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Abstract: We solve the equivalence problem for compatible bi-Hamiltonian structures on three-dimensional orientable
manifolds via Cartan’s method of equivalence. The problem separates into two branches on total space, one of which
ends up with the intransitive involutive structure equations. For the transitive case, we obtain an {e} -structure on both
total and base spaces.
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1. Introduction
The equivalence problem is whether two differential geometric objects on a manifold could be transformed into
each other via a class of diffeomorphisms, which are obtained as the solution of a certain system of differential
equations. The first known example of this problem is Poincare’s proof of the fact that two hypersurfaces
of three real dimensions in C2 may fail to be biholomorphically equivalent [20]. In 1932 Cartan solved the
equivalence problem of two hypersurfaces by finding local invariants [2], and then this solution was developed
and generalized into a method that can be applied to the solution of various equivalence problems. For a more
detailed historical account of the subject we refer to [6]. Cartan’s method of equivalence can be applied not
only to geometric objects but also to various mathematical structures on a manifold [19], including differential
equations. Cartan showed that it is possible to define a projective connection whose geodesics are the integral
curves of a given ordinary differential equation [1]. More recently, the equivalence problem of second-order
ordinary differential equations [5, 11], third-order ordinary differential equations [21], Riccati equations [3],
second-order partial differential equations [16, 17], and certain types of Painlevé transendents [11, 14] are
studied. Furthermore, Cartan’s method of equivalence is also applied to variational calculus [12, 13], control
theory [7], and nonholonomic geometries [4]. The equivalence problem of a vector field and a two-form on a
manifold studied in [8] is closely related to our work.

In this work, the equivalence problem for autonomous dynamical systems defined by nonvanishing vector
fields on orientable three-dimensional manifolds is addressed. Equivalently, one may consider a vector field
whose support is a three-dimensional orientable manifold. For a manifold of arbitrary dimension, the existence
of nonvanishing vector fields on a manifold depends on its first Steifel–Whitney class. Since all orientable three-
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dimensional manifolds are parallelizable, there is no obstruction to the existence of a nonvanishing vector field on
the manifold. However, having a nonvanishing vector field is not sufficient for defining a nontrivial equivalence
problem because any diffeomorphism on a manifold maps nonvanishing vector fields to each other. Therefore,
the equivalence problem for nonvanishing vector fields is trivial and we need some further property, or more
precisely another geometric structure related to a nonvanishing vector field, to define a nontrivial equivalence
problem. In [10] it was shown that any nonvanishing local vector field on an orientable three-dimensional
manifold admits a bi-Hamiltonian structure, i.e. if v (x) is a nonvanishing vector field on a three-dimensional
manifold M with an arbitrary metric g on it , then there exist two independent functions H1 (x) and H2 (x) ,

and a function ϕ (x) such that
v (x) = ϕ∇H1 ×∇H2. (1)

As indicated above, a nonvanishing vector field possesses too general geometric information since, in principal, it
admits a GL(n,R) -structure in the language of G -structures. The bi-Hamiltonian structure for a nonvanishing
vector field serves a more refined geometric structure by determining the certain transformation rule imposed
by the compatibility condition and the Jacobi identity for Poisson structures, which are identified with vector
fields orthogonal to (1). On the other hand, existence of a bi-Hamiltonian structure for a vector field v(x)

in three dimensions implies the integrability of the system of equations ·
x (t) = v (x (t)) . An integral curve is

determined by the intersection of the level surfaces corresponding to constant values of functionally independent
Hamiltonians. With these aspects, investigation of whether there exist inequivalent bi-Hamiltonian structures
in three dimensions is a reasonable study and as we show in this paper the problem has a nontrivial counterpart,
which is determined by certain values of the torsion coefficients, leading to an invariant coframe. In this work,
the equivalence problem for compatible bi-Hamiltonian structures of nonvanishing vector fields is solved using
Cartan’s method of equivalence.

2. The local existence of bi-Hamiltonian structures on three-dimensional manifolds
Given a nonvanishing vector field v (x) on an orientable three-dimensional manifold M , the dynamical system
defined by v (x) is given by

·
x (t) = v (x (t)) . (2)

In this section, fundamental ideas of [10] related to our work are summarized. In [10] it was shown that (2) is
locally bi-Hamiltonian. For this purpose first we will describe the Poisson structures in three dimensions.

Definition 1 A Poisson structure on a manifold M is a Lie algebra structure on C∞ (M) , i.e. a R-bilinear
map

{·, ·} : C∞ (M)× C∞ (M) → C∞ (M) (3)

satisfying

1. Skew-symmetry: {f, g} = −{g, f} ,

2. Jacobi identity: {f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0,

3. Leibniz rule: {fg, h} = f {g, h}+ g {f, h} .
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By the Leibniz rule, the Poisson structure assigns a vector field, vf , to each function f , namely

{f, g} = vf (g) = ⟨dg, vf ⟩ = J (df, dg) , (4)

where
J : T ∗M → TM (5)

is called the Poisson bivector. The Poisson bivector J is a skew-symmetric tensor satisfying the Jacobi identity

[J ,J ]SN (df, dg, dh) = {f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0, (6)

where [·, ·]SN is the Schouten–Nijenhuis bracket. The image of a closed one-form under a Poisson bivector is
called a Hamiltonian vector field, and the dynamical system (2) defined by a Hamiltonian vector field is said
to have a Hamiltonian form. Then the bi-Hamiltonian structure related to the vector field is defined in [18] as
follows:

Definition 2 A dynamical system is called bi-Hamiltonian if it can be written in Hamiltonian form in two
distinct ways:

v = J1 (dH2) = J2 (dH1) , (7)

such that J1 and J2 are nowhere multiples of each other. This bi-Hamiltonian structure is compatible if J1+J2

is also a Poisson structure.

For three-dimensional manifolds, symplectic structures cannot be defined since a 3× 3 skew-symmetric
tensor cannot be invertible. For a detailed account of Poisson structures of dynamical systems on three-
dimensional manifolds we refer to [9]. In [9], Poisson bivector fields are mapped to vector fields by the Lie
algebra isomorphism so (3) ≃ R3 defined by the metric on M,

J = Jmnem ∧ en = εmn
k Jkem ∧ en, (8)

and the vector field
J = Jkek (9)

is called the Poisson vector field on M . Using (9) , the Jacobi identity (6) can be expressed simply by

J · (∇× J) = 0 (10)

and the bi-Hamiltonian structure given in (7) becomes

v = J1 ×∇H2 = J2 ×∇H1. (11)

Since J1 and J2 are nowhere multiples of each other by definition, they are linearly independent and by (11)

we have
Ji · v = 0 (12)

for i = 1, 2.

Now, defining

ê1 =
v

∥v∥
(13)
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and extending to a local orthonormal frame field {ê1, ê2, ê3} , we get the structure functions
(
Ck

ij (x)
)

via the
relation

[êi, êj ] = Ck
ij (x) êk. (14)

Then the local existence theorem of bi-Hamiltonian systems is given in [10] as follows:

Theorem 3 Any three-dimensional dynamical system

·
x (t) = v (x (t)) (15)

has a pair of compatible Poisson structures

Ji = αi (ê2 + µiê3) (16)

in which µi s are determined by the equation

ê1 · ∇µi = −C2
31 − µi

(
C3

31 + C2
12

)
− µ2

iC
3
12 (17)

and αi s are determined by the equation

ê1 · ∇ ln αi

∥v∥
= C3

31 + µiC
3
12. (18)

Furthermore, (15) is a locally bi-Hamiltonian system with a pair of local Hamiltonian functions determined by

Ji = (−1)
i+1

ϕ∇Hi, (19)

where

ϕ =
α1α2 (µ2 − µ1)

∥v∥
. (20)

By definition of the bi-Hamiltonian structure {ê1, J1, J2} forms a local frame field, which may not
be orthogonal. Since the equivalence problem is formulated by using coframes, the formulation of the basic
properties of bi-Hamiltonian structures in differential forms is necessary. Letting Ω be the volume form
associated to the metric on M , the local Poisson one-form J is defined by

J = ıJΩ. (21)

Then, (11) becomes
ιvΩ = J1 ∧ dH2 = J2 ∧ dH1 (22)

and the Jacobi identity is given by
J i ∧ dJ i = 0, for i = 1, 2 (23)

with compatibility condition
J1 ∧ dJ2 = −J2 ∧ dJ1. (24)

Using (19) the bi-Hamiltonian form (22) can be written as

ιvΩ = ϕdH1 ∧ dH2. (25)

Then we obtain the local coframe field
{
ω1, ω2, ω3

}
, which is dual to the local frame field, {ê1, J1, J2} .
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3. The equivalence problem for compatible bi-Hamiltonian structures
In this section we formulate and solve the the equivalence problem of the compatible bi-Hamiltonian structures.
Basically, the equivalence problem consists of associating certain coframes to the given local structure and then
finding a diffeomorphism relating these coframes via pullback. We begin with an outline of Cartan’s equivalence
method in the following subsection.

3.1. An outline of Cartan’s method of equivalence

Cartan’s method of equivalence deals with the problem of the existence of a local diffeomorphism Φ : U → U

for given coframe fields ω = (ω1, ..., ωn) and ω̄ = (ω̄1, ..., ω̄n) defined on open neighborhoods U and U of
the manifolds M and M , and a connected linear group G ⊂ GL(n,R) such that Φ∗ω̄ = gω , g ∈ G . Here,
G ⊂ GL(n,R) is called the structure group of the problem. It is suitable to note that U and U would be
coordinate neighborhoods of the same manifold. The idea is based on associating a canonical coframe to a
geometric structure and in many cases there is no such coframe field, and the method starts with considering
all admissible coframes encoding the underlying geometric structure. Accordingly, an equivalence problem is in
one-to-one correspondence with the diffeomorphism Φ(1) : U ×G → U ×G such that Φ(1)∗θ̄ = θ , where θ̄ = gω̄

and θ = gω are the lifts of the coframes ω and ω̄ to U ×G and U ×G . The structure equations for a lifted
coframe are determined by

dθ = dgg−1 ∧ θ + gdω, (26)

where (
dgg−1

)i
j
= πi

j = aijρπ
ρ (27)

is the Maurer–Cartan matrix of right invariant forms on G . The coefficients aijρ are the structure constants of
the Lie algebra of G and πρ is a basis for the Maurer–Cartan forms. (26) is written in components as

dθi =
∑
k

πi
k ∧ θk +

1

2

∑
j,k

γi
jk(x, g)θ

j ∧ θk. (28)

The components γi
jk are called the torsion coefficients and they depend on base and group coordinates. That is,

they depend on local coordinates on M and G . In some cases the nature of the problem tells us that some of the
Maurer–Cartan forms are equivalent to a zero modulo coframe on base manifold. That is, they can be expressed
as a combination of the coframe elements ωi . This process is called principal component decomposition. Now,
suppose that principal component decomposition is performed. Equations in (28) do not define the Lie algebra
valued differential form (πi

j) =
(
aijρπ

ρ
)

nor the torsion terms uniquely. By this ambiguity one can modify the

components of the Lie algebra valued form as πρ 7→ πρ + vρkθ
k and eliminate as many torsion terms as possible

by solving the linear system of equations

γi
jk = aijρv

ρ
k − aikρv

ρ
j , (29)

for vρk . This process is called Lie algebra compatible absorption. The remaining torsion terms after the process
of absorption are called intrinsic or essential torsions. The remaining parts of Cartan’s method are reduction
and prolongation. The reduction process is based on normalizing an essential torsion to a suitable constant
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so that the structure group is reduced to a subgroup with 1 less dimension. This subgroup is identified with
the isotropy group of the underlying torsion term. If all essential torsions can be normalized in this way (after
one or more loops), one obtains an {e}−structure or an invariant coframe for the problem. In this case, the
equivalence problem is reduced to the equivalence problem for the coframes whose solution is known. On the
other hand, after all possible reductions, if there are still group parameters then Cartan’s test is applied for
the involutivity even if there exist nonconstant essential torsion terms that are independent from the group
parameters, and such a case is called intransitive. If all the remaining essential torsion terms are constant
then the structure equations are called transitive. In both cases, if Cartan’s test is satisfied one obtains the
involutive coframe. If the structure equations do not pass Cartan’s test then the problem is prolonged to
U ×G with structure group G(1) by adding the remaining Maurer–Cartan basis to the original coframe. This
structure group is parametrized by the solutions of the equations 0 = aijρv

ρ
k − aikρv

ρ
j for vρj . Then the problem

is handled like the original problem for the lifted coframes on U × G with structure group G(1) throughout
Cartan’s algorithm described above. It is suitable here to note that intransitive equivalence problems are more
complicated since the group independence of successive coframe derivatives of the structure invariants is also
required for a solution; for details, we refer to [19, Theorem 11.16.] and preceding discussions. Also, we should
note that the first branch of the problem considered in this work results in the intransitive involutive structure
equations. For concrete description of Cartan’s method of equivalence with applications to various problems,
we refer to [6, 15, 19].

3.2. The formulation of the equivalence problem for compatible bi-Hamiltonian structures
Now, given two dynamical systems

·
x (t) = v (x (t)) (30)

and
·
x (t) = v (x (t)) (31)

defined on two open neighborhoods U and U of M by nonvanishing vector fields v and v , respectively, they
can be associated with the coframes

{
ω1, ω2, ω3

}
on U and

{
ω1, ω2, ω3

}
on U defined by their bi-Hamiltonian

structures, respectively. Now the second step is to determine the type of the diffeomorphism

Φ : U → U (32)

that maps these dynamical systems and coframes associated to their bi-Hamiltonian structures to each other.
Therefore, the first restriction for the diffeomorphism in question is that it should map the dynamical systems
to each other because otherwise it would not be meaningful to talk about the equivalence of bi-Hamiltonian
structures of dynamical systems that are not equivalent. In other words, we should have

v = Φ∗v. (33)

Since ω1 is defined as the dual of the vector field v, (33) implies

Φ∗(ω1) = ω1. (34)

Once we have two equivalent dynamical systems, we should start with defining coframes representing their
bi-Hamiltonian structure. Given the dynamical system (2) on an open neighborhood U of M, a compatible
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bi-Hamiltonian structure of (2) is uniquely represented by the local coframe field ω =
{
ω1, ω2, ω3

}
satisfying

the following conditions:

1. Invariance condition:
ω1 ∧ ∗ωi = 0 for i = 2, 3. (35)

2. Jacobi identity:
ωi ∧ dωi = 0 for i = 2, 3. (36)

3. Compatibility condition:
ω2 ∧ dω3 + ω3 ∧ dω2 = 0. (37)

Then the local equivalence problem of two compatible bi-Hamiltonian structures ωU =
{
ω1, ω2, ω3

}
and

ωU

{
ω1, ω2, ω3

}
is defined as the existence of a diffeomorphism Φ : U → U such that the invariance condition

Φ∗ (ω1
)
∧ ∗Φ∗ (ωi

)
= ω1 ∧ ∗Φ∗ (ωi

)
= 0, for i = 2, 3, (38)

the Jacobi identity
Φ∗ (ωi

)
∧ dΦ∗ (ωi

)
= 0, for i = 2, 3, (39)

and the compatibility condition

Φ∗ (ω2
)
∧ dΦ∗ (ω3

)
+Φ∗ (ω2

)
∧ dΦ∗ (ω3

)
= 0 (40)

are preserved. Now it is not difficult to show that the equivalence group or the structure group of the equivalence
problem determined by the pullback map Φ∗

Φ∗ωU = gωU , g ∈ G (41)

is the subgroup G of GL (3,R) of the form

G =


 a 0 0

0 b c
0 e f

 ∣∣∣∣∣ a(bf − ec) ̸= 0

 (42)

3.3. The solution of the equivalence problem for compatible bi-Hamiltonian structures
As indicated in the previous section, the very first step in the solution of this problem is to lift the coframe ωU

to U ×G ,
θ = gωU , θi = gijω

j . (43)

Then the structure equations on U ×G have the form

dθ = dgg−1 ∧ θ + gdωU , (44)

where the Maurer–Cartan matrix dgg−1 is given by

dgg−1 =


da
a 0 0

0 fdb−edc
bf−ec

−cdb+bdc
bf−ec

0 fde−edf
bf−ec

−cde+bdf
bf−ec

 . (45)
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Using conditions (38)–(40) , we get bdc− cdb ≡ 0
fde− edf ≡ 0

fdb− edc− (bdf − cde) ≡ 0

 mod
(
θ2, θ3

)
. (46)

Now the structure equation for the lifted coframe θ becomes

d

 θ1

θ2

θ3

 =

 α 0 0
0 β 0
0 0 β

 ∧

 θ1

θ2

θ3

+

 T 1
23 T 1

31 T 1
12

T 2
23 0 T 2

12

T 3
23 T 3

31 0

 θ2 ∧ θ3

θ3 ∧ θ1

θ1 ∧ θ2

 . (47)

By the compatibility condition we obtain
T 2
12 = −T 3

31. (48)

The torsion terms T 1
12, T

1
13, T

2
12, T

2
23 , and T 3

23 can be absorbed by modifying α and β by

α 7→ α+ T 1
12θ

2 − T 1
31θ

3 (49)

β 7→ β − T 2
12θ

1 + T 2
23θ

3 − T 3
23θ

2.

After absorption the structure equations become

d

 θ1

θ2

θ3

 =

 α 0 0
0 β 0
0 0 β

 ∧

 θ1

θ2

θ3

+

 T 1
23 0 0
0 0 0
0 0 0

 θ2 ∧ θ3

θ3 ∧ θ1

θ1 ∧ θ2

 . (50)

Now we have two cases depending on the value of the torsion term T 1
23.

3.3.1. Case I T 1
23 = 0 .

If T 1
23 = 0, then the structure equations are reduced to

d

 θ1

θ2

θ3

 =

 α 0 0
0 β 0
0 0 β

 ∧

 θ1

θ2

θ3

 , (51)

where the reduced Cartan characters are σ1 = 2 , σ2 = 0 and the degree of indeterminacy is σ = 1 , and hence
Cartan’s test fails. Therefore, one needs to prolong the problem. Since the structure equations are invariant
under the transformation

α̂ = α+ λθ1, (52)

the equivalence problem can be formulated on U ×G×G(1) where G(1) is the structure group of the prolonged
equivalence problem. Lift the coframe on U ×G to U (1) = U ×G×G(1) by

θ1

θ2

θ3

α̂

β̂

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
λ 0 0 1 0
0 0 0 0 1




θ1

θ2

θ3

α
β

 . (53)
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From (51) we get

dα ∧ θ1 = 0,
dβ ∧ θ2 = 0,
dβ ∧ θ3 = 0.

(54)

Since θ1, θ2, θ3 are nonvanishing, by Poincare’s lemma we obtain

dα = ξ ∧ θ1,
dβ = κθ2 ∧ θ3,

(55)

for a 1-form ξ and a smooth function κ on U (1) . Now the structure equations for the prolonged coframe become

dθ1 = α̂ ∧ θ1,

dθ2 = β̂ ∧ θ2,

dθ3 = β̂ ∧ θ3,
dα̂ = ρ ∧ θ1 + λα̂ ∧ θ1 + ξ ∧ θ1,

dβ̂ = κθ2 ∧ θ3,

(56)

where ρ = dλ is the Maurer–Cartan form on G(1) . We can absorb the torsion terms with the θ1 factor by
using the transformation

ρ 7→ ρ− λα̂− ξ. (57)

After this absorption, structure equations become

dθ1 = α̂ ∧ θ1,

dθ2 = β̂ ∧ θ2,

dθ3 = β̂ ∧ θ3,
dα̂ = ρ ∧ θ1,

dβ̂ = κθ2 ∧ θ3.

(58)

Using the integrability condition

d2β̂ = d
(
κθ2 ∧ θ3

)
= 0, (59)

we get

(dκ+ 2κβ̂) ∧ θ2 ∧ θ3 = 0, (60)

which suggests that κ is independent of the group parameter of G(1) . Therefore, it is not possible to normalize
by the action of G(1) , and hence κ is an invariant of the problem. This situation implies that the equivalence
problem under consideration is intransitive. Notice also from (60) that dκ is independent from α̂ and θ1 .
This implies that all coframe derivatives of κ are also independent from the group parameter. From (58) it
follows that the reduced Cartan characters are σ1 = 1 , σ2 = 0 and the degree of indeterminacy is σ = 1 , and
so Cartan’s test is satisfied. It follows from here and [19, Theorem 11.16] that we have intransitive structure
equations for an involutive coframe on U ×G and such a regular, analytic coframe has an infinite dimensional
symmetry group depending on a single function of one variable.
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3.3.2. Case II T 1
23 ̸= 0 .

In this case, we first try to determine the effect of the structure group on T 1
23 and to normalize T 1

23 to an
appropriate constant. For this purpose we compute d2θ1 , which gives

dα ∧ θ1 − T 1
23α ∧ θ2 ∧ θ3 + dT 1

23 ∧ θ2 ∧ θ3 + 2T 1
23(β ∧ θ2 ∧ θ3 + T 2

12θ
1 ∧ θ2 ∧ θ3) = 0. (61)

Taking the wedge product of both sides of (61) with θ1 leads to(
dT 1

23 + 2T 1
23β − T 1

23α
)
∧ θ1 ∧ θ2 ∧ θ3 = 0, (62)

which implies that
dT 1

23 ≡ T 1
23(α− 2β) mod (θ1, θ2, θ3). (63)

This suggests that the equivalence group is acting on the T 1
23 term by scaling, and if we normalize T 1

23 to 1 we
get

α ≡ 2β mod (θ1, θ2, θ3). (64)

After normalization, the structure equations become

d

 θ1

θ2

θ3

 =

 2β 0 0
0 β 0
0 0 β

 ∧

 θ1

θ2

θ3

+

 1 q p
s 0 h
k −h 0

 θ2 ∧ θ3

θ3 ∧ θ1

θ1 ∧ θ2

 . (65)

Now we can absorb the torsion terms s, h , and k by defining β 7→ β̂ − hθ1 − kθ2 + sθ3 . Then the structure
equations take the form

d

 θ1

θ2

θ3

 =

 2β̂ 0 0

0 β̂ 0

0 0 β̂

 ∧

 θ1

θ2

θ3

+

 1 q̃ p̃
0 0 0
0 0 0

 θ2 ∧ θ3

θ3 ∧ θ1

θ1 ∧ θ2

 . (66)

Since dθ1 ≡ 2β̂ ∧ θ1 + q̃θ3 ∧ θ1 (mod θ2) and dθ1 ≡ 2β̂ ∧ θ1 + p̃θ1 ∧ θ2 (mod θ3) , one obtains the following by
taking the exterior differential of both sides of these equations:

dq̃ ≡ −q̃β̂ mod θi, (67)

dp̃ ≡ −p̃β̂ mod θi, i = 1, 2, 3. (68)

From here it follows that
dq̃

q̃
≡ dp̃

p̃
mod θi, if q̃ ̸= 0, p̃ ̸= 0. (69)

These equations tell us that the structure group is acting on torsion terms by scaling and we can normalize
them to 1 provided that they are nonzero. Now, before performing the normalization, it is more convenient to
consider the following case:

Subcase i. q̃ = p̃ = 0 . In this subcase no reduction is possible and the structure equations become

dθ1 = 2β̂ ∧ θ1 + θ2 ∧ θ3,

dθ2 = β̂ ∧ θ2,

dθ3 = β̂ ∧ θ3.

(70)
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The first reduced character is σ1 = 1 and σ = 0 and Cartan’s involution test fails, and since the degree of
indeterminacy is σ = 0 we should prolong the problem by computing dβ̂ . Taking the exterior derivatives of
both sides of equations (67) and (68) , we get

dβ̂ ∧ θi = 0, for i = 1, 2, 3 (71)

and hence
dβ̂ = 0. (72)

Now we have an {e} -structure or an invariant coframe Θ = {θ1, θ2, θ3, β̂} on U ×G :

dθ1 = 2β̂ ∧ θ1 + θ2 ∧ θ3,

dθ2 = β̂ ∧ θ2,

dθ3 = β̂ ∧ θ3,

dβ̂ = 0.

(73)

This implies that for q̃ = p̃ = 0 the problem reduces the equivalence problem for coframes on U × G . Since
the structure functions for Θ = {θ1, θ2, θ3, β̂} are all constant, it follows from here that the coframe Θ is a
rank zero coframe and the equations in (73) are the Maurer–Cartan equations for a Lie group and all equivalent
coframes must have the same structure constants with Θ . Also, (73) tells us that β̂ may be used to define a
unique flat connection 1-form on the tangent bundle of U provided that it can be written in terms of θi s. Now
let us consider the following subcases:

Subcase ii. q̃ = 0, p̃ ̸= 0 . In this subcase we can normalize p̃ to 1. This implies that β̂ ≡ 0 mod θi and
hence we obtain the {e} -structure or an invariant coframe θ = {θ1, θ2, θ3} on U . In this case, β̂ can be written
as β̂ =

∑
i kiθ

i . Here the functions ki are defined on U . In this case, structure equations (66) take the form

dθ1 = (1− 2k2)θ
1 ∧ θ2 + 2k3θ

3 ∧ θ1 + θ2 ∧ θ3,

dθ2 = k1θ
1 ∧ θ2 − k3θ

2 ∧ θ3, (74)

dθ3 = −k1θ
3 ∧ θ1 + k2θ

2 ∧ θ3.

The case p̃ = 0, q̃ ̸= 0 is also managed in a similar manner.
Subcase iii. p̃ ̸= 0, q̃ ̸= 0 . In this subcase either p̃ or q̃ can be used for reduction and any choice leads

to the {e} -structure. If we normalize q̃ to 1, then we obtain β̂ ≡ 0 mod θi . This implies that p̃ is an invariant
of the problem. Structure equations (66) take the form

dθ1 = (p̃− 2k2)θ
1 ∧ θ2 + (1 + 2k3)θ

3 ∧ θ1 + θ2 ∧ θ3,

dθ2 = k1θ
1 ∧ θ2 − k3θ

2 ∧ θ3, (75)

dθ3 = −k1θ
3 ∧ θ1 + k2θ

2 ∧ θ3.

3.4. The Interpretation of the invariants

If I(x) is an scalar invariant, that is, Φ∗Ī = I , then differentials must also agree: Φ∗dĪ = dI . If an invariant
coframe, say θ = {θ1, θ2, θ3} , is obtained on U , then the differential of a scalar function is computed by the
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coframe (covariant) derivatives:

dI =
∂I

∂θi
θi. (76)

Functionally independent structure functions of an invariant coframe are called fundamental invariants. k1, k2 ,
and k3 are the fundamental invariants of the problem. Invariants that are obtained by coframe derivative are
called derived invariants. Note that not all derived invariants are functionally independent. Differential relations
on invariants are found by taking the exterior derivative of the structure equations. Now let us investigate the
previously given cases.

Subcase ii. From the integrability conditions d2θi = 0 , we obtain

0 = 2∂k3

∂θ2 − 2∂k2

∂θ3 + 2k1 + k3,

0 = ∂k1

∂θ3 − ∂k3

∂θ1 + k1k3,

0 = ∂k2

∂θ1 − ∂k1

∂θ2 + k1(1− k2).

(77)

On the other hand, in terms of the connection β̂ =
∑

i kiθ
i , structure equations (74) can be written as

dθ1 = 2β̂ ∧ θ1 + θ1 ∧ θ2 + θ2 ∧ θ3,

dθ2 = β̂ ∧ θ2,

dθ3 = β̂ ∧ θ3.

(78)

If we compute dβ̂ and use (77) , we obtain dβ̂ = −2k3θ
2 ∧ θ3 . It follows from here that connection β̂ is flat iff

k3 = 0 . Besides, if k1 = 0 then we have 2∂k3

∂θ2 − 2∂k2

∂θ3 + k3 = 0 , ∂θ1k3 = ∂θ1k2 = 0 . That is, k2 and k3 depend
only on the Hamiltonians, i.e. k2 = k2(H1,H2) and k3 = k3(H1,H2) .

Subcase iii. Now, since dθ1 ≡ (p̃− 2k2)θ
1 ∧ θ2 (mod θ3) , we see by taking the exterior derivative of this

identity that we get (dp̃ − 2dk) ∧ θ1 ∧ θ2 ∧ θ3 = 0 and so p̃ and k2 are functionally dependent. First-order
differential relations are found from d2θi = 0 as

0 = 2∂k3

∂θ2 − 2∂k2

∂θ3 + ∂p̃
∂θ3 + 2k1 + k2 + p̃k3,

0 = ∂k1

∂θ3 − ∂k3

∂θ1 + k1k3,

0 = ∂k2

∂θ1 − ∂k1

∂θ2 + k1(p̃− k2).

(79)

On the other hand, in terms of the connection β̂ =
∑

i kiθ
i , structure equations (74) can be written as

dθ1 = 2β̂ ∧ θ1 + p̃θ1 ∧ θ2 + θ3 ∧ θ1 + θ2 ∧ θ3,

dθ2 = β̂ ∧ θ2,

dθ3 = β̂ ∧ θ3.

(80)

If we compute dβ̂ and compare with (79) , we see that connection β̂ is flat iff p̃ = 1 and k1 + k2 + k3 = 0 .
Again, if k1 = 0 then k2 and k3 depend only on the Hamiltonians, i.e. k2 = k2(H1,H2) and k3 = k3(H1,H2) .
Notice in both cases that if k1 vanishes then the other invariants can be given in terms of Hamiltonians.
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4. Conclusion
In this work, we have considered the equivalence problem for compatible bi-Hamiltonian structures of nonvan-
ishing vector fields by means of Cartan’s method of equivalence. The problem under consideration is interesting
in possessing examples of both transitive and intransitive structure equations in the context of equivalence
problems. These cases are determined by the integrability of the 1-form θ1 in the direction of the vector field
·
x (t) = v (x (t)) and for the integrable case we have faced the intransitive involutive structure equations. In this
case, we have single fundamental invariant independent of the group parameter whose successive coframe deriva-
tives can be expressed as a function of this structure invariant. The invariant parametrizes the classifying curve
of the regular, analytic lifted coframe and accordingly, any such two coframes so the bi-Hamiltonian structures
are equivalent whenever their classifying curves overlap. The nonintegrable case was separated into subcases
depending on the possible normalizations of the torsion terms, which have given rise to the {e} -structure on
both U × G and U . The identity structure on U × G is obtained for rank zero coframe and hence, structure
equations for such a coframe are the Maurer-Cartan equations for a Lie group. For the latter case, we have
seen that the vanishing of one of the structure invariants of the problem may be identified with the functionally
independent Hamiltonians.
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