

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

On the summability methods of logarithmic type and the Berezin symbol

Ulaş YAMANCI^{*}

Department of Statistics, Faculty of Arts and Sciences, Süleyman Demirel University, Isparta, Turkey

Received: 29.03.2018	•	Accepted/Published Online: 05.07.2018	•	Final Version: 27.09.2018
-----------------------------	---	---------------------------------------	---	----------------------------------

Abstract: We prove by means of the Berezin symbols some theorems for the (L)-summability method for sequences and series. Also, we prove a new Tauberian type theorem for (L)-summability.

Key words: (L)-summability, Berezin symbol, (e)-convergence, compact operator, Tauberian type theorem, Dirichlet space, diagonal operator

1. Introduction

In this article, by applying a new functional analytic approach based on the so-called the Berezin symbol technique, we prove the following results (see [3, 4]). Also, we give a new Tauberian type theorem for (L)-summable sequences of complex numbers.

Recall that a sequence $(a_n)_{n\geq 0}$ of complex numbers a_n is said to be summable to a finite number ζ by the logarithmic method (L) (or (L)-summable to ζ) if

$$\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$$

converges in the open interval (0,1) and

$$\lim_{x \to 1^{-}} -\frac{1}{\log(1-x)} \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1} = \zeta.$$

The series $\sum_{n=0}^{\infty} a_n$ is (L)-summable to ζ if the sequence of partial sums $s := (s_n)_{n \ge 0}$ (where $s_n = \sum_{k=0}^n a_k$) is (L)-summable to ζ .

(L)-summable to ζ .

Theorem 1 If $(a_k)_{k\geq 0}$ converges to ζ , then $(a_k)_{k\geq 0}$ (L)-converges to ζ .

Theorem 2 If the series $\sum_{k=0}^{\infty} a_k$ converges to ζ , then $\sum_{k=0}^{\infty} a_k$ is (L)-summable to ζ .

^{*}Correspondence: ulasyamanci@sdu.edu.tr

²⁰¹⁰ AMS Mathematics Subject Classification: 40D09

Before beginning the presentation, we recall some basic definitions and notations.

Recall that in [6], Karaev introduced the notions of an (e)-convergent sequence and (e)-convergent series for the complex numbers as follows.

Let $\mathcal{H} = \mathcal{H}(\Omega)$ be a reproducing kernel Hilbert space on some suitable set Ω with reproducing kernel

$$k_{\mathcal{H},\lambda}\left(z\right) := \sum_{n=0}^{\infty} \overline{e_n\left(\lambda\right)} e_n\left(z\right),\tag{1}$$

where $\{e_n(z)\}_{n>0}$ is an orthonormal basis of \mathcal{H} . Let $(a_n)_{n>0}$ be any sequence of complex numbers.

(1) We say that the sequence $(a_n)_{n\geq 0}$ is (e)-convergent to l if $\sum_{n=0}^{\infty} a_n |e_n(\lambda)|^2$ is convergent for all $\lambda \in \Omega$ and

$$\lim_{\lambda \to \zeta} \frac{1}{\sum_{n=0}^{\infty} |e_n(\lambda)|^2} \sum_{n=0}^{\infty} a_n |e_n(\lambda)|^2 = l$$

for every $\zeta \in \partial \Omega$.

(2) We say that the series $\sum_{n=0}^{\infty} a_n$ is (e)-summable to l if $\sum_{n=0}^{\infty} a_n |e_n(\lambda)|^2$ converges for all $\lambda \in \Omega$ and

$$\lim_{\lambda \to \zeta} \sum_{n=0}^{\infty} a_n \left| e_n \left(\lambda \right) \right|^2 = l$$

for every $\zeta \in \partial \Omega$.

It was shown that the definition of (e)-convergence of sequence and series coincides with the classical Abel convergence and the Borel convergence of sequence and series for the Hardy space $\mathcal{H}(\Omega) = H^2(\mathbb{D})$ and the Fock space $\mathcal{H}(\Omega) = \mathcal{F}(\mathbb{C})$ (see more details in [2, 5], and also [7] for related problems), respectively. One of our aims in the present article is to show in detail that (e)-summability implies the classical (L)-summability for $\mathcal{H}(\Omega) = \mathcal{D}(\mathbb{D})$, which is the Dirichlet space of analytic functions on \mathbb{D} , and thus to show once again the universality of the (e)-summability notion.

The associated diagonal operator D_a on \mathcal{H} for any bounded sequence $(a_n)_{n\geq 0}$ of complex numbers is defined by the formula $D_a e_n(z) := a_n e_n(z)$, n = 0, 1, 2, ..., with respect to the orthonormal basis $(e_n(z))_{n\geq 0}$ of \mathcal{H} . An elementary calculus shows by virtue of formula (1) that

$$\widetilde{D}_{a}\left(\lambda\right) = \frac{1}{\sum_{n=0}^{\infty} \left|e_{n}\left(\lambda\right)\right|^{2}} \sum_{n=0}^{\infty} a_{n} \left|e_{n}\left(\lambda\right)\right|^{2}, \quad \lambda \in \Omega.$$
(2)

Following Nordgren and Rosenthal [9], we say that RKHS $\mathcal{H}(\Omega)$ is standard if the underlying set Ω is a subset of a topological space and the boundary $\partial\Omega$ is nonempty and has the property that $(k_{\mathcal{H},\lambda_n})_n$ converges weakly to 0 whenever $(\lambda_n)_n$ is a sequence in Ω that converges to a point in $\partial\Omega$. The prototypical standard RKHSs are, for example, the Hardy–Hilbert space $H^2(\mathbb{D})$, the Bergman–Hilbert space $L^2_a(\mathbb{D})$, the Fock–Hilbert space $\mathcal{F}(\mathbb{C})$, and the Dirichlet–Hilbert space $\mathcal{D}(\mathbb{D})$.

Recall that [8] the Dirichlet space \mathcal{D} is the Hilbert space of analytic functions $f = \sum_{n=0}^{\infty} a_n z^n$ on the unit disk \mathbb{D} with $\int_{\mathbb{D}} \left| f'(z) \right|^2 dA/\pi = \sum_{n=0}^{\infty} (n+1) |a_n|^2 < \infty$, where dA denotes the usual Lebesgue measure on \mathbb{D} .

For any bounded linear operator A on \mathcal{D} , the Berezin symbol of A is the function \widetilde{A} defined by (see [1, 9])

$$\widetilde{A}(\lambda) := \left\langle A \widehat{k}_{\lambda}, \widehat{k}_{\lambda} \right\rangle_{\mathcal{D}} \ (\lambda \in \Omega),$$

where $\hat{k}_{\lambda} = \frac{k_{\lambda}}{\|k_{\lambda}\|}$ is the normalized reproducing kernel of the space \mathcal{D} . Since the sequence $\{z^n/\sqrt{n+1} : n \ge 0\}$ is an orthonormal basis of the Dirichlet space, the reproducing kernel of \mathcal{D} is given by formula (1).

$$k_{\lambda}(z) = \sum_{n=0}^{\infty} \frac{\left(\overline{\lambda}z\right)^{n}}{n+1} = \frac{1}{\overline{\lambda}z} \log \frac{1}{1-\overline{\lambda}z}$$

2. The results

First, we characterize the (L)-summability method in terms of the Berezin symbol.

Theorem 3 Let $(a_n)_{n\geq 0}$ be a bounded sequence of complex numbers, and let D_a be the diagonal operator on the Dirichlet space \mathcal{D} with diagonal elements a_n , $n \geq 0$, with respect to the orthonormal basis $\{z^n/\sqrt{n+1}\}_{n\geq 0}$ of \mathcal{D} . Then the sequence $(a_n)_{n>0}$ is (L)-summable to ζ if and only if

$$\lim_{x \to 1^{-}} \widetilde{D}_a\left(\sqrt{x}\right) = \zeta.$$

Proof Since $(a_n)_{n\geq 0}$ is the bounded sequence, D_a is a bounded operator on \mathcal{D} . If \hat{k}_{λ} is the normalized reproducing kernel of \mathcal{D} , then we obtain by using formula (2) for all $\lambda \in \mathbb{D}$ that

$$\widetilde{D}_{a}(\lambda) = \frac{1}{\sum_{n=0}^{\infty} \frac{(|\lambda|^{2})^{n}}{n+1}} \sum_{n=0}^{\infty} a_{n} \frac{\left(|\lambda|^{2}\right)^{n}}{n+1} = \frac{1}{\frac{1}{|\lambda|^{2}} \log \frac{1}{1-|\lambda|^{2}}} \sum_{n=0}^{\infty} a_{n} \frac{\left(|\lambda|^{2}\right)^{n}}{n+1}$$
$$= -\frac{|\lambda|^{2}}{\log \left(1-|\lambda|^{2}\right)} \sum_{n=0}^{\infty} a_{n} \frac{\left(|\lambda|^{2}\right)^{n}}{n+1} = -\frac{1}{\log \left(1-|\lambda|^{2}\right)} \sum_{n=0}^{\infty} a_{n} \frac{\left(|\lambda|^{2}\right)^{n+1}}{n+1},$$

and therefore \widetilde{D}_{a} is a radial function on \mathbb{D} ; that is, $\widetilde{D}_{a}\left(\lambda\right) = \widetilde{D}_{a}\left(\left|\lambda\right|\right)$.

Let $|\lambda|^2 = x$. Then

$$\widetilde{D}_{a}\left(\sqrt{x}\right) = -\frac{1}{\log(1-x)} \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}.$$
(3)

We therefore get the desired assertions from (3), which proves the theorem.

Now we are ready to prove the results.

Proof [**Proof of Theorem 1**]Let us define the diagonal operator D_a on the Dirichlet space \mathcal{D} as follows:

$$D_a \frac{z^n}{\sqrt{n+1}} = a_n \frac{z^n}{\sqrt{n+1}}, \ n = 0, 1, 2, \dots$$

2419

Since (a_k) is the bounded sequence, D_a is a bounded operator on \mathcal{D} . Then we get (see (3)):

$$\widetilde{D}_a\left(\sqrt{x}\right) = -\frac{1}{\log\left(1-x\right)} \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}, \ 0 < x < 1.$$
(4)

Thus, we have from (4):

$$-\frac{1}{\log(1-x)}\sum_{n=0}^{\infty}\frac{a_n}{n+1}x^{n+1} = -\frac{1}{\log(1-x)}\sum_{n=0}^{\infty}(a_n-\zeta)\frac{x^{n+1}}{n+1} + \zeta\frac{-1}{\log(1-x)}\sum_{n=0}^{\infty}\frac{x^{n+1}}{n+1} = \widetilde{D}_{a_k-\zeta}(\sqrt{x}) + \zeta.$$

Since $a_k - \zeta \to 0$ as $n \to \infty$ by the condition of the theorem, we have that $D_{a_k-\zeta}$ is a compact operator on \mathcal{D} . Hence, its Berezin symbol vanishes on the boundary, i.e.

$$\lim_{x \to 1^{-}} \widetilde{D}_{a_k - l}\left(\sqrt{x}\right) = 0.$$

Then we conclude from the last equality

$$\lim_{x \to 1^{-}} -\frac{1}{\log(1-x)} \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1} = \zeta,$$

which finishes the proof.

Proof of Theorem 2 By using the argument to prove Theorem 1, it can easily be modified to prove the equality

$$\widetilde{D}_{s}\left(\sqrt{x}\right) = \lim_{x \to 1^{-}} -\frac{1}{\log\left(1-x\right)} \sum_{n=0}^{\infty} \frac{s_{n}}{n+1} x^{n+1},\tag{5}$$

where D_s denotes the diagonal operator on \mathcal{D} with diagonal elements s_n , $n \ge 0$. Formula (5) means that the series $\sum_{n=0}^{\infty} \frac{s_n}{n+1} x^{n+1}$ for all 0 < x < 1 is convergent. On the other hand,

$$D_s = LI + D_{s-L},$$

where the diagonal operator D_{s-L} is compact, since by the hypothesis of the theorem, $s_k - \zeta \to 0$ as $n \to \infty$, and hence from (5) we get

$$\lim_{x \to 1^{-}} -\frac{1}{\log(1-x)} \sum_{n=0}^{\infty} \frac{s_n}{n+1} x^{n+1} = \lim_{x \to 1^{-}} \widetilde{D}_s\left(\sqrt{x}\right)$$
$$= \lim_{x \to 1^{-}} \left(L + \widetilde{D}_{s-L}\left(\sqrt{x}\right)\right)$$
$$= \zeta + \lim_{x \to 1^{-}} \widetilde{D}_{s-\zeta}\left(\sqrt{x}\right) = \zeta,$$

which means that the series $\sum_{k=0}^{\infty} a_k$ is (L)-summable to ζ . The theorem is proved.

Let ℓ_1^2 denote the unit sphere of the sequences space ℓ^2 :

$$\ell_1^2 := \left\{ (x_m)_{m \ge 0} \in \ell^2 : \| (x_m) \|_{\ell^2} = 1 \right\}.$$

Now we will prove a Tauberian theorem for (L)-summable sequences of complex numbers by applying a result due to Nordgren and Rosenthal [9, Corollary 2.8], which means that an operator A on a standard RKHS $\mathcal{H}(\Omega)$ is compact if and only if all the Berezin symbols of unitary orbits $U^{-1}AU$, where U is unitary on $\mathcal{H}(\Omega)$, of the operator A vanish on the boundary.

Theorem 4 Let $(a_n)_{n\geq 0}$ be a bounded sequence of complex numbers such that $(a_n)_{n\geq 0}$ (L)-converges to ζ . Suppose that

$$\sum_{m=0}^{\infty} a_m \left| \sum_{n=0}^{\infty} \overline{x_m^{(n)}} \frac{\lambda^n}{\sqrt{n+1}} \right|^2 = o\left(-\frac{\log\left(1-|\lambda|^2\right)}{|\lambda|^2} \right)$$
(6)

for every double sequence $(x_m^{(n)})_{m,n=0}^{\infty}$ with $(x_m^{(n)})_{m\geq 0} \in \ell_1^2$ $(\forall n \geq 0)$ and $(x_m^{(n)})_{n\geq 0} \in \ell_1^2$ $(\forall m \geq 0)$ whenever λ tends to infinity. Then $a_n \to 0$ as $n \to \infty$.

Proof Since $(L) \cdot a_n \to \zeta$ if and only if $(L) \cdot (a_n - \zeta) \to 0$, we assume without loss of generality that $\zeta = 0$. We will use the same method as in [7] for the proof of the theorem. Let $U : \mathcal{D} \to \mathcal{D}$ be an arbitrary unitary operator of the Dirichlet space \mathcal{D} . Then

$$U\left(\frac{z^n}{\sqrt{n+1}}\right) = \sum_{m=0}^{\infty} b_m^{(n)} \frac{z^m}{\sqrt{m+1}}$$

with $(b_m^{(n)})_{m\geq 0} \in \ell_1^2$ for every $n\geq 0$. It is easy to see then that $(b_m^{(n)})_{n\geq 0} \in \ell_1^2$ for every $m\geq 0$.

Then we obtain the following:

$$\begin{split} \widetilde{U^{-1}D_a}U(\lambda) &= \left\langle U^{-1}D_aU\widehat{k}_{\lambda}, \widehat{k}_{\lambda} \right\rangle \\ &= -\frac{|\lambda|^2}{\log\left(1-|\lambda|^2\right)} \left\langle D_aU\sum_{n\geq 0}\frac{\overline{\lambda}^n}{\sqrt{n+1}}\frac{z^n}{\sqrt{n+1}}, U\sum_{n\geq 0}\frac{\overline{\lambda}^n}{\sqrt{n+1}}\frac{z^n}{\sqrt{n+1}} \right\rangle \\ &= -\frac{|\lambda|^2}{\log\left(1-|\lambda|^2\right)} \left\langle D_a\sum_{n\geq 0}\frac{\overline{\lambda}^n}{\sqrt{n+1}}U\left(\frac{z^n}{\sqrt{n+1}}\right), \sum_{n\geq 0}\frac{\overline{\lambda}^n}{\sqrt{n+1}}U\left(\frac{z^n}{\sqrt{n+1}}\right) \right\rangle \end{split}$$

$$\begin{split} &= -\frac{|\lambda|^2}{\log\left(1-|\lambda|^2\right)} \left\langle \sum_{n\geq 0} \frac{\overline{\lambda}^n}{\sqrt{n+1}} D_a \sum_{m\geq 0} b_m^{(n)} \frac{z^m}{\sqrt{m+1}}, \sum_{n\geq 0} \frac{\overline{\lambda}^n}{\sqrt{n+1}} \sum_{m\geq 0} b_m^{(n)} \frac{z^m}{\sqrt{m+1}} \right\rangle \\ &= -\frac{|\lambda|^2}{\log\left(1-|\lambda|^2\right)} \left\langle \sum_{n\geq 0} \frac{\overline{\lambda}^n}{\sqrt{n+1}} \sum_{m\geq 0} b_m^{(n)} a_m \frac{z^m}{\sqrt{m+1}}, \sum_{n\geq 0} \frac{\overline{\lambda}^n}{\sqrt{n+1}} \sum_{m\geq 0} b_m^{(n)} \frac{z^m}{\sqrt{m+1}} \right\rangle \\ &= -\frac{|\lambda|^2}{\log\left(1-|\lambda|^2\right)} \left\langle \sum_{m\geq 0} a_m \left(\sum_{n\geq 0} b_m^{(n)} \frac{\overline{\lambda}^n}{\sqrt{n+1}}\right) \frac{z^m}{\sqrt{m+1}}, \sum_{m\geq 0} \left(\sum_{n\geq 0} b_m^{(n)} \frac{\overline{\lambda}^n}{\sqrt{n+1}}\right) \frac{z^m}{\sqrt{m+1}} \right\rangle \\ &= -\frac{|\lambda|^2}{\log\left(1-|\lambda|^2\right)} \sum_{m\geq 0} a_m \left|\sum_{n\geq 0} \overline{b_m^{(n)}} \frac{\lambda^n}{\sqrt{n+1}}\right|^2, \end{split}$$

and therefore

$$\widetilde{U^{-1}D_a}U(\lambda) = -\frac{\left|\lambda\right|^2}{\log\left(1-\left|\lambda\right|^2\right)} \sum_{m\geq 0} a_m \left|\sum_{n\geq 0} \overline{b_m^{(n)}} \frac{\lambda^n}{\sqrt{n+1}}\right|^2 , \quad \lambda \in \mathbb{D}.$$
(7)

By considering condition (6), we have from the last formula (7) that $U^{-1}D_aU$ vanishes on the boundary for every unitary operator $U \in \mathcal{B}(\mathcal{D})$. Then, by the above mentioned result of Nordgren and Rosenthal [9, Corollary 2.8], we conclude that D_a is a compact operator on the Dirichlet Hilbert space \mathcal{D} and as a result $\lim_{n\to\infty} a_n = 0$, which proves the theorem.

Acknowledgments

This paper was written while the author was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK-2219). The author would like to thank the anonymous referee for helping to fix some inaccuracies.

References

- [1] Berezin FA. Covariant and contravariant symbols of operators. Izv Akad Nauk SSSR Ser Mat 1972; 36: 1134-1167.
- [2] Garayev MT, Gürdal M, Yamancı U. Berezin symbols and Borel summability. Quaest Math 2017; 40: 403-411.
- [3] Ishiguro K. On the summability methods of logarithmic type. P Jpn Acad 1962; 38: 703-705.
- [4] Ishiguro K. Tauberian theorems concerning the summability methods of logarithmic type. P Jpn Acad 1963; 39: 156-159.
- [5] Karaev MT. Functional analysis proofs of Abel's theorems. P Am Math Soc 2004; 132: 2327-2329.
- [6] Karaev MT. (e)-convergence and related problem. C R Math Acad Sci Paris 2010; 348: 1059-1062.
- [7] Karaev MT. Tauberian-type theorem for (e)-convergent sequences. C R Math Acad Sci Paris 2013; 351: 177-179.
- [8] Marshall D., Sundberg C. Interpolating sequences for the multipliers of the Dirichlet space. Preprint, http://www.math.washington.edu/~marshall/preprints/preprints.html, 1994.
- [9] Nordgren E., Rosenthal P. Boundary values of Berezin symbols. Oper Theory Adv Appl 1994; 73: 362-368.