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Abstract: Let (3, g) be a compact Riemannian surface without boundary and W'?(X) be the usual Sobolev space.

For any real number p > 1 and a € R, we define a functional

Jo8n (u) = % (/2 |V yul>dvg — a(/z |u|pdvg)2/p> - 87r10g/E he"dvg

on a function space H = {u € Wh3(2): J5, udvg = 0}, where h is a positive smooth function on ¥. Denote

Mp(T) = inf Vul?du,.
W= v,

If a < A\ p(X) and Jo,8- has no minimizer on A, then we obtain the exact value of infy Jo sr by using a method
of blow-up analysis. Hence, if infy Ju s~ is not equal to that value, then Ju s-|% has a critical point that satisfies a
Kazdan—Warner equation. This recovers a recent result of Yang and Zhu (DOI: 10.1007/s11425-017-9086-6).
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1. Introduction and main results
Let (3, g) be a compact Riemannian surface without boundary, V, and A, be its respective gradient operator
and Laplace-Beltrami operator, dv, be its volume element, and W!2(X) be the usual Sobolev space. We define

a function space
H= {u e Wh3(%): / udvg = O} . (1)
b

Let h be a positive smooth function on ¥ and Jz: WH2?(X) — R be a fuctional defined by

1
Jz(u) = 3 /2 |V gul®dv, — ﬂlog/z he"dvg. (2)

In view of a manifold version of the Trudinger—Moser inequality [5], one can see that Jg has lower bound on
the space ‘H for all 8 < 8w. Note that critical points of Jg on H are solutions to Kazdan-Warner equations

[6]. In [4], Ding et al. proved that Jg, must have a minimizer on H if

inf —8m — 87l —4 A, +21
ul(Ic_lHJgﬂ# 8m — 8wlog wr}r)leaéc( » + 2logh(p)), (3)
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where A, = lim,_,,(G, +4logr) is a constant,  denotes the geodesic distance between = and p, and G), is a

Green function satisfying

{AG—87T6 Vol()

Js Gpdug =0,

where ¢, is the usual Dirac measure. Moreover they gave a geometric hypothesis that guarantees (3). Clearly

the minimizer of Jg satisfies the following Kazdan—-Warner equation:

8mhe* 8

Ay = - .
gt Js hetdvg  Volg (%)

(4)

There are extensions of Ding et al’s result. Among these, we mention [10], [11], [19] and [17]. Recently,

motivated by a series of works concerning Trudinger—Moser inequalities, some works [1, 9, 12-16], [18] considered

Ja,p(u) </ Vg U|2dvg *O‘/Z 2d”g) ﬂlog/ he*dv, (5)

and proved that if a < A1(X), the first eigenvalue of the Laplace—Beltrami operator with respect to the mean

the functionals

value zero condition, and

12% Jo,sx # —8m — 8mlogm — 4w maZX(Ap + 2log h(p)), (6)

pe
where A, = lim,_,,(G, +4logr) is a constant,  denotes the geodesic distance between = and p, and G), is a
Green function satisfying

AyGp — aG)p =870, — o2 (2)’
Js Gpdvg =0,
then inf,cy Jo,sx can be attained by some function u € ‘H satisfying

8mhe® 8

[y heudv,  Volg(E) @

Agu—au =

Motivated by (5) and [8], we now consider the minimizing problem for the functional J, g defined by

1
=3 (/ |Vgu|2dvg — a(/ |u|”dvg)2/1’) — Blog/ he“dvy, (8)
b ) o

where p > 1 is a real number. To do this, we define A1 ,(X) by

M,(D) = inf / IV, ul?dv, )

w€H, [ lulPdvg=1Jx

By the Poincaré-Sobolev inequality, when « < A; ,(X), the norm

1/2
oy = ( [ Vauan, —a( [ |u|pdvg>2/p) (10)

is an equivalent Sobolev norm on H. Our main result reads as follows.
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Theorem 1 Let (X,g) be a compact Riemannian surface without boundary, h be a positive smooth function
on X, p>1 be a real number, and H, M ,(X) and Jo g be defined as in (1), (9), and (8). Then, for any

a < A p(8), if Josz|ln has no minimizer, then there holds

inf = —8m — 8rl —4 A 21
ulg’H Joc,STr 8m — 81 ogm ng)z{;( To + Ogh(l'o))7

where Ay, = limg_y2(Gy, +4logr) is a constant, r denotes the geodesic distance between x and xqg, and Gy,

is a Green function satisfying

AyGay + ((Guy) = 8704, + ((Guy) — voiTr(z)a
fz G:Eodvg = 0,

where

((f(@) = —all f@)|3771f (@) P72 f(2), (12)
and ((f) =1/Voly(X) [5 C(f)(x)dvg is its integral average on X.
For the proof of Theorem 1, we follow the lines of [18], and thereby closely follow [4]. The difference is that in
the case p # 2, the Euler-Lagrange equation u. satisfies being nonlinear. If this case happens, the maximum
principle will become invalid. Fortunately, we can use the capacity estimate to calculate the infimum of J, g, .
This method was originally used in [7] and then in [11]. However, we cannot extend our results to higher

eigenfunction space cases because of the nonlinearity of the Euler-Lagrange equation u. being satisfied.

An interesting application of Theorem 1 reads as follows.

Corollary 2 For any o < A p(X), if

inf J, g(u) # —8r — 8wlogm — 4w max(A,, + 2logh(xg)), (13)
u€H To€ED

then the Kazdan—Warner equation

8mhe® — 8

m C(u) = G5 (14)

Bgu+C(w) = Vol, (3)

has a solution on wuy in H, where ((u) is defined as in (12).
In the remaining part of this paper, we prove Theorem 1. Throughout this paper, we do not distinguish

between sequence and subsequence.

2. Proof of Theorem 1

For some fixed a < A1, , the proof of Theorem 1 will be divided into several steps. For simplicity, we assume
Voly (%) = [y dvg = 1.

Step 1. Minimizers for subcritical functionals.

In this step we shall prove that inf,ey Jo sr—e(u) can be attained for any small € > 0. Precisely, we

have for any 0 < € < 87 that there exists some function u, € H# N CY(X) such that

Ja787r76(u6) = ulg'}f-.L Ja,Sﬂ'fe(u)- (15)
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The proof is based on a direct method in the calculus of variations. However, for proving (15), we should

introduce a Trudinger-Moser inequality.

Lemma 3 Let (X,g9) be a compact Riemannian surface without boundary and p > 1 be a real number. Then,

for any 0 < a < A ,(X) and 0 <y < 4w, we have the supremum

2
sup / e’ dvg < 00, (16)
weWH2(S), [ udvg=0, ||[ulla,p<1 /5

where A1 ,(X) is defined by (9) and the norm || - ||ap is defined by (10).

Proof. We refer readers to an argument of [14, p. 3168] to understand the proof of Lemma 3, and we omit the

proof here.

For any fixed 0 < € < 87, we take a sequence of functions u; € H satisfying that
Ja,Sw—s(uj) — inf Ja,87r—e(u) (17)
ucH

as j — o0.

It follows from Young’s inequality that

u? fluyil2
4 —e/4 + 1J7rf'f
/Ehe“jdvgg/zh( T, (18)

(18) together with (16) and (17) shows that

1
inf Josee() +0;(1) = 3l — (57— log [ hevids,
“ =
L 81 —¢ (/)
> 5““]’“3@_m”uﬂﬁp—(&r—e)log/zh I J”apdv
= HuaH -C.

Therefore, u; is bounded in #H. Thus, we can assume u; — u. weakly in H, u; — wu, strongly in L9(X) for

any ¢ > 0, and u; — u. a.e. in X. Weak convergence implies

a2, < tim el (19)
An analog of (18) shows that eli! is bounded in L*(X) for any s > 0, and then we have

lim he idvg, = / he*<dv,. (20)

Jj—oo

(20) together with (19) shows (15). Moreover, by using the method of Lagrange multiplier, we obtain that the
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Euler-Lagrange equation wu. satisfies the following:

1277 ue|P~2ue = (87 — A het 4y %,

Ae = fz he'<dvg,

Ague — af|ue

2—p p—2 (21)
e = —(8m —€) — a [ |lucll2 P |uc|P~*ucdvy,

ucdv, = 0.
fz g

Applying elliptic estimates to (21), we have u. € C1(X) immediately. We also have liminf, .q A > 0 by using

Jensen’s inequality. Notice that for any > 0, there exists some u, € H such that

ulél?f_l Joc,STr( )+’7 > Ja 87r(u'y) - hm Ja 8m— e(uw) > hm Ja 8m— e(ue) - eh—%ulgf Ja 8m— e(u)

Since v > 0 is arbitrary, we have

1 f < inf < inf =1 £
61_%7}27.[‘]“” e(u) ulél Jo g (1) 1é1 Jo, 87 (Ue) ’YlE)I%)ulgHJagﬂ- S (ue).

Extracting a diagonal sequence, we obtain

lim inf J, gr—c(u) = inf Jy g (). (22)

e—>0ueH ueH

Denote
Ce = Ue(Te) = MAX U.
5

At the end of this step, we prove that if A or c. is bounded, then J, g, has a minimizer in H.

Supposing that A, is bounded, then

||u€| ap = Jasr—e(u)+ (8T —¢) log/zhe"‘dvg
< Jasr—e(0) + (87 — €) log Ae
< 8| 1og/E hdvg| + (8™ — €) log A
< C.

Therefore, u,. is bounded in H. By the Sobolev embedding theorem and Lemma 3, we know wu. is bounded in
L™ (X) (Vr > 1) and el*! is bounded in L*(X) (Vs > 1). Noting that lim ié’lf)\E >0 and
e—

el < 87f+0‘|/ el luelP "2 ucdug| < 87 + Clluc]lp,

applying an elliptic estimate to (21), we obtain u, — up in H N CH(X). It follows from (22) that

a,oT 71 Q, 0T —€ 671 fOLﬂ'é - fOlTF
Jagr(uo) = i Jo,sr—c(uc) = lim inf Jagr—c(u) = inf Josr(u).

Hence, we already have that ug is a minimizer of J, gr. Supposing that u. is bounded, multiplying equation
(21) by wu,, the Sobolev embedding theorem together with liminf._,o A > 0 tells us that

e

e / fteldvy < Cllttelop. (23)
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Thus, u. is bounded in H. By a series of analyses, the same as \. being bounded, we can find a uy in HNC(X)

as a minimizer of J, gr. Therefore, if we assume that J, s, has no minimizer on #, there must hold
Ae = +00, ¢ — F00. (24)

We will precisely describe the converge of u. in the next step by using the method of blow-up analysis.

Step 2. Blow-up analysis for u..
Assume z. — o in X. We set

—\/X ec/2,
(87 — €)h(xo)

Te =

(25)

It follows that for any 1 < 1/2, there holds r2e7°< — 0. In particular, we have for any s > 0 the following:
rect — 0, (26)

where 7, is defined in (25). The proof is an analogy of [18, Lemma 2.7]; we multiply both sides of equation (21)
by u. and obtain

el = (87;\7_6) /2 huce" dvg < (87 — €)ce. (27)

(27) together with the Trudinger—Moser inequality (16) leads to

lluell?
(4m—e/2) +7r7”f
/heuﬁdvg C/ llue ”217 tor=2 dvg
3

IN

2
lluelld,

CleTon— 3¢ < Cech.

‘We then obtain

5 Js hetedu,

= S 9 e < Qe 3, 2
e (87rfe)h(x0)e < Ce (28)

This demonstrates the correctness of r.c; — 0 for any s > 0. Define two blow-up functions,

Pe(y) = ue (eszé (Tey)) — Ce (29)

and
Ye(y) = ¢ ue (exp,, (rey)) . (30)

For y € B;,-1(0), where 0 < ¢ < iy(¥) is fixed and iy(X) is the injectivity radius of (¥, g), set

9e(y) = (exp}. g) (rey). (31)

As € - 0, ge — go, the standard Euclidean metric. Note that ¢.(y) < 1(0) =1 and ¢.(y) < 0. Combining
(29)—(31) with (21), by a direct computation, we have

h(exp, (rey)) o

e(eXPme(Tey))*Ce + T2071 32

Agtpe = arllle Muel|Z7PyP 4 ot
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and

h(exple (r€y)) e(pe (y)

Age% = aTECGHCeiluéHzipwgil + h(l‘o) - ;U’GTEQ'

For any fixed R > 0, by a change of variable we have

—242 _1 —242 _1
(L4 o0e(1))re  Plleg 1“e||1£p(3m6(15)) <re 7 1“6“2p(2)~

Iz~

L7°T (Br(0)

This together with 0 < ce_lu6 <1 gives

2
21 .—1, 112—p,/p—1 Y < or? i
||Ck7“€ ||Ce u€||p we HLF(BR(O)) S QTe VOIQ(E) :
It follows that

| — AgwaHLp%l(BR(o)) —0 as e—0.

Using elliptic estimates, we can find some continuous function 1 such that 1. — @ in C°(B ry2(0)).

R > 0 is arbitrary, we have
Ye =1 in Cp(R?).

When 1 < p <2, it is easy to see that
ez uell37 < Voly(2)7 ",

When p > 2, we have for any fixed R > 0 the following;:

IN

_ 2 — 2—
r62||CE 1ue||Lp(pz) TSHCE 1”6”1;17%)3&,6(905))

4 —
rE (101257, o + 0(1)-

Since

(34)

(35)

Note that [|9||zr®g(0)) > 0 since 1(0) = limc,0%c(0) = 1 and % is continuous. Therefore, we conclude the

following:

7‘€2||c;1u5||i;&) =o0c(1), Vp>1
Applying elliptic estimates to (32) and (33) again, and combining with (36), we obtain

Ye =¥ in Cho(R?),

(36)

(37)

where 1 is a bounded harmonic function as in (34) and satisfies 1(0) = 1 = supg2 . The Liouville theorem

immediately leads to
=1 in R2
It follow from (37) that
Ye—1 in COL (R?).
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(35) inspires that

IN

- 2— - 2—
recee; 1U6HLpf)z) recele; 1u€||Lprme (z))

4 2—
1 Vel Lo ooy

4
13 2—
Te CG(HwHLPf]BR(Q)) + 05(1)) — 0.
The last line of (38) comes from (26). Applying elliptic estimates to (32) and (33), we have
pe = in G (R?),

where ¢ satisfies
Dgop = —e?W) in R?
©(0) = 0 =sup g,
R2
Jg2 €9Wdy < oo.

By a result of [3], ¢ can be written as follow:
(y) = —2log(1+[yl*/8).

Moreover,

/ e?Wdy = 8.
R2

(39)

(40)

To understand the convergence behavior away from the blow-up point xy, we shall next figure out how

ue converges. First, we will prove that A_the“c — d,, in the sense of measure, where J,, is the usual Dirac

measure centered at zo. For fixed R > 0, in view of (25), we obtain

(8w —¢) / heedu, = 12 (8w —¢€) / %) dy
Ae Brr, (zc) Ae Br(o)
= (1 —&-06(1))/ e’dy.
Br(o)
Combining this with (39) and (40), we have
lim lim A thetedv, = 1.
R—00 €—0 BR'r'E(aje)
Therefore,
lim lim A The'sdvy =1 — lim lim A thet<dvg = 0.
R—o00 €—0 S\Bry (zc) R— 00 e—0 Brr, (zc)

For any v € C°(X), we have

e—0

lim A, /2 vhe' dv, = v(xo).

(42)

(43)
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Secondly, we need to prove that [ue||zs(s) is bounded and demonstrate that u, is bounded in W4(X) for all
1 < g < 2. In fact, if we assume ||uc|rr(x) — 00, we can construct e = ue/||uc||Lr(x) € H verifying that

||’ELEHLP(E) =1 and

Ay — ali P2, = (8T — €)hete (87 —¢)

= - —a ||u€|\1_p|u6\p_2uedv = fe(l).
Aclluellrsy  luellrs) /g r 7

It is not difficult to see that [y, [|uell, ?|uc[P~?uedvy is a uniformly bounded sequence. Assume

b=t (< [l o2, ). ()

We get that er(l)HLl(E) is bounded by letting v =1 in (43). Applying [18, Lemma 2.10], we obtain that @ is
bounded in W14(X) for any 1 < ¢ < 2 with 2¢/(2 — ¢) > p. We assume the following:
G — @y weakly in  WhH4(%),
2q

e — @g strongly in  L*(X) for any 0 < s < Ep. (45)
Ue — Ug a.e.in .
Moreover, g is a weak solution to the equation
Agw — alw[P~2w = b,
[ wdvy = 0.
This lead to @y = 0, which is contradictory to (45) that |tg||Lr(x) = limeso [|@e|lLr(ny = 1. Therefore,
lue||Le (s is bounded. Then, for
Ague = oa||u€H127_p|u€\p_2u6 + (87 — €) A thes + pe = f€(2), (46)

we immediately obtain that f{* is bounded in LY(X). Applying (18, Lemma2.10] again, ||Vue|pas) < C.
Since wu, is bounded in W4(X) for all 1 < ¢ < 2, there exists some G, such that u, converges to G, weakly
in W14(%), strongly in L*(X) for any 0 < s < 22—:1(1, and almost everywhere in ¥. One can check that G, is

the distributional solution to the equation

AQGIO - a”GIo H1277P|GI0 ‘piQGwo = 8mz, + b — 8, (47)
Js Gaodvg =0,
where b is the constant shown in (44). Integrating by (47) shows
b= [ 1Ga [ 71Gnl? Gy,
b
Applying an elliptic estimate to (47), G, can be locally represented by
Gy, (z) = —4logr + Az, + Val(2), (48)
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where r denotes the geodesic distance between z and zy, A,, is a real number depending only on zy and «,
Yo(z) € CH(X), and J,(p) = 0. Moreover,

ue = Gy 0 Croe (B\ {0}) .- (49)

For any domain X' CC X\ {zo}, set u. = ugl) + u£2), ugl) to be a solution to

Agugl) — alju® ||f,_p|u£1) P24 =p—8r on X’ (50)
and uﬁ” to be a solution to
Agugz) _ Oé”UEQ)|‘[2)7p|u£2)|p72u£2) + )\zlheug in Y ( )
51
ul? = 0, on 9%/,

In view of (50), referring to the proof of |luc|/z»(x) being bounded, we have that ||u£1)|

L+(x) is bounded for any

s > 0. For any ¥’ CcC ¥/, we obtain that ult s uniformly bounded in X" by applying elliptic estimate to
(50). Then a||u£2)||z2)_p|u£2) |p_2u£2) is bounded in L!(X’). This together with A\-the*s — 0 in L'(X'), and a
result of [2], implies that for any s > 0, there is a constant C' such that

||e\u£2>\|

Ls(%) S C.

Combining this with the uniform boundedness of u{" in %", we have that £ in (46) is bounded in L*(X")
for any s > 2. By applying an elliptic estimate to (46), we get u. — G4, in CL_(X"). Since the choice of ¥’
and X" is arbitrary, we obtain (49).

Step 3. The lower bound estimate.

In this step we get the lower bound estimate by using the method of capacity estimate; the idea comes
from [7, 11]. We first introduce a new functional: K, g:Wh*(X) = R,

1
Ko p(v) = 3 </z |V gv2dv, — oz(/E v — v|pdvg)2/”) —l—ﬁ/zvdvg - ﬁlog/zhe”dvg,

where h is the same as in (8) and © = 1/Voly(X) [y, vdv, is the integral average of v. It is not difficult to verify
that v —v € H and
Kaﬁ(v) = Ja”g(’l} — ).

Most importantly, for any real number a, there holds
Kop(v+a)=K,p(v). (52)
For any v € WH%(X), we can choose u=1v — 0 € H to make K, s(v) = J, 5(u) stand, which leads to

inf K, > inf J, . 53
vty s (V) 2 Jof Jop ) (53)
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On the other hand, for any u € H we can still choose v = u € WH2(X) to make J, 5(u) = Ka g(v), which

shows

inf J, > inf  Kaps(v). 54
nf ,a(U)_vevgl{Q(z) 8(v) (54)

Combining (53) with (54), we obtain

veI/Ii/Ill,fZ(z) Kapv) = ulg?f-t T (1)-

Let v, be the minimizer for subcritical functional Ky gr—e(v). In view of (52), we might assume v, in a function
space

Ly = {v e Wh3(x): /Zhe”dvg = 1} : (55)

Let
me =v(z.) = MAX V.
Then redefine

re = v e~ me/2, 96
‘ (87 — €)h(wo) (56)

Analogous to step 2, if K, g» has no minimizer on Ly, we have ¢.(y) = v. (expmg ('rey)) —me — —2log(1+

ly|?/8), and ve — Ve — Gay, as € — 0. Take any fixed R > 0 and small § such that 26 < i,(X).

Set
ic= inf v, S¢ = SUp Ve
OBRr (Tc) OBs(ze)
We let
te — Se = Me + de — Ve.
As e—0,
de - 7:5 — Se — M + 1_}6 = lnf (UE - mE) - Sup (Ue o 56)
BBRré (ive) 835(15)
= inf  (ve—0c—ce)— sup (ve—7
3BRT6(9¢6)( e =P 535&)( <

— @(R) — sup Gy,.
OBs(x¢)

Define a function space

We(a,b) = {v e WH(Bs(xe) \ Brr.(2e)) : v 9By (2)= ;0 l0Bg,. (2=} -

Clearly ve”fﬂig(lsfe,ig) fB(S(we)\BRre (@) Vv|%dv, is attained by I(z) verifying

Ngl=0 in Bs(xe)\ Brr (),
l ‘336(‘7:6): SE’

l ‘BBRT6 (I‘): Z’E'
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Denote r as the geodesic distance between x and x.; then

T — Se¢ iclogd — s logr,

l=—
log Rr. — log o8’ log Rr. — logé

i

and

2 [ ‘e 2
inf / IV o] 2dv, :/ 1V ,1[2du, = TS )"
Ve (5esic) J Bs(2)\Brr, (wc) Bs(w)\Brr, (z.) logd — log Rre

Denote

Ve = max {s¢, min{ve,i.}}.

Then, if € is sufficiently small, 0 € #.(s.,ic) and |Ad| < |Awv| a.e. in Bs(ze) \ Brr, . Therefore,

/ IV, 2dv, > / IV, 2dv, > / IV,12dv,
Bs (z)\Brr. (we) Bs(ze)\Brr () Bs(ze)\Brrc ()
_ An(me+de — e )? B Am(me + de — v)?
~ logé2 —log R2r2  m, +logd2 — log R? + log(8m — €)h (o)
. (me +de — v)? (1 N log R? —log §2 + log(87 — €)h(xo) n C;)
me me me
)2 5
> 4pMe =P L grg - By
Me Me
7.\ 2 C'%,
+ 47d, <1 — ) (log R* — log 6% + log(8m — €)h(z0)) + —-,
Mme Me

where C' and C’ are constants depending only on § and R. We then have those estimates by (39):

1 1
s [ WanPds, = 5[ [eldu, +ou)
2 JBar,(a0) 2 JBr(0)
_ Srlog(l+ ) —srto)+0 (L (57)
= 8mlog 3 T+ 0¢ 72 )
and by (47) and (49)
«o B «
_5(/2 |v—v|Pdvg)2/P:_§||GZO||12,—|—0€(1). (58)
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Thus, we conclude

1
f/ |V yve2dvy — g(/ [ve — Te[Pdvy)?/P + (87 — €)3.
2 JBs@o\Bar. (o) 2 s
(me — ) Ve ? 2 2
> 2r—— +42nd. (1— —=) (logR*—logé* + log(8m — €)h(x))
M. me
ve, C'ue «a _
+4mde(1 — mis)—’_ m2 §HG10||127+(87T_6)U+06(1)

~ N2
= 2r(1+ %)2 + 27d, (1 — :;) (log R? — log 6> + log(8m — €)h(z0))

€ €

Ve C'v. «
Hmd(1 =) oot S Gl + 0c(1).

Set ac = 1+ 9/me. There holds

for any fixed R and . On the other hand, K, sr—c(ve) < C, and we obtain a. = O (\/717) — 0. Thus,

1 2
Ko sn—e(ve) > 2mme (ae +0 ()) el

Me

1
2 / ‘V9U€|2dvg o %(/ |ve — 56|pdvg)2/p + (87 — €)v.
Bs(ze) >

1

«
= Vo*dvg — = [|Ga, |12 + 87de
3L ey = G I+ 8

v

+-87(log R? — log 6% + log (8™ — €)h(o)) + 0c(1)

1

= 5[ Ieddu, = S1Gu 4 Sme(R) — 87 sup Gy ()
2 Jr(0) 2 2B5(p)
+87(log R? — log 6% + log(87 — €)h(x0)) + 0c(1)

1 2

2
+log 81 + log h(xg) + 8w logd — 8w Ay, + 0c(1) + 0s(1).

It also follows from (47) and (49) that

1

2
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1
/ ‘V9U6|2dvg 2 / |V9G$0(-)|2dvg +0c(1)
E\Bé(xe) Z\Bé (xe)

« 1 oG
= — V.G ()|Pdv 2/17_,/ Gy —20
2(/2\35@5)' (GaOP e =5 [ 5

- %HG% 2 — 167 log & + 47 A, + o(1).

R
= = vy — S|[Go|I2 + 87 log(——=——) — 8mlog(1 + R2/8
o 1T = GG+ 7o ) — Srlog(1 + 29

dsg + o(1)
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This together with (59) implies

1

Kagn—e(ve) = 5 / ‘Vg”6|2dvg - g(/ |ve — ﬁe|pdvg)2/p + (87 — €)ve
2 Bs(ze) 2 )

v

1
—8m — 8rlogm — 8mlog h(xg) — 4mAy, +0(1) + O <R2> )

Hence, when ¢ — 0 and R — +00 respectively,

uléqu_[ Jo,8n (u) = vemi/I}g(E) Koz,87r<v)
> —8m —8mlogm —4m max (Ag, + 2logh(zo)) - (60)
To€

Step 4. Existence of extremal functions.

In this step we aim to construct a sequence of function (¢¢)eso satisfying

liI’I(I) Jogr(pe — @) = —8m — 8rlogm — 47 max (Agz +2logh(z)) . (61)
€E—r T

Assume Az + 2log h(Z) = 4m max,ex(Az + 2logh(x)). Denote r to be the geodesic distance between & and
x. Combining (60) with (61), we complete the proof of Theorem 1.

Set

cf2log(l+£) for x € Bp(Z),
be = G — ndq for x € Bage(Z) \ Bre(Z), (62)
Gz for z€X \ B2Re(57)7

Here, 9, is the function in (48), n € C§°(Bare(o)) is a cut-off function verifying that 7 = 1 on Brc(zo), and
IV gl Loo (Bare (3)) = O(i). It is clear that ¢, = o.(1) and |¢c — q§6||z2) = ||G5;H§ + 0.(1).
c is defined by

c=2log(1+4 R?/8) —4log R — 4loge + Az,
where R = R(¢) satisfies R — 0o and (Re)?log R — 0 as € — 0. It is easy to see that

1
3 / |V ybe|>dvy = 8 log(1 + R?/8) — 8 + o.(1) (63)
BRs(j)
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and

1
s L Ve,
S\BRre(Z)

1 1
s L WGPy [ V)P,
S\ Br. (&) B2re(Z)\BRe(%)

- / V,Ga V(i) dv,
Bore(Z)\BRre(Z)

1 1 .
= 7/ GiAgGidUg— */ GiaGEdSq
2 Js\Br.(3) 2 JoBp @) ~ On

1

)
2 JBope(#)\Bnr. (@)

Vg (19a)|*dvg

0G;
—/ (nﬁa)AgGidvg—i—/ (Na) ——dsg. (64)
Bare(%)\Bre () on

BRs(i)

We obtain by (48)

1 0G;
—f/ Gz ——dsg = —16mlog(Re) + 41 Az + oc(1). (65)
2 8BR€ (53) 3n

It follows from (47) and (48) that

1

a
5/ Gz yGrdvy = §|\Gj||§ + 0c(1). (66)
S\BRre(Z)

It is not difficult to see that the other three terms on the right-hand side of (64) converge to 0 as € — 0. This
together with (65) and (66) shows

1
5/ |V ybe|>dv, = —167 log(Re) + 4T Az + %HG%Hg + o.(1). (67)
S\ Bs ()

We obtain the following by (63) and (67):

1 _
5/ |V ybe|>dv, — %Hgbe — ¢c||2 = —16mlog e — 8mlog8 — 87 + 47 Az + 0c(1). (68)
E\Bé(xe)

Then we need to give a estimate of fz he¢€dvg . Choosing some § > 0 sufficiently small such that Gz

has analogous local repression to (48) in Bs(Z) gives

/ he®<dv, = h(%) / e dv, + / (h — h(&))e?dv,
b Bre(%) Bre(Z)

+/ he¢‘dvg+/ he®dv,. (69)
Bs(%)\Bre (%) X\Bs (%)

A straightforward calculation shows

h(E) / e?edv, = 8mh(F)e21088-2log et Aztoc(l) (70)
BRe(i)
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and
/ (h = h(#))e? dv, = e 20,(1). (71)
BRre(%)
It also holds that
0< / he®<dv, < C(maxh) % dv,
B;(#)\Bre (%) > Bs(#)\Bre (%)
< Clmaxh) (—— - L (72)
= YUY (Re? T 2
and
/ he®<dv, < C(max h)/ %% dv,. (73)
¥\ B; (%) x Y\ Bs(7)

(69)—(73) show that

/ hed’edvg =1+ 06(1))87Th(1~7)67210g87210g etds
Y

which leads to

1og/ he® dv, = —log8 + log(mh(7)) — 2loge 4+ Az + o (1). (74)
)

Combining (74) and (67), we have

Jasr(pe — @) = —8m — 8rlogm — 4w (2log h(Z) + Az) + o.(1),

which gives (61) by letting € — 0.
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