right)}=b\right\}
$$

Clearly $\inf _{v \in \mathscr{W}_{\epsilon}\left(s_{\epsilon}, i_{\epsilon}\right)} \int_{B_{\delta}\left(x_{\epsilon}\right) \backslash B_{R r_{\epsilon}}\left(x_{\epsilon}\right)}\left|\nabla_{g} v\right|^{2} d v_{g}$ is attained by $l(x)$ verifying

$$
\left\{\begin{array}{l}
\triangle_{g} l=0 \quad \text { in } \quad B_{\delta}\left(x_{\epsilon}\right) \backslash B_{R r_{\epsilon}}\left(x_{\epsilon}\right) \\
\left.l\right|_{\partial B_{\delta}\left(x_{\epsilon}\right)}=s_{\epsilon} \\
\left.l\right|_{\partial B_{R r_{\epsilon}}\left(x_{\epsilon}\right)}=i_{\epsilon}
\end{array}\right.
$$

Denote r as the geodesic distance between x and x_{ϵ}; then

$$
l=\frac{i_{\epsilon}-s_{\epsilon}}{\log R r_{\epsilon}-\log \delta} \log r-\frac{i_{\epsilon} \log \delta-s_{\epsilon} \log r_{\epsilon}}{\log R r_{\epsilon}-\log \delta}
$$

and

$$
\inf _{v \in \mathscr{W}_{\epsilon}\left(s_{\epsilon}, i_{\epsilon}\right)} \int_{B_{\delta}\left(x_{\epsilon}\right) \backslash B_{R r_{\epsilon}}\left(x_{\epsilon}\right)}\left|\nabla_{g} v\right|^{2} d v_{g}=\int_{B_{\delta}\left(x_{\epsilon}\right) \backslash B_{R r_{\epsilon}}\left(x_{\epsilon}\right)}\left|\nabla_{g} l\right|^{2} d v_{g}=\frac{2 \pi\left(s_{\epsilon}-i_{\epsilon}\right)^{2}}{\log \delta-\log R r_{\epsilon}}
$$

Denote

$$
\tilde{v}_{\epsilon}=\max \left\{s_{\epsilon}, \min \left\{v_{\epsilon}, i_{\epsilon}\right\}\right\}
$$

Then, if ϵ is sufficiently small, $\tilde{v} \in \mathscr{W}_{\epsilon}\left(s_{\epsilon}, i_{\epsilon}\right)$ and $|\triangle \tilde{v}| \leq|\triangle v|$ a.e. in $B_{\delta}\left(x_{\epsilon}\right) \backslash B_{R r_{\epsilon}}$. Therefore,

$$
\begin{aligned}
\int_{B_{\delta}\left(x_{\epsilon}\right) \backslash B_{R r_{\epsilon}}\left(x_{\epsilon}\right)}\left|\nabla_{g} v_{\epsilon}\right|^{2} d v_{g} \geq & \int_{B_{\delta}\left(x_{\epsilon}\right) \backslash B_{R r_{\epsilon}}\left(x_{\epsilon}\right)}\left|\nabla_{g} \tilde{v}_{\epsilon}\right|^{2} d v_{g} \geq \int_{B_{\delta}\left(x_{\epsilon}\right) \backslash B_{R r_{\epsilon}}\left(x_{\epsilon}\right)}\left|\nabla_{g} l\right|^{2} d v_{g} \\
= & \frac{4 \pi\left(m_{\epsilon}+d_{\epsilon}-\bar{v}_{\epsilon}\right)^{2}}{\log \delta^{2}-\log R^{2} r_{\epsilon}^{2}}=\frac{4 \pi\left(m_{\epsilon}+d_{\epsilon}-\bar{v}_{\epsilon}\right)^{2}}{m_{\epsilon}+\log \delta^{2}-\log R^{2}+\log (8 \pi-\epsilon) h\left(x_{0}\right)} \\
\geq & 4 \pi \frac{\left(m_{\epsilon}+d_{\epsilon}-\bar{v}_{\epsilon}\right)^{2}}{m_{\epsilon}}\left(1+\frac{\log R^{2}-\log \delta^{2}+\log (8 \pi-\epsilon) h\left(x_{0}\right)}{m_{\epsilon}}+\frac{C}{m_{\epsilon}^{2}}\right) \\
\geq & 4 \pi \frac{\left(m_{\epsilon}-\bar{v}_{\epsilon}\right)^{2}}{m_{\epsilon}}+8 \pi d_{\epsilon}\left(1-\frac{\bar{v}_{\epsilon}}{m_{\epsilon}}\right) \\
& +4 \pi d_{\epsilon}\left(1-\frac{\bar{v}_{\epsilon}}{m_{\epsilon}}\right)^{2}\left(\log R^{2}-\log \delta^{2}+\log (8 \pi-\epsilon) h\left(x_{0}\right)\right)+\frac{C^{\prime} \bar{v}_{\epsilon}}{m_{\epsilon}^{2}}
\end{aligned}
$$

where C and C^{\prime} are constants depending only on δ and R. We then have those estimates by (39):

$$
\begin{align*}
\frac{1}{2} \int_{B_{R r_{\epsilon}}\left(x_{\epsilon}\right)}\left|\nabla_{g} v_{\epsilon}\right|^{2} d v_{g} & =\frac{1}{2} \int_{\mathbb{B}_{R}(0)}|\nabla \varphi|^{2} d v_{g}+o_{\epsilon}(1) \\
& =8 \pi \log \left(1+\frac{R^{2}}{8}\right)-8 \pi+o_{\epsilon}(1)+O\left(\frac{1}{R^{2}}\right) \tag{57}
\end{align*}
$$

and by (47) and (49)

$$
\begin{equation*}
-\frac{\alpha}{2}\left(\int_{\Sigma}|v-\bar{v}|^{p} d v_{g}\right)^{2 / p}=-\frac{\alpha}{2}\left\|G_{x_{0}}\right\|_{p}^{2}+o_{\epsilon}(1) \tag{58}
\end{equation*}
$$

Thus, we conclude

$$
\begin{aligned}
& \frac{1}{2} \int_{B_{\delta}\left(x_{\epsilon}\right) \backslash B_{R r_{\epsilon}}\left(x_{\epsilon}\right)}\left|\nabla_{g} v_{\epsilon}\right|^{2} d v_{g}-\frac{\alpha}{2}\left(\int_{\Sigma}\left|v_{\epsilon}-\bar{v}_{\epsilon}\right|^{p} d v_{g}\right)^{2 / p}+(8 \pi-\epsilon) \bar{v} . \\
\geq & 2 \pi \frac{\left(m_{\epsilon}-\bar{v}_{\epsilon}\right)^{2}}{m_{\epsilon}}+2 \pi d_{\epsilon}\left(1-\frac{\bar{v}_{\epsilon}}{m_{\epsilon}}\right)^{2}\left(\log R^{2}-\log \delta^{2}+\log (8 \pi-\epsilon) h\left(x_{0}\right)\right) \\
& +4 \pi d_{\epsilon}\left(1-\frac{\bar{v}_{\epsilon}}{m_{\epsilon}}\right)+\frac{C^{\prime} \bar{v}_{\epsilon}}{m_{\epsilon}^{2}}-\frac{\alpha}{2}\left\|G_{x_{0}}\right\|_{p}^{2}+(8 \pi-\epsilon) \bar{v}+o_{\epsilon}(1) \\
= & 2 \pi\left(1+\frac{\bar{v}_{\epsilon}}{m_{\epsilon}}\right)^{2}+2 \pi d_{\epsilon}\left(1-\frac{\bar{v}_{\epsilon}}{m_{\epsilon}}\right)^{2}\left(\log R^{2}-\log \delta^{2}+\log (8 \pi-\epsilon) h\left(x_{0}\right)\right) \\
& +4 \pi d_{\epsilon}\left(1-\frac{\bar{v}_{\epsilon}}{m_{\epsilon}}\right)+\frac{C^{\prime} \bar{v}_{\epsilon}}{m_{\epsilon}^{2}}-\frac{\alpha}{2}\left\|G_{x_{0}}\right\|_{p}^{2}+o_{\epsilon}(1) .
\end{aligned}
$$

Set $a_{\epsilon}=1+\bar{v} / m_{\epsilon}$. There holds

$$
K_{\alpha, 8 \pi-\epsilon}\left(v_{\epsilon}\right) \geq 2 \pi m_{\epsilon}\left(a_{\epsilon}+O\left(\frac{1}{m_{\epsilon}}\right)\right)^{2}+C
$$

for any fixed R and δ. On the other hand, $K_{\alpha, 8 \pi-\epsilon}\left(v_{\epsilon}\right) \leq C$, and we obtain $a_{\epsilon}=O\left(\frac{1}{\sqrt{m_{\epsilon}}}\right) \rightarrow 0$. Thus,

$$
\begin{align*}
& \frac{1}{2} \int_{B_{\delta}\left(x_{\epsilon}\right)}\left|\nabla_{g} v_{\epsilon}\right|^{2} d v_{g}-\frac{\alpha}{2}\left(\int_{\Sigma}\left|v_{\epsilon}-\bar{v}_{\epsilon}\right|^{p} d v_{g}\right)^{2 / p}+(8 \pi-\epsilon) \bar{v}_{\epsilon} \\
\geq & \frac{1}{2} \int_{\mathbb{B}_{R}(0)}\left|\nabla \varphi_{\epsilon}\right|^{2} d v_{g}-\frac{\alpha}{2}\left\|G_{x_{0}}\right\|_{p}^{2}+8 \pi d_{\epsilon} \\
& +8 \pi\left(\log R^{2}-\log \delta^{2}+\log (8 \pi-\epsilon) h\left(x_{0}\right)\right)+o_{\epsilon}(1) \\
= & \frac{1}{2} \int_{\mathbb{B}_{R}(0)}\left|\nabla \varphi_{\epsilon}\right|^{2} d v_{g}-\frac{\alpha}{2}\left\|G_{x_{0}}\right\|_{p}^{2}+8 \pi \varphi(R)-8 \pi \sup _{\partial B_{\delta}(p)} G_{x_{0}}(\cdot) \\
& +8 \pi\left(\log R^{2}-\log \delta^{2}+\log (8 \pi-\epsilon) h\left(x_{0}\right)\right)+o_{\epsilon}(1) \\
= & \frac{1}{2} \int_{\mathbb{B}_{R}(0)}\left|\nabla \varphi_{\epsilon}\right|^{2} d v_{g}-\frac{\alpha}{2}\left\|G_{x_{0}}\right\|_{p}^{2}+8 \pi \log \left(\frac{R^{2}}{1+R^{2} / 8}\right)-8 \pi \log \left(1+R^{2} / 8\right) \\
& +\log 8 \pi+\log h\left(x_{0}\right)+8 \pi \log \delta-8 \pi A_{x_{0}}+o_{\epsilon}(1)+o_{\delta}(1) . \tag{59}
\end{align*}
$$

It also follows from (47) and (49) that

$$
\begin{aligned}
\frac{1}{2} \int_{\Sigma \backslash B_{\delta}\left(x_{\epsilon}\right)}\left|\nabla_{g} v_{\epsilon}\right|^{2} d v_{g} & =\frac{1}{2} \int_{\Sigma \backslash B_{\delta}\left(x_{\epsilon}\right)}\left|\nabla_{g} G_{x_{0}}(\cdot)\right|^{2} d v_{g}+o_{\epsilon}(1) \\
& =\frac{\alpha}{2}\left(\int_{\Sigma \backslash B_{\delta}\left(x_{\epsilon}\right)}\left|\nabla_{g} G_{x_{0}}(\cdot)\right|^{p} d v_{g}\right)^{2 / p}-\frac{1}{2} \int_{\partial B_{\delta}\left(x_{\epsilon}\right)} G_{x_{0}} \frac{\partial G_{x_{0}}}{\partial n} d s_{g}+o(1) \\
& =\frac{\alpha}{2}\left\|G_{x_{0}}\right\|_{p}^{2}-16 \pi \log \delta+4 \pi A_{x_{0}}+o(1)
\end{aligned}
$$

This together with (59) implies

$$
\begin{aligned}
K_{\alpha, 8 \pi-\epsilon}\left(v_{\epsilon}\right) & =\frac{1}{2} \int_{B_{\delta}\left(x_{\epsilon}\right)}\left|\nabla_{g} v_{\epsilon}\right|^{2} d v_{g}-\frac{\alpha}{2}\left(\int_{\Sigma}\left|v_{\epsilon}-\bar{v}_{\epsilon}\right|^{p} d v_{g}\right)^{2 / p}+(8 \pi-\epsilon) \bar{v}_{\epsilon} \\
& \geq-8 \pi-8 \pi \log \pi-8 \pi \log h\left(x_{0}\right)-4 \pi A_{x_{0}}+o(1)+O\left(\frac{1}{R^{2}}\right) .
\end{aligned}
$$

Hence, when $\epsilon \rightarrow 0$ and $R \rightarrow+\infty$ respectively,

$$
\begin{align*}
\inf _{u \in \mathcal{H}} J_{\alpha, 8 \pi}(u) & =\inf _{v \in W^{1,2}(\Sigma)} K_{\alpha, 8 \pi}(v) \\
& \geq-8 \pi-8 \pi \log \pi-4 \pi \max _{x_{0} \in \Sigma}\left(A_{x_{0}}+2 \log h\left(x_{0}\right)\right) \tag{60}
\end{align*}
$$

Step 4. Existence of extremal functions.

In this step we aim to construct a sequence of function $\left(\phi_{\epsilon}\right)_{\epsilon>0}$ satisfying

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} J_{\alpha, 8 \pi}\left(\phi_{\epsilon}-\bar{\phi}_{\epsilon}\right)=-8 \pi-8 \pi \log \pi-4 \pi \max _{x \in \Sigma}\left(A_{x}+2 \log h(x)\right) \tag{61}
\end{equation*}
$$

Assume $A_{\tilde{x}}+2 \log h(\tilde{x})=4 \pi \max _{x \in \Sigma}\left(A_{x}+2 \log h(x)\right)$. Denote r to be the geodesic distance between \tilde{x} and x. Combining (60) with (61), we complete the proof of Theorem 1.

Set

$$
\phi_{\epsilon}= \begin{cases}c-2 \log \left(1+\frac{r^{2}}{8 \epsilon^{2}}\right) & \text { for } \quad x \in B_{R \epsilon}(\tilde{x}) \tag{62}\\ G-\eta \vartheta_{\alpha} & \text { for } \quad x \in B_{2 R \epsilon}(\tilde{x}) \backslash B_{R \epsilon}(\tilde{x}), \\ G_{\tilde{x}} & \text { for } \quad x \in \Sigma \backslash B_{2 R \epsilon}(\tilde{x}),\end{cases}
$$

Here, ϑ_{α} is the function in (48), $\eta \in C_{0}^{\infty}\left(B_{2 R \epsilon}\left(x_{0}\right)\right)$ is a cut-off function verifying that $\eta=1$ on $B_{R \epsilon}\left(x_{0}\right)$, and $\left\|\nabla_{g} \eta\right\|_{L^{\infty}\left(B_{2 R \epsilon}(\tilde{x})\right)}=O\left(\frac{1}{R \epsilon}\right)$. It is clear that $\bar{\phi}_{\epsilon}=o_{\epsilon}(1)$ and $\left\|\phi_{\epsilon}-\bar{\phi}_{\epsilon}\right\|_{p}^{2}=\left\|G_{\tilde{x}}\right\|_{p}^{2}+o_{\epsilon}(1)$.
c is defined by

$$
c=2 \log \left(1+R^{2} / 8\right)-4 \log R-4 \log \epsilon+A_{\tilde{x}}
$$

where $R=R(\epsilon)$ satisfies $R \rightarrow \infty$ and $(R \epsilon)^{2} \log R \rightarrow 0$ as $\epsilon \rightarrow 0$. It is easy to see that

$$
\begin{equation*}
\frac{1}{2} \int_{B_{R \epsilon}(\tilde{x})}\left|\nabla_{g} \phi_{\epsilon}\right|^{2} d v_{g}=8 \pi \log \left(1+R^{2} / 8\right)-8 \pi+o_{\epsilon}(1) \tag{63}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{1}{2} \int_{\Sigma \backslash B_{R \epsilon}(\tilde{x})}\left|\nabla_{g} \phi_{\epsilon}\right|^{2} d v_{g}= & \frac{1}{2} \int_{\Sigma \backslash B_{R \epsilon}(\tilde{x})}\left|\nabla_{g} G_{\tilde{x}}\right|^{2} d v_{g}+\frac{1}{2} \int_{B_{2 R \epsilon}(\tilde{x}) \backslash B_{R \epsilon}(\tilde{x})}\left|\nabla_{g}\left(\eta \vartheta_{\alpha}\right)\right|^{2} d v_{g} \\
& -\int_{B_{2 R \epsilon}(\tilde{x}) \backslash B_{R \epsilon}(\tilde{x})} \nabla_{g} G_{\tilde{x}} \nabla_{g}\left(\eta \vartheta_{\alpha}\right) d v_{g} \\
= & \frac{1}{2} \int_{\Sigma \backslash B_{R \epsilon}(\tilde{x})} G_{\tilde{x}} \triangle_{g} G_{\tilde{x}} d v_{g}-\frac{1}{2} \int_{\partial B_{R_{\epsilon}}(\tilde{x})} G_{\tilde{x}} \frac{\partial G_{\tilde{x}}}{\partial n} d s_{g} \\
& +\frac{1}{2} \int_{B_{2 R \epsilon}(\tilde{x}) \backslash B_{R \epsilon}(\tilde{x})}\left|\nabla_{g}\left(\eta \vartheta_{\alpha}\right)\right|^{2} d v_{g} \\
& -\int_{B_{2 R \epsilon}(\tilde{x}) \backslash B_{R \epsilon}(\tilde{x})}\left(\eta \vartheta_{\alpha}\right) \triangle_{g} G_{\tilde{x}} d v_{g}+\int_{B_{R \epsilon}(\tilde{x})}\left(\eta \vartheta_{\alpha}\right) \frac{\partial G_{\tilde{x}}}{\partial n} d s_{g} \tag{64}
\end{align*}
$$

We obtain by (48)

$$
\begin{equation*}
-\frac{1}{2} \int_{\partial B_{R_{\epsilon}}(\tilde{x})} G_{\tilde{x}} \frac{\partial G_{\tilde{x}}}{\partial n} d s_{g}=-16 \pi \log (R \epsilon)+4 \pi A_{\tilde{x}}+o_{\epsilon}(1) \tag{65}
\end{equation*}
$$

It follows from (47) and (48) that

$$
\begin{equation*}
\frac{1}{2} \int_{\Sigma \backslash B_{R \epsilon}(\tilde{x})} G_{\tilde{x}} \triangle_{g} G_{\tilde{x}} d v_{g}=\frac{\alpha}{2}\left\|G_{\tilde{x}}\right\|_{p}^{2}+o_{\epsilon}(1) \tag{66}
\end{equation*}
$$

It is not difficult to see that the other three terms on the right-hand side of (64) converge to 0 as $\epsilon \rightarrow 0$. This together with (65) and (66) shows

$$
\begin{equation*}
\frac{1}{2} \int_{\Sigma \backslash B_{\delta}\left(x_{\epsilon}\right)}\left|\nabla_{g} \phi_{\epsilon}\right|^{2} d v_{g}=-16 \pi \log (R \epsilon)+4 \pi A_{\tilde{x}}+\frac{\alpha}{2}\left\|G_{\tilde{x}}\right\|_{p}^{2}+o_{\epsilon}(1) \tag{67}
\end{equation*}
$$

We obtain the following by (63) and (67):

$$
\begin{equation*}
\frac{1}{2} \int_{\Sigma \backslash B_{\delta}\left(x_{\epsilon}\right)}\left|\nabla_{g} \phi_{\epsilon}\right|^{2} d v_{g}-\frac{\alpha}{2}\left\|\phi_{\epsilon}-\bar{\phi}_{\epsilon}\right\|_{p}^{2}=-16 \pi \log \epsilon-8 \pi \log 8-8 \pi+4 \pi A_{\tilde{x}}+o_{\epsilon}(1) \tag{68}
\end{equation*}
$$

Then we need to give a estimate of $\int_{\Sigma} h e^{\phi_{\epsilon}} d v_{g}$. Choosing some $\delta>0$ sufficiently small such that $G_{\tilde{x}}$ has analogous local repression to (48) in $B_{\delta}(\tilde{x})$ gives

$$
\begin{align*}
\int_{\Sigma} h e^{\phi_{\epsilon}} d v_{g}= & h(\tilde{x}) \int_{B_{R \epsilon}(\tilde{x})} e^{\phi_{\epsilon}} d v_{g}+\int_{B_{R \epsilon}(\tilde{x})}(h-h(\tilde{x})) e^{\phi_{\epsilon}} d v_{g} \\
& +\int_{B_{\delta}(\tilde{x}) \backslash B_{R \epsilon}(\tilde{x})} h e^{\phi_{\epsilon}} d v_{g}+\int_{\Sigma \backslash B_{\delta}(\tilde{x})} h e^{\phi_{\epsilon}} d v_{g} \tag{69}
\end{align*}
$$

A straightforward calculation shows

$$
\begin{equation*}
h(\tilde{x}) \int_{B_{R \epsilon}(\tilde{x})} e^{\phi_{\epsilon}} d v_{g}=8 \pi h(\tilde{x}) e^{-2 \log 8-2 \log \epsilon+A_{\tilde{x}}+o_{\epsilon}(1)} \tag{70}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{B_{R \epsilon}(\tilde{x})}(h-h(\tilde{x})) e^{\phi_{\epsilon}} d v_{g}=\epsilon^{-2} o_{\epsilon}(1) \tag{71}
\end{equation*}
$$

It also holds that

$$
\begin{align*}
0<\int_{B_{\delta}(\tilde{x}) \backslash B_{R \epsilon}(\tilde{x})} h e^{\phi_{\epsilon}} d v_{g} & \leq C\left(\max _{\Sigma} h\right) \int_{B_{\delta}(\tilde{x}) \backslash B_{R \epsilon}(\tilde{x})} e^{G_{\tilde{x}}} d v_{g} \\
& \leq C\left(\max _{\Sigma} h\right)\left(\frac{1}{(R \epsilon)^{2}}-\frac{1}{\delta^{2}}\right) \tag{72}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\Sigma \backslash B_{\delta}(\tilde{x})} h e^{\phi_{\epsilon}} d v_{g} \leq C\left(\max _{\Sigma} h\right) \int_{\Sigma \backslash B_{\delta}(\tilde{x})} e^{G_{\tilde{x}}} d v_{g} \tag{73}
\end{equation*}
$$

(69)-(73) show that

$$
\int_{\Sigma} h e^{\phi_{\epsilon}} d v_{g}=\left(1+o_{\epsilon}(1)\right) 8 \pi h(\tilde{x}) e^{-2 \log 8-2 \log \epsilon+A_{\tilde{x}}}
$$

which leads to

$$
\begin{equation*}
\log \int_{\Sigma} h e^{\phi_{\epsilon}} d v_{g}=-\log 8+\log (\pi h(\tilde{x}))-2 \log \epsilon+A_{\tilde{x}}+o_{\epsilon}(1) \tag{74}
\end{equation*}
$$

Combining (74) and (67), we have

$$
J_{\alpha, 8 \pi}\left(\phi_{\epsilon}-\bar{\phi}_{\epsilon}\right)=-8 \pi-8 \pi \log \pi-4 \pi\left(2 \log h(\tilde{x})+A_{\tilde{x}}\right)+o_{\epsilon}(1)
$$

which gives (61) by letting $\epsilon \rightarrow 0$.

References

[1] Adimurthi, Druet O. Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality. Comm Part Diff Equ 2004; 29: 295-322.
[2] Brezis H, Merle F. Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x) e^{u}$ in two dimensions. Comm Part Diff Equ 1991; 16: 1223-1253.
[3] Chen W, Li C. Classification of solutions of some nonlinear elliptic equations. Duke Math J 1991; 63: 615-622.
[4] Ding W, Jost J, Li J,Wang G. The differential equation $-\Delta u=8 \pi-8 \pi h e^{u}$ on a compact Riemann surface. Asian J Math 1997; 1: 230-248.
[5] Fontana L. Sharp borderline Sobolev inequalities on compact Riemannian manifolds. Comm Math Helv 1993; 68: 415-454.
[6] Kazdan J, Warner F. Curvature functions for compact 2-manifolds. Ann Math 1974; 99: 14-47.
[7] Li J, Li Y. Solutions for Toda systems on Riemann surfaces. Ann Sc Norm Super Pisa Cl Sci 2005; 4: 703-728.
[8] Lu G,Yang Y. The sharp constant and extremal functions for Moser-Trudinger inequalities involving L^{p} norms. Discret Contin Dyn S 2009; 25: 963-979.
[9] Tintarev C. Trudinger-Moser inequality with remainder terms. J Funct Anal 2014; 266: 55-66.
[10] Wang M. The asymptotic behavior of Chern-Simons Higgs model on a compact Riemann surface with boundary. Acta Math Sin (Engl Ser) 2012; 28: 145-170.
[11] Wang M, Liu Q. The equation $\Delta u+\nabla \phi \cdot \nabla u=8 \pi c\left(1-h e^{u}\right)$ on a Riemann surface. J Part Diff Equ 2012; 25: 335-355.
[12] Yang Y. A sharp form of Moser-Trudinger inequality in high dimension. J Funct Anal 2006; 239: 100-126.
[13] Yang Y. A sharp form of the Moser-Trudinger inequality on a compact Riemannian surface. T Am Math Soc 2007; 359: 5761-5776.
[14] Yang Y. Extremal functions for Trudinger-Moser inequalities of Adimurthi-Druet type in dimension two. J Diff Equ 2015; 258: 3161-3193.
[15] Yang Y. A Trudinger-Moser inequality on a compact Riemannian surface involving Gaussian curvature. J Geom Anal 2016; 26: 2893-2913.
[16] Yang Y, Zhu X. An improved Hardy-Trudinger-Moser inequality. Ann Global Anal Geom 2016; 49: 23-41.
[17] Yang Y, Zhu X. A remark on a result of Ding-Jost-Li-Wang. P Am Math Soc 2017; 145: 3953-3959.
[18] Yang Y, Zhu X. Existence of solutions to a class of Kazdan-Warner equations on compact Riemannian surface. Sci China Math 2018; 61: 1109-1128.
[19] Zhou C. Existence of solution for mean field equation for the equilibrium turbulence. Nonlinear Anal 2008; 69: 2541-2552.

[^0]: *Correspondence: zhangmengjie@ruc.edu.cn
 2010 AMS Mathematics Subject Classification: 58J05

