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Abstract: We prove by means of the Berezin symbols some theorems for the (L) -summability method for sequences
and series. Also, we prove a new Tauberian type theorem for (L) -summability.
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1. Introduction
In this article, by applying a new functional analytic approach based on the so-called the Berezin symbol
technique, we prove the following results (see [3, 4]). Also, we give a new Tauberian type theorem for (L) -
summable sequences of complex numbers.

Recall that a sequence (an)n≥0 of complex numbers an is said to be summable to a finite number ζ by
the logarithmic method (L) (or (L) -summable to ζ ) if

∞∑
n=0

an
n+ 1

xn+1

converges in the open interval (0, 1) and

lim
x→1−

− 1

log (1− x)

∞∑
n=0

an
n+ 1

xn+1 = ζ.

The series
∞∑

n=0
an is (L) -summable to ζ if the sequence of partial sums s := (sn)n≥0 (where sn =

n∑
k=0

ak ) is

(L) -summable to ζ.

Theorem 1 If (ak)k≥0 converges to ζ , then (ak)k≥0 (L)-converges to ζ .

Theorem 2 If the series
∞∑
k=0

ak converges to ζ , then
∞∑
k=0

ak is (L)-summable to ζ .
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Before beginning the presentation, we recall some basic definitions and notations.
Recall that in [6], Karaev introduced the notions of an (e) -convergent sequence and (e) -convergent series

for the complex numbers as follows.
Let H = H (Ω) be a reproducing kernel Hilbert space on some suitable set Ω with reproducing kernel

kH,λ (z) :=

∞∑
n=0

en (λ)en (z) , (1)

where {en (z)}n≥0 is an orthonormal basis of H. Let (an)n≥0 be any sequence of complex numbers.

(1) We say that the sequence (an)n≥0 is (e)-convergent to l if
∑∞

n=0 an |en (λ)|
2 is convergent for all

λ ∈ Ω and

lim
λ→ζ

1∑∞
n=0 |en (λ)|

2

∞∑
n=0

an |en (λ)|2 = l

for every ζ ∈ ∂Ω.

(2) We say that the series
∑∞

n=0 an is (e)-summable to l if
∑∞

n=0 an |en (λ)|
2 converges for all λ ∈ Ω

and

lim
λ→ζ

∞∑
n=0

an |en (λ)|2 = l

for every ζ ∈ ∂Ω.

It was shown that the definition of (e) -convergence of sequence and series coincides with the classical
Abel convergence and the Borel convergence of sequence and series for the Hardy space H(Ω) = H2 (D) and
the Fock space H(Ω) = F (C) (see more details in [2, 5], and also [7] for related problems), respectively. One of
our aims in the present article is to show in detail that (e) -summability implies the classical (L) -summability
for H(Ω) = D (D) , which is the Dirichlet space of analytic functions on D , and thus to show once again the
universality of the (e) -summability notion.

The associated diagonal operator Da on H for any bounded sequence (an)n≥0 of complex numbers is
defined by the formula Daen (z) := anen (z) , n = 0, 1, 2, ..., with respect to the orthonormal basis (en (z))n≥0

of H . An elementary calculus shows by virtue of formula (1) that

D̃a (λ) =
1∑∞

n=0 |en (λ)|
2

∞∑
n=0

an |en (λ)|2 , λ ∈ Ω. (2)

Following Nordgren and Rosenthal [9], we say that RKHS H(Ω) is standard if the underlying set Ω is a
subset of a topological space and the boundary ∂Ω is nonempty and has the property that (kH,λn

)n converges
weakly to 0 whenever (λn)n is a sequence in Ω that converges to a point in ∂Ω. The prototypical standard
RKHSs are, for example, the Hardy–Hilbert space H2 (D) , the Bergman–Hilbert space L2

a (D) , the Fock–Hilbert
space F (C) , and the Dirichlet–Hilbert space D (D) .

Recall that [8] the Dirichlet space D is the Hilbert space of analytic functions f =
∞∑

n=0
anz

n on the unit

disk D with
∫
D

∣∣∣f ′
(z)

∣∣∣2 dA/π =
∞∑

n=0
(n+ 1) |an|2 < ∞, where dA denotes the usual Lebesgue measure on D .
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For any bounded linear operator A on D , the Berezin symbol of A is the function Ã defined by (see
[1, 9])

Ã(λ) :=
⟨
Ak̂λ, k̂λ

⟩
D

(λ ∈ Ω),

where k̂λ = kλ

∥kλ∥ is the normalized reproducing kernel of the space D . Since the sequence
{
zn/

√
n+ 1 : n ≥ 0

}
is an orthonormal basis of the Dirichlet space, the reproducing kernel of D is given by formula (1) .

kλ (z) =

∞∑
n=0

(
λz

)n
n+ 1

=
1

λz
log 1

1− λz
.

2. The results
First, we characterize the (L) -summability method in terms of the Berezin symbol.

Theorem 3 Let (an)n≥0 be a bounded sequence of complex numbers, and let Da be the diagonal operator on

the Dirichlet space D with diagonal elements an, n ≥ 0, with respect to the orthonormal basis
{
zn/

√
n+ 1

}
n≥0

of D. Then the sequence (an)n≥0 is (L)-summable to ζ if and only if

lim
x→1−

D̃a

(√
x
)
= ζ.

Proof Since (an)n≥0 is the bounded sequence, Da is a bounded operator on D. If k̂λ is the normalized
reproducing kernel of D, then we obtain by using formula (2) for all λ ∈ D that

D̃a (λ) =
1∑∞

n=0
(|λ|2)

n

n+1

∞∑
n=0

an

(
|λ|2

)n

n+ 1
=

1
1

|λ|2 log 1
1−|λ|2

∞∑
n=0

an

(
|λ|2

)n

n+ 1

= − |λ|2

log
(
1− |λ|2

) ∞∑
n=0

an

(
|λ|2

)n

n+ 1
= − 1

log
(
1− |λ|2

) ∞∑
n=0

an

(
|λ|2

)n+1

n+ 1
,

and therefore D̃a is a radial function on D ; that is, D̃a (λ) = D̃a (|λ|) .

Let |λ|2 = x. Then

D̃a

(√
x
)
= − 1

log (1− x)

∞∑
n=0

an
n+ 1

xn+1. (3)

We therefore get the desired assertions from (3), which proves the theorem. 2

Now we are ready to prove the results.

Proof [Proof of Theorem 1]Let us define the diagonal operator Da on the Dirichlet space D as follows:

Da
zn√
n+ 1

= an
zn√
n+ 1

, n = 0, 1, 2, ... .
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Since (ak) is the bounded sequence, Da is a bounded operator on D . Then we get (see (3)):

D̃a

(√
x
)
= − 1

log (1− x)

∞∑
n=0

an
n+ 1

xn+1, 0 < x < 1. (4)

Thus, we have from (4) :

− 1

log (1− x)

∞∑
n=0

an
n+ 1

xn+1 = − 1

log (1− x)

∞∑
n=0

(an − ζ)
xn+1

n+ 1

+ ζ
−1

log (1− x)

∞∑
n=0

xn+1

n+ 1

= D̃ak−ζ

(√
x
)
+ ζ.

Since ak − ζ → 0 as n → ∞ by the condition of the theorem , we have that Dak−ζ is a compact operator on
D. Hence, its Berezin symbol vanishes on the boundary, i.e.

lim
x→1−

D̃ak−l

(√
x
)
= 0.

Then we conclude from the last equality

lim
x→1−

− 1

log (1− x)

∞∑
n=0

an
n+ 1

xn+1 = ζ,

which finishes the proof. 2

Proof of Theorem 2 By using the argument to prove Theorem 1, it can easily be modified to prove the
equality

D̃s

(√
x
)
= lim

x→1−
− 1

log (1− x)

∞∑
n=0

sn
n+ 1

xn+1, (5)

where Ds denotes the diagonal operator on D with diagonal elements sn, n ≥ 0 . Formula (5) means that the

series
∑∞

n=0

sn
n+ 1

xn+1 for all 0 < x < 1 is convergent. On the other hand,

Ds = LI +Ds−L,

where the diagonal operator Ds−L is compact, since by the hypothesis of the theorem, sk − ζ → 0 as n → ∞,

and hence from (5) we get

lim
x→1−

− 1

log (1− x)

∞∑
n=0

sn
n+ 1

xn+1 = lim
x→1−

D̃s

(√
x
)

= lim
x→1−

(
L+ D̃s−L

(√
x
))

= ζ + lim
x→1−

D̃s−ζ

(√
x
)
= ζ,

which means that the series
∞∑
k=0

ak is (L) -summable to ζ. The theorem is proved. 2
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Let ℓ21 denote the unit sphere of the sequences space ℓ2 :

ℓ21 :=
{
(xm)m≥0 ∈ ℓ2 : ∥(xm)∥ℓ2 = 1

}
.

Now we will prove a Tauberian theorem for (L) -summable sequences of complex numbers by applying a result
due to Nordgren and Rosenthal [9, Corollary 2.8 ], which means that an operator A on a standard RKHS H(Ω)

is compact if and only if all the Berezin symbols of unitary orbits U−1AU, where U is unitary on H(Ω) , of the
operator A vanish on the boundary.

Theorem 4 Let (an)n≥0 be a bounded sequence of complex numbers such that (an)n≥0 (L)-converges to ζ .
Suppose that

∞∑
m=0

am

∣∣∣∣∣
∞∑

n=0

x
(n)
m

λn

√
n+ 1

∣∣∣∣∣
2

= o

−
log

(
1− |λ|2

)
|λ|2

 (6)

for every double sequence (x
(n)
m )∞m,n=0 with (x

(n)
m )m≥0 ∈ ℓ21 (∀n ≥ 0) and (x

(n)
m )n≥0 ∈ ℓ21 (∀m ≥ 0) whenever

λ tends to infinity. Then an → 0 as n → ∞.

Proof Since (L) -an → ζ if and only if (L) -(an − ζ) → 0, we assume without loss of generality that ζ = 0 .
We will use the same method as in [7] for the proof of the theorem. Let U : D → D be an arbitrary unitary
operator of the Dirichlet space D. Then

U

(
zn√
n+ 1

)
=

∞∑
m=0

b(n)m

zm√
m+ 1

with
(
b
(n)
m

)
m≥0

∈ ℓ21 for every n ≥ 0. It is easy to see then that
(
b
(n)
m

)
n≥0

∈ ℓ21 for every m ≥ 0.

Then we obtain the following:

˜U−1DaU(λ) =
⟨
U−1DaUk̂λ, k̂λ

⟩
= − |λ|2

log
(
1− |λ|2

) ⟨
DaU

∑
n≥0

λ
n

√
n+ 1

zn√
n+ 1

, U
∑
n≥0

λ
n

√
n+ 1

zn√
n+ 1

⟩

= − |λ|2

log
(
1− |λ|2

) ⟨
Da

∑
n≥0

λ
n

√
n+ 1

U

(
zn√
n+ 1

)
,
∑
n≥0

λ
n

√
n+ 1

U

(
zn√
n+ 1

)⟩

2421



YAMANCI/Turk J Math

= − |λ|2

log
(
1− |λ|2

) ⟨∑
n≥0

λ
n

√
n+ 1

Da

∑
m≥0

b(n)m

zm√
m+ 1

,
∑
n≥0

λ
n

√
n+ 1

∑
m≥0

b(n)m

zm√
m+ 1

⟩

= − |λ|2

log
(
1− |λ|2

) ⟨∑
n≥0

λ
n

√
n+ 1

∑
m≥0

b(n)m am
zm√
m+ 1

,
∑
n≥0

λ
n

√
n+ 1

∑
m≥0

b(n)m

zm√
m+ 1

⟩

= − |λ|2

log
(
1− |λ|2

) ⟨∑
m≥0

am

∑
n≥0

b(n)m

λ
n

√
n+ 1

 zm√
m+ 1

,
∑
m≥0

∑
n≥0

b(n)m

λ
n

√
n+ 1

 zm√
m+ 1

⟩

= − |λ|2

log
(
1− |λ|2

) ∑
m≥0

am

∣∣∣∣∣∣
∑
n≥0

b
(n)
m

λn

√
n+ 1

∣∣∣∣∣∣
2

,

and therefore

˜U−1DaU(λ) = − |λ|2

log
(
1− |λ|2

) ∑
m≥0

am

∣∣∣∣∣∣
∑
n≥0

b
(n)
m

λn

√
n+ 1

∣∣∣∣∣∣
2

, λ ∈ D. (7)

By considering condition (6), we have from the last formula (7) that ˜U−1DaU vanishes on the boundary for
every unitary operator U ∈ B(D). Then, by the above mentioned result of Nordgren and Rosenthal [9, Corollary
2.8 ] , we conclude that Da is a compact operator on the Dirichlet Hilbert space D and as a result lim

n→∞
an = 0,

which proves the theorem. 2
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