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Abstract: Conformal Riemannian maps from almost Hermitian manifolds to Riemannian manifolds, namely conformal
invariant Riemannian maps, holomorphic conformal Riemannian maps, and conformal antiinvariant Riemannian maps,
are introduced. We mainly focus on conformal antiinvariant Riemannian maps from Kaehlerian manifolds. We give proper
examples of conformal antiinvariant Riemannian maps, obtain the integrability of certain distributions, and investigate
the geometry of leaves of these distributions. We also obtain various conditions for such maps to be horizontally
homothetic maps.
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1. Introduction
As a generalization of the notions of isometric immersions and Riemannian submersions, Riemannian maps
between Riemannian manifolds were introduced by Fischer [5]; see also [3, 4, 6, 7, 11, 20]. Let Φ : (M1, g1) −→
(M2, g2) be a smooth map between Riemannian manifolds such that 0 < rankΦ ≤ min{m,n} , where
dimM1 = m and dimM2 = n. In that case, we state the kernel space of Φ∗ by kerΦ∗p1 at p1 ∈ M1 and take
into consideration the orthogonal complementary space H = (kerΦ∗p1)

⊥ to kerΦ∗p1 . Thus, the tangent space
of M1 at p1 has the following decomposition:

Tp1M1 = Hp1 ⊕ kerΦ∗p1 .

Denote the range of Φ∗p1 by rangeΦ∗p1 and consider the orthogonal complementary space of rangeΦ∗

by (rangeΦ∗p1)
⊥ in TΦ(p1)M2 . The tangent space TΦ(p1)M2 has the following decomposition:

TΦ(p1)M2 = (rangeΦ∗p1
)⊕ (rangeΦ∗p1

)⊥.

A smooth map Φ : (Mm
1 , g1) −→ (Mm

2 , g2) is called a Riemannian map at p1 ∈ M1 if the horizontal restriction
is a linear isometry between ((kerΦ∗p1

)⊥, g1(p1)|(kerΦ∗p1 )
⊥) , and (rangeΦ∗p1

, g2(p2)|rangeΦ∗p1
), p2 = Φ(p1)

[5]. It means that Φ∗ satisfies
g2(Φ∗(X),Φ∗(Y )) = g1(X,Y ) (1.1)

∗Correspondence: bayram.sahin@ymail.com
2010 AMS Mathematics Subject Classification: 53C15

This work is licensed under a Creative Commons Attribution 4.0 International License.
2436

https://orcid.org/0000-0002-9372-1151


ŞAHİN and YANAN/Turk J Math

for X,Y ∈ H . One can see that Riemannian maps with kerΦ∗ = {0} (respectively, (rangeΦ∗)
⊥ = {0} ) are

isometric immersions (respectively, Riemannian submersions).
We note that there are many applications of conformal maps. Indeed, conformal maps have been used

in medical imaging, computer vision, and geometric modeling [8, 18, 19].
In the literature, isometric immersions of almost Hermitian manifolds [3, 20] and Riemannian submersions

from almost Hermitian manifolds [4, 12] have been studied widely. In this paper, as a generalization of
antiinvariant submersions and holomorphic submersions, we introduce both conformal antiinvariant Riemannian
maps and holomorphic conformal Riemannian maps from complex manifolds to Riemannian manifolds. We give
some basic materials in Section 2. In Section 3, we introduce holomorphic conformal Riemannian maps and
conformal invariant maps. Although the vertical distribution and the horizontal distribution of these map are
invariant with respect to the complex structure of the total manifold, we show that they are different maps by
supporting an example. In Section 4, conformal antiinvariant Riemannian maps are introduced. We investigate
certain geometric structures of leaves under some conditions. In particular, we find new conditions in terms of
pluriharmonic maps for a conformal Riemannian map to be a horizontally homothetic map. We also provide
nontrivial examples for all these conformal maps.

2. Preliminaries
Let Φ : M −→ N be a smooth map between Riemannian manifolds (M, g

M
) and (N, g

N
) . Hom(TM,Φ−1TN)

has the pullback connection ∇Φ and a connection
M

∇ induced from the Levi-Civita connection on M . The
second fundamental form along Φ is defined as

(∇Φ∗)(X,Y ) = ∇Φ
XΦ∗(Y )− Φ∗(

M

∇XY ) (2.1)

for X,Y ∈ Γ(TM) and it is symmetric. From now on, we denote both the Levi-Civita connection of (N, gN )

and its pullback along Φ by
N

∇ . From [9], we have ∇Φ⊥

X V , which is the orthogonal projection of
N

∇XV and a

linear connection ∇Φ⊥ on (Φ∗(TM))⊥ , so ∇Φ⊥
gN = 0 for X ∈ Γ(TM) and V ∈ Γ((rangeΦ∗)

⊥) . Here we
give SV as

∇N
Φ∗(X)

V = −S
V
Φ∗(X) +∇

Φ⊥

X
V, (2.2)

where S
V
Φ∗(X) is the tangential component of ∇N

Φ∗X
V . SV Φ∗(X) is bilinear with respect to V and both

Φ∗(X) and SV Φ∗(X) depend only on Vp and Φ∗p(Xp) at p . Now we define T and A as

AXY = H
M

∇HXVY + V
M

∇HXHY, TXY = H
M

∇VXVY + V
M

∇VXHY, (2.3)

for X,Y ∈ Γ(TM) . TX and AX are skew-symmetric and change the roles of distributions V and H for any
X ∈ Γ(TM) on (Γ(TM), g) . We can see that T is vertical, TX = TVX , and A is horizontal, AX = AHX . In
addition the tensor field T is symmetric on the vertical distribution. From (2.3), we have

M

∇V X = H
M

∇V X + TV X ,
M

∇V W = TV W + ∇̂V W, (2.4)
M

∇XY = H
M

∇XY +AXY ,
M

∇XV = AXV + V
M

∇XV, (2.5)
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where ∇̂V W = V
M

∇V W for X,Y ∈ Γ((kerΦ∗)
⊥) , V,W ∈ Γ(kerΦ∗) . A vector field on M is called a projectable

vector field if it is related to a vector field on N . Thus, we say a vector field is basic on M if it is both a
horizontal and a projectable vector field. From now on, when we mention a horizontal vector field, we always
consider a basic vector field.

We now recall conformal Riemannian maps.

Definition 1 [13] Let Φ : (Mm, gM ) −→ (Nn, gN ) be a smooth map between Riemannian manifolds (Mm, gM )

and (Nn, gN ) . Then Φ is a conformal Riemannian map at p ∈ M if 0 < rankΦ∗p ≤ min{m,n} and Φ∗p

maps H(p) = ((ker (Φ∗p)
⊥) conformally onto range (Φ∗p) , i.e. there exists a number λ2(p) ̸= 0 such that

gN (Φ∗p(X),Φ∗p(Y )) = λ2(p)gM (X,Y )

for X,Y ∈ H(p) . Φ is called a conformal Riemannian map if Φ is a conformal Riemannian map at each point
p ∈ M .

A conformal Riemannian map Φ : (Mm, gM ) −→ (Nn, gN ) is proper if λ ̸= 1 and 0 < rankΦ <

min{m,n} . We now give the next result, which will be used in the rest of the paper.

Theorem 2.1 [13] Let Φ : (M, g
M
) −→ (N, g

N
) be a conformal Riemannian map between Riemannian

manifolds. Then we get

(∇Φ∗)(X,Y ) |rangeΦ∗ = X(lnλ)Φ∗(Y ) + Y (lnλ)Φ∗(X)

− gM (X,Y )Φ∗(grad(lnλ)), (2.6)

where X,Y ∈ Γ((kerΦ∗)
⊥) .

From (2.6), for Y, Z ∈ Γ((kerΦ∗)
⊥) , we can write

N

∇Φ
Y Φ∗(Z) as

N

∇Φ
Y Φ∗(Z) = Φ∗(h

M

∇Y Z) + Y (lnλ)Φ∗(Z) + Z(lnλ)Φ∗(Y )

− gM (Y, Z)Φ∗(grad(lnλ)) + (∇Φ∗)
⊥(Y, Z) (2.7)

where (∇Φ∗)
⊥(Y, Z) is the component of (∇Φ∗)(Y, Z) on (rangeΦ∗)

⊥ .

3. Holomorphic conformal Riemannian maps
In this section, we introduce holomorphic conformal Riemannian maps and conformal invariant Riemannian
maps. Since our aim is the study of conformal antiinvariant maps, we just provide examples and show that a
conformal invariant Riemannian map may not be a holomorphic conformal Riemannian map.

Definition 2 Let Φ : (M, gM , J) −→ (N, gN , J ′) be a map between a Kaehlerian manifold (M, gM , J) and an
almost Hermitian manifold (N, gN , J ′) . If

i) Φ : (M, gM , J) −→ (N, gN , J ′) is a conformal Riemannian map,

ii) J ′Φ∗ = Φ∗J on the horizontal distribution,

then Φ is called a holomorphic conformal Riemannian map.
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The following examples show that holomorphic conformal Riemannian maps are natural generalizations
of holomorphic submersions and holomorphic Riemannian maps.

Example 3.1 Every holomorphic submersion (see [4]) is a holomorphic conformal Riemannian map with λ = 1

and (rangeΦ∗)
⊥ = {0} .

Example 3.2 Every holomorphic Riemannian map (see [16]) is a holomorphic conformal Riemannian map
with λ = 1 .

We say that a holomorphic conformal Riemannian map is proper if λ ̸= 1 and (rangeΦ∗)
⊥ ̸= {0} . We now give

an example of proper holomorphic conformal Riemannian maps. In the following R2m denotes the Euclidean
2m -space with the standard metric. We denote the compatible almost complex structure on R2m by J , which
is defined as

J(a1, ..., a2m) = (−a2, a1, ...,−a2m, a2m−1).

Example 3.3 Let Φ : (R4, g4, J1) −→ (R4, g2, J2) be the map defined by

(x1, x2, x3, x4) −→ (ex1 cosx2, e
x1 sinx2,−ex1 cosx2,−ex1 sinx2)

for any point x ∈ R4 . We obtain the horizontal distribution and the vertical distributions

H = (kerΦ∗)
⊥ =

{
X1 =

(
ex1 cosx2

∂

∂x1
− ex1 sinx2

∂

∂x2

)
,

X2 =

(
ex1 sinx2

∂

∂x1
+ ex1 cosx2

∂

∂x2

)}
,

and

V = (kerΦ∗) =

{
U1 =

∂

∂x3
, U2 =

∂

∂x4

}
,

respectively. It follows that Φ is a conformal Riemannian map at any point p ∈ R4 with λ = ex1
√
2 . On the

other hand, by using the standard complex structure on E4 , one can see that J2[Φ∗(X1)] = Φ∗[J1(X1)] and
J2[Φ∗(X2)] = Φ∗[J1(X2)] . Thus, Φ is a proper holomorphic conformal Riemannian map.

We also introduce the following notion as a generalization of invariant Riemannian submersion from almost
Hermitian manifolds.

Definition 3 Let Φ : (M, gM , J) −→ (N, gN , J ′) be a map between a Kaehlerian manifold (M, gM , J) and an
almost Hermitian manifold (N, gN , J ′) . We say that Φ is an invariant conformal Riemannian map if Φ is a
conformal Riemannian map and satisfies J(kerΦ∗) ⊂ kerΦ∗ for any point p ∈ M .

We note that an invariant conformal Riemannian map may not be a holomorphic conformal Riemannian map.
Indeed, we have the following example.

Example 3.4 Let Φ : (R4, g4, J4) −→ (R4, g2, J2) be the map defined by

(x1, x2, x3, x4) −→ (ex2 cosx1,−ex2 sinx1, e
x2 sinx1,−ex2 cosx1)
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for any point x ∈ R4 . Now we get the horizontal distribution

H = (kerΦ∗)
⊥ =

{
X1 =

(
−ex2 sinx1

∂

∂x1
+ ex2 cosx1

∂

∂x2

)
,

X2 =

(
−ex2 cosx1

∂

∂x1
− ex2 sinx1

∂

∂x2

)}
and the vertical distribution

V = (kerΦ∗) =

{
U1 =

∂

∂x3
, U2 =

∂

∂x4

}
.

We can see that the vertical distribution is invariant because of J4(U1) = U2 . It follows that Φ is a conformal
Riemannian map at any point p ∈ R4 with λ = ex2

√
2 . However, J2[Φ∗(Xi)] ̸= Φ∗[J4(Xi)], i = 1, 2 . Thus, Φ

is not a holomorphic conformal Riemannian map.

4. Conformal antiinvariant Riemannian maps
In this section we study conformal antiinvariant Riemannian maps, provide examples, and investigate the
geometry of leaves arising from such maps. We find new conditions for conformal Riemannian maps to be
homothetic Riemannian maps by using the notion of pluriharmonic maps.

Definition 4 Let Φ : (M, gM , JM ) −→ (N, gN ) be a conformal Riemannian map between a Kaehlerian manifold
(M, gM , JM ) and a Riemannian manifold (N, gN ) . If Φ satisfies the following condition:

JM (kerΦ∗) ⊂ (kerΦ∗)
⊥,

then Φ is called a conformal antiinvariant Riemannian map. In particular, if Φ satisfies the following condition:

JM (kerΦ∗) = (kerΦ∗)
⊥,

then Φ is called a Lagrangian conformal Riemannian map.

Let Φ be a conformal antiinvariant Riemannian map. Then, for X ∈ Γ((kerΦ∗)
⊥), we write

JX = BX + CX (4.1)

where BX ∈ Γ(kerΦ∗) , CX ∈ Γ(µ) . For V ∈ Γ(kerΦ∗) we have 0 = gM (X,V ) . Hence, we get

gM (CX, JV ) = 0. (4.2)

Thus, we get
(kerΦ∗)

⊥ = µ⊕ J(kerΦ∗).

One can see that µ is invariant with respect to J . We now give examples of conformal antiinvariant Riemannian
maps.

Example 4.1 Every antiinvariant Riemannian submersion [14] is a conformal antiinvariant Riemannian map
with λ = 1 and (rangeΦ∗)

⊥ = {0}.
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Example 4.2 Every Lagrangian submersion [14, 17] is a conformal Lagrangian Riemannian map with λ = 1

and (rangeΦ∗)
⊥ = {0}.

Example 4.3 Every conformal antiinvariant Riemannian submersion [1] is a conformal antiinvariant Rieman-
nian map with (rangeΦ∗)

⊥ = {0}.

Example 4.4 Every antiinvariant Riemannian map [15] is a conformal antiinvariant Riemannian map with
λ = 1.

We say that a conformal antiinvariant Riemannian map is proper if (rangeΦ∗)
⊥ ̸= {0} and λ ̸= 1 . Here is an

example of this type map.

Example 4.5 Let Φ : (R4, g4, J4) −→ (R5, g5) be the map from the Kaehlerian manifold (R4, g4, J4) to the
Riemannian manifold (R5, g5) defined by

(−ex1 cosx3, e
x1 sinx3, 0, e

x1 cosx3,−ex1 sinx3).

Then we obtain horizontal distribution and vertical distribution

H = (kerΦ∗)
⊥ =

{
X1 =

(
−ex1 cosx3

∂

∂x1
+ ex1 sinx3

∂

∂x3

)
,

X2 =

(
ex1 sinx3

∂

∂x1
+ ex1 cosx3

∂

∂x3

)}
,

and

V = (kerΦ∗) =

{
U1 =

(
ex1 cosx3

∂

∂x2
− ex1 sinx3

∂

∂x4

)
,

U2 =

(
−ex1 sinx3

∂

∂x2
− ex1 cosx3

∂

∂x4

)}
,

respectively. Hence, we get

Φ∗(X1) = e2x1
∂

∂x1
− e2x1

∂

∂x4
,Φ∗(X2) = e2x1

∂

∂x2
− e2x1

∂

∂x5
,

which shows that Φ is a conformal Riemannian map with λ = ex1
√
2 . On the other hand, by direct computations

we have

J4U1 = − sin 2x3X1 − cos 2x3X2,

J4U2 = − cos 2x3X1 + sin 2x3X2,

where we consider the complex structure J4 on R4 acting as

J4 = (−a4, a3,−a2, a1) .

Thus, we obtain J4(kerΦ∗) ⊂ (kerΦ∗)
⊥ , so Φ is a conformal antiinvariant Riemannian map.
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Example 4.6 Let Φ : (R4, g4, J4) −→ (R3, g3) be the map from the Kaehlerian manifold (R4, g4, J4) to the
Riemannian manifold (R3, g3) defined by

(ex1 cosx3, e
x1 sinx3, 0).

Then we obtain horizontal distribution and vertical distribution

H = (kerΦ∗)
⊥ =

{
X1 =

(
ex1 cosx3

∂

∂x1
− ex1 sinx3

∂

∂x3

)
,

X2 =

(
ex1 sinx3

∂

∂x1
+ ex1 cosx3

∂

∂x3

)}
,

and

V = (kerΦ∗) =

{
U1 =

(
−ex1 cosx3

∂

∂x2
− ex1 sinx3

∂

∂x4

)
,

U2 =

(
ex1 sinx3

∂

∂x2
− ex1 cosx3

∂

∂x4

)}
,

respectively. Hence, we get

Φ∗(X1) = e2x1
∂

∂x1
,Φ∗(X2) = e2x1

∂

∂x2
,

which shows that Φ is a conformal Riemannian map with λ = ex1 . On the other hand, by direct computations
we have

J4U1 = (ex1 sinx3
∂

∂x1
+ ex1 cosx3

∂

∂x3
) = X2,

J4U2 = (ex1 cosx3
∂

∂x1
− ex1 sinx3

∂

∂x3
) = X1,

where we consider the complex structure J4 on R4 acting as

J4 = (−a4, a3,−a2, a1) .

Thus, we obtain J4(kerΦ∗) = (kerΦ∗)
⊥ , so Φ is a Lagrangian conformal Riemannian map.

We now examine the geometry of certain distributions by assuming the existence of conformal antiinvariant
Riemannian maps.

Theorem 4.1 Let Φ : (M, gM , J) −→ (N, gN ) be a conformal antiinvariant Riemannian map from a Kaehlerian
manifold (M, gM , J) to a Riemannian manifold (N, gN ) . Then the invariant distribution µ is integrable if and
only if

AXJY −AY JX = 0,

for X,Y ∈ Γ(µ) .
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Proof Since M is a Kaehlerian manifold for X,Y ∈ Γ(µ) , we have

AXJY + h
M

∇XJY = JAXY +Bh
M

∇XY + Ch
M

∇XY. (4.3)

If we change the roles of X and Y in (4.3), we have

AY JX + h
M

∇Y JX = JAY X +Bh
M

∇Y X + Ch
M

∇Y X. (4.4)

Thus, if we take the vertical parts of (4.3) and (4.4), we get

Bh[X,Y ] = AXJY −AY JX.

If AXJY −AY JX = 0 , then Bh[X,Y ] = 0 , and we obtain h[X,Y ] ∈ Γ(µ). Conversely, if µ is integrable, then
Bh[X,Y ] = 0 . Then the proof is complete. 2

Theorem 4.2 Let Φ : (M, gM , J) −→ (N, gN ) be a conformal antiinvariant Riemannian map from a Kaehlerian
manifold (M, gM , J) to a Riemannian manifold (N, gN ) . Then any two conditions below imply the third
condition:

i) kerΦ∗ defines a totally geodesic foliation on M ,

ii)
N

∇Φ
JV Φ∗(JW ) = Φ∗(J [JV,W ])− gM (JV, JW )Φ∗(grad(lnλ))

+(∇Φ∗)
⊥(JV, JW ), V,W ∈ Γ(kerΦ∗),

iii) grad(lnλ) ∈ µ.

Proof From (2.1), (2.6), and (2.7), we have

Φ∗(
M

∇JV JW ) = −(∇Φ∗)(JV, JW ) +
N

∇JV Φ∗(JW )

= −JV (lnλ)Φ∗(JW )− JW (lnλ)Φ∗(JV )

+ gM (JV, JW )Φ∗(grad(lnλ))− (∇Φ∗)
⊥(JV, JW )

+
N

∇JV Φ∗(JW ), (4.5)

for V,W ∈ Γ(kerΦ∗) . Now, in a similar way, we derive

Φ∗(
M

∇JV JW ) = Φ∗(J [JV,W ] + J
M

∇WJV )

= Φ∗(J [JV,W ])− Φ∗(
M

∇WV ). (4.6)

From (4.5) and (4.6), we get

Φ∗(
M

∇WV ) = Φ∗(J [JV,W ]) + JV (lnλ)Φ∗(JW )

+ JW (lnλ)Φ∗(JV )− gM (JV, JW )Φ∗(grad(lnλ))

+ (∇Φ∗)
⊥(JV, JW )−

N

∇JV Φ∗(JW ). (4.7)
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Suppose that (i) and (ii) are satisfied for V,W ∈ Γ(kerΦ∗) in (4.7). Then, for V = W , we obtain

gM (grad(lnλ), JV )Φ∗(JV ) = 0,

which shows that grad(lnλ) ∈ Γ(µ). If (ii) and (iii) are satisfied, by (4.7) we obtain Φ∗(
M

∇WV ) = 0 . Thus,
kerΦ∗ defines a totally geodesic foliation on M for V,W ∈ Γ(kerΦ∗) . Supposing that (i) and (iii) are satisfied
for V,W ∈ Γ(kerΦ∗) in (4.7), then we get (ii). 2

We now recall the notion of a pluriharmonic map from [10].

Definition 5 Let Φ : (M, gM , J) −→ (N, gN ) be a map from a complex manifold (M, gM , J) to a Riemannian
manifold (N, gN ) . Then Φ is called a pluriharmonic map if Φ satisfies the following equation:

(∇Φ∗)(X,Y ) + (∇Φ∗)(JX, JY ) = 0

for X,Y ∈ Γ(TM) .

We introduce the following notion by considering the above definition. We say that a conformal antiinvariant
Riemannian map Φ from a complex manifold (M, gM , J) to a Riemannian manifold (N, gN ) is a (kerΦ∗)

⊥ -
pluriharmonic map if Φ satisfies the following equation:

(∇Φ∗)(X,Y ) + (∇Φ∗)(JX, JY ) = 0

for X,Y ∈ Γ((kerΦ∗)
⊥) . By using this notion, we have the next result.

Theorem 4.3 Let Φ : (M, gM , J) −→ (N, gN ) be a conformal antiinvariant Riemannian map from a Kaehlerian
manifold (M, gM , J) to a Riemannian manifold (N, gN ) . If Φ is a (kerΦ∗)

⊥ -pluriharmonic map, the
distribution (kerΦ∗) defines a totally geodesic foliation on M if and only if

Φ∗(
M

∇BXBY ) = X(lnλ)Φ∗(Y ) + Y (lnλ)Φ∗(X)

+ CX(lnλ)Φ∗(CY ) + CY (lnλ)Φ∗(CX)

− Φ∗(ACY BX +ACXBY )

− Φ∗(grad(lnλ))[gM (X,Y ) + gM (CX,CY )],

for X,Y ∈ Γ((kerΦ∗)
⊥).

Proof Since Φ is a (kerΦ∗)
⊥ -pluriharmonic map, we obtain

(∇Φ∗)(X,Y ) + (∇Φ∗)(JX, JY ) = 0

for X,Y ∈ Γ((kerΦ∗)
⊥) . Then using (4.1) we get

0 = (∇Φ∗)(X,Y ) + (∇Φ∗)(CX,CY )

+ (∇Φ∗)(BX,CY ) + (∇Φ∗)(CX,BY )

+ (∇Φ∗)(BX,BY ).
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Then taking rangeΦ∗ and (rangeΦ∗)
⊥ components of second fundamental forms we get

0 = (∇Φ∗)
⊥(X,Y ) + (∇Φ∗)

⊤(X,Y )

+ (∇Φ∗)
⊥(CX,CY ) + (∇Φ∗)

⊤(CX,CY )

+ (∇Φ∗)(BX,CY ) + (∇Φ∗)(CX,BY )

+ (∇Φ∗)(BX,BY ).

Since the second fundamental form of Φ is symmetric and from (2.1), (2.5), and (2.6) we find

0 = (∇Φ∗)
⊥(X,Y ) +X(lnλ)Φ∗(Y ) + Y (lnλ)Φ∗(X)

− gM (X,Y )Φ∗(grad(lnλ)) + (∇Φ∗)
⊥(CX,CY ) + CX(lnλ)Φ∗(CY )

+ CY (lnλ)Φ∗(CX)− gM (CX,CY )Φ∗(grad(lnλ))

− Φ∗(ACY BX)− Φ∗(ACXBY )− Φ∗(
M

∇BXBY ),

then, taking rangeΦ∗ components, we obtain

Φ∗(
M

∇BXBY ) = X(lnλ)Φ∗(Y ) + Y (lnλ)Φ∗(X)

− gM (X,Y )Φ∗(grad(lnλ))

+ CX(lnλ)Φ∗(CY ) + CY (lnλ)Φ∗(CX)

− gM (CX,CY )Φ∗(grad(lnλ))

− Φ∗(ACY BX)− Φ∗(ACXBY ).

Then the proof is complete. 2

The notion of a (kerΦ∗)
⊥ -pluriharmonic map is also useful to characterize the distribution (kerΦ∗) .

Theorem 4.4 Let Φ : (M, gM , J) −→ (N, gN ) be a conformal antiinvariant Riemannian map from a Kaehlerian
manifold (M, gM , J) to a Riemannian manifold (N, gN ) . If Φ is a (kerΦ∗)

⊥ -pluriharmonic map, then any
two assertions below imply the third assertion:

i) The distribution (kerΦ∗) defines a totally geodesic foliation,

ii) grad(lnλ) ∈ Γ(J(kerΦ∗)) ,

iii)

N

∇Φ
XΦ∗(Y ) = Φ∗(ACXBY )− Φ∗(JAXCY )− Φ∗(Ch

M

∇XCY )

− Φ∗(CAXBY )− Φ∗(Jv
M

∇XBY )− (∇Φ∗)
⊥(CX,CY )

− gM (CX,CY )Φ∗(grad(lnλ)),

for X,Y ∈ Γ((kerΦ∗)
⊥) .
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Proof Since Φ is a (kerΦ∗)
⊥ -pluriharmonic map for X,Y ∈ Γ((kerΦ∗)

⊥) we have

(∇Φ∗)(X,Y ) + (∇Φ∗)(JX, JY ) = 0.

Thus, we get

(∇Φ∗)(X,Y ) + (∇Φ∗)(JX, JY )

=
N

∇Φ
XΦ∗(Y ) + Φ∗(J

M

∇XJY ) +
N

∇Φ
CXΦ∗(CY )

− Φ∗(h
M

∇BXCY )− Φ∗(ACXBY )− Φ∗(
M

∇CXCY )

− Φ∗(
M

∇BXBY )

=
N

∇Φ
XΦ∗(Y ) +

N

∇Φ
CXΦ∗(CY )− Φ∗(h

M

∇BXCY )

− Φ∗(ACXBY )− Φ∗(
M

∇CXCY ) + Φ∗(JAXCY )

+ Φ∗(CAXBY ) + Φ∗(Jv
M

∇XBY )

+ Φ∗(Ch
M

∇XCY )− Φ∗(
M

∇BXBY ). (4.8)

From (4.8), (2.6), and (2.7) we get

Φ∗(
M

∇BXBY ) =
N

∇Φ
XΦ∗(Y )− Φ∗(h

M

∇BXCY )− Φ∗(ACXBY )

+ Φ∗(JAXCY ) + Φ∗(Ch
M

∇XCY ) + Φ∗(Jv
M

∇XBY )

+ Φ∗(CAXBY ) + (∇Φ∗)
⊥(CX,CY ) + CX(lnλ)Φ∗(CY )

+ CY (lnλ)Φ∗(CX)− gM (CX,CY )Φ∗(grad(lnλ)). (4.9)

Suppose that (i) and (ii) are satisfied in (4.9). Thus, we have Φ∗(
M

∇BXBY ) = 0 and CX(lnλ)Φ∗(CY ) +

CY (lnλ)Φ∗(CX) = 0 for X,Y ∈ Γ((kerΦ∗)
⊥) . Then, by (4.8), we get (iii). If (ii) and (iii) are satisfied for

X,Y ∈ Γ((kerΦ∗)
⊥) , we get Φ∗(

M

∇BXBY ) = 0 . Since Φ∗(
M

∇BXBY ) = 0 , the distribution (kerΦ∗) defines a
totally geodesic foliation. Suppose that (i) and (iii) are satisfied. Putting in (4.9) X = Y we have

gM (CX, grad(lnλ))Φ∗(CX) = 0,

which shows that grad(lnλ) ∈ Γ(J(kerΦ∗)). 2

We now introduce the following notion by adaption from [2, Definition 2.4.18].

Definition 6 Let Φ : M −→ N be a conformal Riemannian map. Then Φ is a horizontally homothetic map
if H(gradλ) = 0 .

We have the next result for the distribution (kerΦ∗) .
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Theorem 4.5 Let Φ : (M, gM , J) −→ (N, gN ) be a conformal antiinvariant Riemannian map from a Kaehlerian
manifold (M, gM , J) to a Riemannian manifold (N, gN ) . Then any two conditions below imply the third
condition:

i) The distribution J(kerΦ∗) defines a totally geodesic foliation on M ,

ii) Φ is a horizontally homothetic map,

iii)
N

∇Φ
XΦ∗(JV ) = (∇Φ∗)

⊥(X, JV ) + Φ∗([X, JV ])− Φ∗(J
M

∇JV CX)

for X ∈ Γ((kerΦ∗)
⊥) , V ∈ Γ(kerΦ∗).

Proof From (2.1), we obtain

Φ∗(
M

∇XJV ) = −(∇Φ∗)(X, JV ) +
N

∇Φ
XΦ∗(JV ),

for X ∈ Γ((kerΦ∗)
⊥) , V ∈ Γ(kerΦ∗) . Thus, from (2.6) and (2.7) we have

Φ∗(
M

∇XJV ) = −(∇Φ∗)
⊥(X, JV ) +

N

∇Φ
XΦ∗(JV ) +X(lnλ)Φ∗(JV )

+ JV (lnλ)Φ∗(X)− gM (X, JV )Φ∗(grad(lnλ))

and

Φ∗(
M

∇JV X) = −Φ∗([X, JV ])− (∇Φ∗)
⊥(X, JV ) +

N

∇Φ
XΦ∗(JV )

+ X(lnλ)Φ∗(JV ) + JV (lnλ)Φ∗(X)

− gM (X, JV )Φ∗(grad(lnλ)).

Hence, we get

Φ∗(
M

∇JV JBX) = −Φ∗(
M

J∇JV CX) + Φ∗([X, JV ]) + (∇Φ∗)
⊥(X, JV )

−
N

∇Φ
XΦ∗(JV )−X(lnλ)Φ∗(JV )− JV (lnλ)Φ∗(X)

+ gM (X, JV )Φ∗(grad(lnλ)). (4.10)

Suppose that (i) and (ii) are satisfied in (4.10). Then we have Φ∗(
M

∇JV JBX) = 0 and X(lnλ)Φ∗(JV ) +

JV (lnλ)Φ∗(X)− gM (X, JV )Φ∗(grad(lnλ)) = 0 for X ∈ Γ((kerΦ∗)
⊥) , V ∈ Γ(kerΦ∗) , respectively. Thus, by

(4.10) we obtain (iii). If (ii) and (iii) are satisfied, we get Φ∗(
M

∇JV JBX) = 0 , so the distribution J(kerΦ∗)

defines a totally geodesic foliation on M . Suppose that (i) and (iii) are satisfied. We have X(lnλ)Φ∗(JV ) +

JV (lnλ)Φ∗(X)− gM (X, JV )Φ∗(grad(lnλ)) = 0 for X ∈ Γ((kerΦ∗)
⊥) , V ∈ Γ(kerΦ∗). Hence, the gradient of

lnλ is a vertical vector field. Then Φ is a horizontally homothetic map. 2

For the distribution µ , we have the following theorem.
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Theorem 4.6 Let Φ : (M, gM , J) −→ (N, gN ) be a conformal antiinvariant Riemannian map from a Kaehlerian
manifold (M, gM , J) to a Riemannian manifold (N, gN ) . Then any two conditions below imply the third
condition:

i) The distribution µ defines a totally geodesic foliation on M ,

ii) grad(lnλ) ∈ Γ(J(kerΦ∗)) ,

iii)
N

∇Φ
XΦ∗(Y ) = (∇Φ∗)

⊥(X,Y )− gM (X,Y )Φ∗(grad(lnλ)) for X,Y ∈ Γ(µ) .

Proof From (2.6), (2.7), and (2.1), we obtain

Φ∗(
M

∇XY ) =
N

∇Φ
XΦ∗(Y ) + gM (X,Y )Φ∗(grad(lnλ))

− X(lnλ)Φ∗(Y )− Y (lnλ)Φ∗(X)

− (∇Φ∗)
⊥(X,Y ). (4.11)

Suppose that (i) and (ii) are satisfied in (4.11). Then we have Φ∗(
M

∇XY ) = 0 and X(lnλ)Φ∗(Y )+Y (lnλ)Φ∗(X) =

0 for X,Y ∈ Γ(µ) . Then we obtain (iii). If (ii) and (iii) are satisfied, we get Φ∗(
M

∇XY ) = 0 , so the
distribution µ defines a totally geodesic foliation on M . Supposing that (i) and (iii) are satisfied, we get
X(lnλ)Φ∗(Y ) + Y (lnλ)Φ∗(X) = 0 for X,Y ∈ Γ(µ) . Then, for X = Y , we have

gM (X, grad(lnλ))Φ∗(X) = 0,

which shows that grad(lnλ) ∈ Γ(J(kerΦ∗)) . 2

We say that a conformal antiinvariant Riemannian map Φ from a complex manifold (M, gM , J) to a
Riemannian manifold (N, gN ) is a mixed -pluriharmonic map if Φ satisfies the following equation:

(∇Φ∗)(X,V ) + (∇Φ∗)(JX, JV ) = 0

for X ∈ Γ((kerΦ∗)
⊥) , V ∈ Γ(kerΦ∗) . We get the following result by using this notion.

Theorem 4.7 Let Φ : (M, gM , J) −→ (N, gN ) be a conformal antiinvariant Riemannian map from a Kaehlerian
manifold (M, gM , J) to a Riemannian manifold (N, gN ) . If Φ is a mixed-pluriharmonic map, then the following
two conditions are satisfied:

i) (∇Φ∗)
⊥(CX, JV ) = 0 ,

ii) Φ is a horizontally homothetic map ⇔ AXV = −h
M

∇BXJV,

for X ∈ Γ((kerΦ∗)
⊥) , V ∈ Γ(kerΦ∗).

Proof Since Φ is a mixed-pluriharmonic map, from (2.1), (2.6), and (2.7) we obtain

0 = (∇Φ∗)
⊥(CX, JV )− Φ∗(AXV )− Φ∗(h

M

∇BXJV )

+ CX(lnλ)Φ∗(JV ) + JV (lnλ)Φ∗(CX), (4.12)
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for X ∈ Γ((kerΦ∗)
⊥) , V ∈ Γ(kerΦ∗) . Then, considering the (rangeΦ∗) and the (rangeΦ∗)

⊥ components,
we obtain (∇Φ∗)

⊥(CX, JV ) = 0 and

0 = −Φ∗(AXV )− Φ∗(h
M

∇BXJV ) + CX(lnλ)Φ∗(JV ) + JV (lnλ)Φ∗(CX).

If Φ is a horizontally homothetic map, we get

CX(lnλ)Φ∗(JV ) + JV (lnλ)Φ∗(CX) = 0.

Thus, we obtain AXV = −h
M

∇BXJV. Suppose we have AXV = −h
M

∇BXJV. Then we get

0 = CX(lnλ)Φ∗(JV ) + JV (lnλ)Φ∗(CX). (4.13)

We get JV (lnλ) = 0 in (4.13) for JV ∈ Γ(J(kerΦ∗)), which shows that J(kerΦ∗)(grad lnλ) = 0 . In a similar
way, we derive CX(lnλ) = 0 in (4.13) for CX ∈ Γ(µ) , which shows that µ(grad lnλ) = 0 . Hence, we obtain
H(grad lnλ) = 0 . Thus, the proof is complete. 2

We say that a conformal antiinvariant Riemannian map Φ from a complex manifold (M, gM , J) to a
Riemannian manifold (N, gN ) is a (kerΦ∗) -pluriharmonic map if Φ satisfies the following equation:

(∇Φ∗)(V,W ) + (∇Φ∗)(JV, JW ) = 0

for V,W ∈ Γ(kerΦ∗) . By using this notion we have the next result, which shows that Φ is horizontally
homothetic under some conditions.

Theorem 4.8 Let Φ : (M, gM , J) −→ (N, gN ) be a conformal antiinvariant Riemannian map from a Kaehlerian
manifold (M, gM , J) to a Riemannian manifold (N, gN ) . If Φ is a (kerΦ∗)-pluriharmonic map, then the
following two conditions are satisfied:

i) (∇Φ∗)
⊥(JV, JW ) = 0 , for any V,W ∈ Γ(kerΦ∗) ,

ii) TV JV = 0 and TV W ∈ Γ(J(kerΦ∗)), for any V,W ∈ Γ(kerΦ∗) if and only if Φ is a horizontally
homothetic Riemannian map.

Proof Since Φ is a (kerΦ∗) -pluriharmonic map, from (2.1), (2.6), and (2.7) we get

0 = (∇Φ∗)
⊥(JV, JW )− Φ∗(TV W ) + JV (lnλ)Φ∗(JW )

+ JW (lnλ)Φ∗(JV )− gM (JV, JW )Φ∗(grad(lnλ)) (4.14)

for V,W ∈ Γ(kerΦ∗). (i) is now clear. Since Φ is conformal we have

0 = λ2JW (lnλ)gM (V, V ) + λ2gM (TV JV,W ) (4.15)

for JV ∈ Γ(J(kerΦ∗)) . If grad(lnλ) ∈ Γ(µ) ⇔ TV JV = 0 in (4.15). Now, for X ∈ Γ(µ) , we get

0 = λ2gM (V,W )gM (X, grad(lnλ)) + λ2gM (TV W,X). (4.16)
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If grad(lnλ) ∈ Γ(J(kerΦ∗)) ⇔ TV W ∈ Γ(J(kerΦ∗)) in (4.16). Thus, we have TV JV = 0 , TV W ∈
Γ(J(kerΦ∗)). Conversely, if TV JV = 0 and TV W ∈ Γ(J(kerΦ∗)) , first from (4.15) we get λ2JW (lnλ)gM (V, V ) =

0 , which implies that JkerΦ∗(grad(lnλ)) = 0. On the other hand, from (4.16), we get λ2gM (V,W )gM (X, grad(lnλ)) =

0 , which implies that µ(grad(lnλ)) = 0. Thus, H(grad(lnλ)) = 0. This shows that Φ is a horizontally homo-
thetic Riemannian map. 2

Theorem 4.9 Let Φ : (M, gM , J) −→ (N, gN ) be a conformal antiinvariant Riemannian map from a Kaehlerian
manifold (M, gM , J) to a Riemannian manifold (N, gN ) . Then Φ is a horizontally homothetic Riemannian
map if and only if

0 = gN (
N

∇Φ
XΦ∗(Y ),Φ∗(Z)) + λ2gM (AXBZ,CY )

+ λ2gM (CAXBY + Ch
M

∇XCY + Jv
M

∇XBY,Z) (4.17)

for X,Y, Z ∈ Γ((kerΦ∗)
⊥).

Proof From (2.1), we have

(∇Φ∗)(X,Y ) =
N

∇Φ
XΦ∗(Y )− Φ∗(

M

∇XY ).

Using (2.6) and (2.7) we obtain

0 =
N

∇Φ
XΦ∗(Y ) + Φ∗(CAXBY ) + Φ∗(Jv

M

∇XBY )− (∇Φ∗)
⊥(X,Y )

+ Φ∗(Ch
M

∇XCY ) + Φ∗(JAXCY ) + gM (X,Y )Φ∗(grad(lnλ))

− Y (lnλ)Φ∗(X)−X(lnλ)Φ∗(Y ). (4.18)

Now we find
gM (JAXCY,Z) = −gM (AXCY, JZ) = gM (AXBZ,CY ).

Using this in (4.18), we get

0 = gN (
N

∇Φ
XΦ∗(Y ),Φ∗(Z)) + λ2gM (CAXBY,Z) + λ2gM (Ch

M

∇XCY,Z)

+ λ2gM (Jv
M

∇XBY,Z) + λ2gM (AXBZ,CY )− λ2X(lnλ)gM (Y, Z)

− λ2Y (lnλ)gM (X,Z) + λ2Z(lnλ)gM (Y,X) (4.19)

for Z ∈ Γ((kerΦ∗)
⊥) . If (4.17) is satisfied we derive

−λ2X(lnλ)gM (Y, Z)− λ2Y (lnλ)gM (X,Z) + λ2Z(lnλ)gM (Y,X) = 0.

Taking Y = Z , we get −λ2X(lnλ)gM (Y, Y ) = 0 , which shows that X(lnλ) = 0 , i.e. Φ is a horizontally
homothetic Riemannian map. The converse is clear. 2
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