Turkish Journal of Mathematics
http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2018) 42: 2101 - 2111
© TÜBİTAK
doi:10.3906/mat-1705-46

On one BVP for a thermo-microstretch elastic space with spherical cavity

Lamara BITSADZE* ${ }^{\text {(}}$

I. Vekua Institute of Applied Mathematics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia

Received: 11.05.2017 • Accepted/Published Online: 28.03.2018 • Final Version: 27.09 .2018

Abstract

The present paper considers the equilibrium theory of thermo-microstretch elastic solids with microtemperatures. The method to solve the Neumann-type boundary value problem (BVP) for the whole space with spherical cavity is presented. The solution of this BVP in the form of absolutely and uniformly convergent series is obtained.

Key words: Thermo-microstretch elastic solids, microtemperatures, explicit solution, sphere

1. Introduction

The theory of thermoelasticity for elastic materials with microtemperatures, whose particles contain a displacement vector and temperature field, was established by Grot [11].

Eringen developed the theory of micromorphic bodies and the theory of thermo-microstretch elastic solids. An extensive review and basic results in the microcontinuum field theories for solids (micromorphic, microstretch, and micropolar) including electromagnetic and thermal interactions are given in his works [9,10].

In [16], Ieşan and Quintanilla formulated the boundary value problems of the theory of thermoelasticity with microtemperatures and presented a unique result and a solution of Boussinesq-Somigliana-Galerkin type. The theory of micromorphic elastic solids with microtemperatures was presented by Ieşan in [12,15]. In [18], Ieşan and Quintanilla discussed various problems using thermoelasticity with microtemperatures.

Many investigators studied different types of problems for thermo-microstretch medium in detail (some of those works can be seen in $[1-8,13,14,17,20-24,26,27]$ and the references therein).

The present paper considers the equilibrium theory of thermo-microstretch elastic solids with microtemperatures. The method to solve the Neumann-type boundary value problem (BVP) for the whole space with spherical cavity is presented. The solution of this BVP in the form of absolutely and uniformly convergent series is obtained.

2. Basic equations

Let $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ be a point of Euclidean three-dimensional space E^{3}. Let us assume that D^{+}is a ball with radius R, centered at point $O(0,0,0)$ in space E^{3}, and S is a spherical surface with radius R. Denote the whole space with a spherical cavity and with boundary S by $D .\left(D=E_{3} \backslash \overline{D^{+}}\right)$.

[^0]The system of equations of the linear equilibrium theory of thermoelasticity for isotropic and homogeneous thermo-microstretch elastic solids may be written as $[12,26]$

$$
\begin{gather*}
\mu \Delta \mathbf{u}+(\lambda+\mu) \operatorname{graddiv} \mathbf{u}-\beta \operatorname{grad} \theta+\beta_{1} \operatorname{grad} \varphi=0 \tag{1}\\
k_{6} \Delta \mathbf{w}+\left(k_{4}+k_{5}\right) \operatorname{graddiv} \mathbf{w}-k_{3} \operatorname{grad} \theta-k_{2} \mathbf{w}=0 \tag{2}\\
k \Delta \theta+k_{1} \operatorname{div} \mathbf{w}=0 \tag{3}\\
\gamma \Delta \varphi-\beta_{1} \operatorname{div} \mathbf{u}-d \operatorname{div} \mathbf{w}+m \theta-\varsigma \varphi=0 \tag{4}
\end{gather*}
$$

where $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)^{\top}$ is the displacement vector; $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}\right)^{\top}$ is the microtemperature vector; $\theta(\mathbf{x}) \quad$ is the temperature measured from the constant absolute temperature $T_{0}\left(T_{0}>0\right)$ by the natural state (i.e. by the state of the absence of loads); φ is the microstretch function (microdilatation function); $\lambda, \quad \mu, \quad \beta, \quad \beta_{1}, \quad k, \quad k_{j}, d, \quad m, \quad \gamma, \quad \varsigma \quad \mathrm{j}=1, \ldots, 6$, are constitutive coefficients; and Δ is the 3D Laplace operator. Throughout this paper, superscript T denotes transposition.
Definition 2.1 A vector-function $\boldsymbol{U}=(\boldsymbol{u}, \boldsymbol{w}, \theta, \varphi)$ defined in domain D is called regular if

$$
\boldsymbol{U} \in C^{2}(D) \cap C^{1}(\bar{D})
$$

and at infinity it satisfies the following conditions:

$$
\mathbf{U}(\mathbf{x})=O\left(|x|^{-1}\right) \quad \frac{\partial \mathbf{U}}{\partial x_{j}}=O\left(|\mathbf{x}|^{-2}\right) \quad|x|^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \gg 1, \quad j=1,2,3
$$

The Neumann-type BVP for Eqs.(1)-(4) is formulated as follows:
Find a regular solution $\boldsymbol{U}(\boldsymbol{u}, \boldsymbol{w}, \theta, \varphi)$ to Eqs. (1)-(4), for $\boldsymbol{x} \in D$, satisfying the following boundary conditions:

$$
\begin{aligned}
& \lim _{D \ni \mathbf{x} \rightarrow \mathbf{z} \in S} \mathbf{u}(\mathbf{x}),=\mathbf{G}(\mathbf{z}), \quad \lim _{D \ni \mathbf{x} \rightarrow \mathbf{z} \in S} \mathbf{P}^{(2)}\left(\partial_{\mathbf{x}}, \mathbf{n}\right) \mathbf{w}(\mathbf{x}),=\mathbf{f}(\mathbf{y}), \\
& \lim _{D \ni \mathbf{x} \rightarrow \mathbf{z} \in S}\left(k \frac{\partial \theta}{\partial \mathbf{n}}+k_{1} \mathbf{n \mathbf { w }}\right)=f_{4}(\mathbf{y}), \quad \lim _{D \ni \mathbf{x} \rightarrow \mathbf{z} \in S}\left(\gamma \frac{\partial \varphi}{\partial \mathbf{n}}-d \mathbf{n w}\right)=f_{5}(\mathbf{y}), \quad \mathbf{y} \in S
\end{aligned}
$$

where $\mathbf{n}(\mathbf{z})$ is the external unit normal vector on $\mathbf{z} \in S$, the vector-functions $\mathbf{G}(\mathbf{z})=\left(G_{1}, G_{2}, G_{3}\right)$, $\mathbf{f}(\mathbf{z})=\left(f_{1}, f_{2}, f_{3}\right)$, and the functions $\left.f_{4}(\mathbf{z}), f_{5}(\mathbf{z}),\right)$ are prescribed on S, at \mathbf{z}, and the vector $\mathbf{P}^{(2)}(\partial \mathbf{x}, \mathbf{n}) \mathbf{w}$ has the following form [23]:

$$
\begin{equation*}
\mathbf{P}^{(2)}(\partial \mathbf{x}, \mathbf{n}) \mathbf{w}=\left(k_{5}+k_{6}\right) \frac{\partial \mathbf{w}}{\partial \mathbf{n}}+k_{4} \mathbf{n d i v} \mathbf{w}+k_{5}[\mathbf{n} \cdot \operatorname{rot} \mathbf{w}] . \tag{5}
\end{equation*}
$$

$[\mathbf{x} \cdot \mathbf{g}]$ denotes the vector product of the two vectors \mathbf{x} and \mathbf{g}.
The following assertion holds.
Theorem 2.1([23]) The Neumann-type BVP has at most one regular solution in domain D.
To solve the above-mentioned problem, we proceed as follows: first is to study the BVP for equations (2) and (3) separately. By supposing that \mathbf{w} and θ are known, we can study the BVP for equations (1) and (4), with respect to \mathbf{u} and φ. By combining the obtained results, we obtain the solution of the BVP for equations (1)-(4).

BITSADZE/Turk J Math

3. Preliminaries

In this section, some basic results from previous papers [1,3] are given:
The spherical coordinates are:

$$
\begin{aligned}
& x_{1}=\rho \sin \xi \cos \eta, \quad x_{2}=\rho \sin \xi \sin \eta, \quad x_{3}=\rho \cos \xi, \quad x \in D \\
& y_{1}=R \sin \xi_{0} \cos \eta_{0}, \quad y_{2}=R \sin \xi_{0} \sin \eta_{0}, \quad y_{3}=R \cos \xi_{0}, \quad y \in S \\
& |\mathbf{x}|=\rho=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}, \quad 0 \leq \xi \leq \pi, \quad 0 \leq \eta \leq 2 \pi
\end{aligned}
$$

$(\mathbf{x} \cdot \mathbf{w})=\sum_{k=1}^{3} x_{k} w_{k}$ denotes the usual scalar product of two vectors \mathbf{x} and \mathbf{w}.
Operator $\frac{\partial}{\partial S_{k}(x)}$ is defined as follows:

$$
[\mathbf{x} \cdot \nabla]_{k}=\frac{\partial}{\partial S_{k}(x)}, \quad k=1,2,3, \quad \nabla=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right)
$$

If g_{m} is the spherical harmonic, then [19]:

$$
\sum_{k=0}^{3} \frac{\partial^{2} g_{m}(\mathbf{x})}{\partial S_{k}^{2}(\mathbf{x})}=-m(m+1) g_{m}(\mathbf{x})
$$

The following theorems hold true:
Theorem 3.1 ([1]) The regular solution $\boldsymbol{W}=(\boldsymbol{w}, \theta)$, where $\boldsymbol{w}=\left(w_{1}, w_{2}, w_{3}\right)$, of the homogeneous equations (2) and (3), in D, can be represented in the following form (for details see [1]):

$$
\begin{align*}
& \mathbf{w}(\mathbf{x})=a \operatorname{grad} \vartheta(\mathbf{x})+b \operatorname{grad} \vartheta_{1}(\mathbf{x})+c \operatorname{rot} \varphi^{\mathbf{3}}(\mathbf{x}) \\
& \theta(\mathbf{x})=\vartheta(\mathbf{x})+\vartheta_{1}(\mathbf{x}) \tag{6}
\end{align*}
$$

where

$$
\begin{align*}
& \Delta \vartheta=0, \quad\left(\Delta-s_{1}^{2}\right) \vartheta_{1}=0, \quad\left(\Delta-s_{2}^{2}\right) \varphi^{\mathbf{3}}=0, \quad \operatorname{div} \varphi^{\mathbf{3}}=0 \\
& s_{1}^{2}=\frac{k k_{2}-k_{1} k_{3}}{k k_{7}}>0, \quad s_{2}^{2}=\frac{k_{2}}{k_{6}}>0, \quad a=-\frac{k_{3}}{k_{2}}, \quad b=-\frac{k}{k_{1}}, \quad c=-\frac{k_{6}}{k_{2}}, \tag{7}\\
& \varphi^{\mathbf{3}}(\mathbf{x})=[\mathbf{x} \cdot \nabla] \varphi_{3}(\mathbf{x})+\operatorname{rot}[\mathbf{x} \cdot \nabla] \varphi_{4}(\mathbf{x}), \quad\left(\Delta-s_{2}^{2}\right) \varphi_{j}=0, \quad j=3,4 .
\end{align*}
$$

In addition, if

$$
\int_{S\left(0, a_{1}\right)} \varphi_{j} d s=0, \quad j=3,4
$$

where $S\left(0, a_{1}\right) \subset D$ is an arbitrary spherical surface with radius a_{1}, then between the vector $\boldsymbol{W}(\boldsymbol{x})=(\boldsymbol{w}, \theta)$ and the functions $\vartheta, \vartheta_{1}, \varphi_{j}, j=3,4$, there exists one-to-one correspondence.

Remark. The solutions of Eqs. (2) and (3) can be rewritten in the following form [1]:

$$
\begin{align*}
& \mathbf{w}(\mathbf{x})=a \operatorname{grad} \vartheta(\mathbf{x})+b \operatorname{grad} \vartheta_{1}(\mathbf{x})+[\mathbf{x} \cdot \nabla] \varphi_{4}(\mathbf{x})+c \operatorname{rot}[\mathbf{x} \cdot \nabla] \varphi_{3}(\mathbf{x}) \\
& \theta(\mathbf{x})=\vartheta(\mathbf{x})+\vartheta_{1}(\mathbf{x}) \tag{8}
\end{align*}
$$

Theorem 3.2([3]) The regular solution $\boldsymbol{U}=(\boldsymbol{u}, \varphi)$, where $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right)$, of the following equations:

$$
\begin{gather*}
\mu \Delta \mathbf{u}+(\lambda+\mu) \operatorname{graddivu}+\beta_{1} \operatorname{grad} \varphi=\beta \operatorname{grad}\left(\vartheta+\vartheta_{1}\right) \tag{9}\\
\gamma \Delta \varphi-\beta_{1} \operatorname{divu}-\varsigma \varphi=\left(d b s_{1}^{2}-m\right) \vartheta_{1}-m \vartheta \tag{10}
\end{gather*}
$$

in D, can be represented in the following form (for details see [3]:)

$$
\begin{gather*}
\mathbf{u}=\boldsymbol{\Phi}+\mathbf{u}_{0}, \tag{11}\\
\varphi=\psi+\psi_{3}+\psi_{0}, \tag{12}
\end{gather*}
$$

where \mathbf{u}_{0} is a particular solution of equation (9):

$$
\begin{align*}
& \mathbf{u}_{0}=\operatorname{grad}\left\{\frac{\beta \beta_{1}-m(\lambda+\mu)}{\mu \beta_{1}} \vartheta_{0}+\frac{(\lambda+\mu) \varsigma-\beta_{1}^{2}}{\mu \beta_{1}} \Psi_{0}-\frac{\beta_{1}}{\mu_{0} s_{3}^{2}} \psi_{3}+\frac{a_{22}}{s_{1}^{2}} \vartheta_{1}\right\} \tag{13}\\
& a_{22}=\frac{\beta\left(\gamma s_{1}^{2}-\varsigma\right)+\beta_{1}\left(m-d b s_{1}^{2}\right)}{\gamma \mu_{0}\left(s_{1}^{2}-s_{3}^{2}\right)}
\end{align*}
$$

ψ_{0} is a particular solution of equation (10):

$$
\psi_{0}=\frac{a_{11} \vartheta_{1}}{s_{1}^{2}-s_{3}^{2}}, \quad s_{3}^{2}=\frac{\mu_{0} \varsigma-\beta_{1}^{2}}{\mu_{0} \gamma}, \quad a_{11}=\frac{\beta \beta_{1}-\mu_{0}\left(m-d b s_{1}^{2}\right)}{\gamma \mu_{0}}
$$

The vector-function $\mathbf{\Phi}$ is a harmonic function and is chosen such that

$$
\Delta \boldsymbol{\Phi}=0, \quad \operatorname{div} \boldsymbol{\Phi}=\frac{m \mu_{0}-\beta \beta_{1}}{\mu \beta_{1}} \vartheta-\frac{\mu_{0} \gamma s_{3}^{2}}{\beta_{1} \mu} \psi, \quad \Delta \operatorname{div} \Phi=0
$$

Ψ_{0} and ϑ_{0} are chosen such that

$$
\Delta \Psi_{0}=\psi, \quad \Delta \vartheta_{0}=\vartheta, \quad \Delta \Delta \Psi_{0}=0, \quad \Delta \Delta \vartheta_{0}=0
$$

The functions ψ and ψ_{3} are solutions of the following equations:

$$
\Delta \psi=0, \quad\left(\Delta-s_{3}^{2}\right) \psi_{3}=0
$$

and respectively, $\operatorname{div} \boldsymbol{u}$ satisfies the following condition:

$$
\begin{equation*}
\operatorname{div} \mathbf{u}=\frac{m \vartheta-\varsigma \psi}{\beta_{1}}-\frac{\beta_{1}}{\mu_{0}} \psi_{3}+a_{22} \vartheta_{1} \tag{14}
\end{equation*}
$$

Thus, the general solutions of Eqs. (1)-(4) are represented by means of harmonic, biharmonic, and metaharmonic functions and are given by formulas (8),(11), and (12).

BITSADZE/Turk J Math

4. Solution of the Neumann boundary value problem

In this section, we present the method to solve the Neumann BVP for a whole space with a spherical cavity.
Taking into account (8) and the following identities:

$$
\begin{align*}
\frac{\partial}{\partial \mathbf{n}} \operatorname{grad} h(\mathbf{x}) & =\frac{1}{\rho} \operatorname{grad}\left[\left(\rho \frac{\partial}{\partial \rho}-1\right) h(\mathbf{x})\right] \tag{15}\\
\frac{\partial}{\partial \mathbf{n}} \operatorname{roth}(\mathbf{x}) & =\frac{1}{\rho} \operatorname{rot}\left[\left(\rho \frac{\partial}{\partial \rho}-1\right) \mathbf{h}(\mathbf{x})\right]
\end{align*}
$$

the vector $\left(\mathbf{P}^{(2)}(\partial \mathbf{x}, \mathbf{n}) \mathbf{w}\right.$ takes the following form [2]:

$$
\begin{align*}
& \mathbf{P}^{(2)}(\partial \mathbf{x}, \mathbf{n}) \mathbf{w}= \\
& \frac{k_{5}+k_{6}}{\rho}\left\{\operatorname{grad}\left[\left(\rho \frac{\partial}{\partial \rho}-1\right)\left(a \vartheta(\mathbf{x})+b \vartheta_{1}(\mathbf{x})\right)\right]+c \operatorname{rot}\left(\rho \frac{\partial}{\partial \rho}-1\right) \varphi^{\mathbf{3}}(\mathbf{x})\right\} \tag{16}\\
& +k_{4} b s_{1}^{2} \frac{\mathbf{x} \vartheta_{1}}{\rho}+\frac{k_{5}}{\rho}\left[\mathbf{x} \cdot \varphi^{\mathbf{3}}(\mathbf{x})\right]
\end{align*}
$$

On account of formulas (16) and (8), the following identities hold true:

$$
\begin{align*}
& \left(\mathbf{x} \cdot \mathbf{P}^{(2)}(\partial \mathbf{x}, \mathbf{n}) \mathbf{w}\right)=\left(k_{5}+k_{6}\right) a \rho \frac{\partial^{2} \vartheta(\mathbf{x})}{\partial \rho^{2}}+\left[\left(k_{5}+k_{6}\right) b \rho \frac{\partial^{2}}{\partial \rho^{2}}+k_{4} b s_{1}^{2} \rho\right] \vartheta_{1}(\mathbf{x}) \\
& +c\left(k_{5}+k_{6}\right)\left(\frac{\partial}{\partial \rho}-\frac{1}{\rho}\right) \sum_{k=1}^{3} \frac{\partial^{2} \varphi_{3}(\mathbf{x})}{\partial S_{k}^{2}(x)}, \\
& \sum_{k=1}^{3} \frac{\partial}{\partial S_{k}(x)}\left[\mathbf{x} \cdot \mathbf{P}^{(2)}(\partial \mathbf{x}, \mathbf{n}) \mathbf{w}\right]_{k}=\left(k_{5}+k_{6}\right)\left(\frac{\partial}{\partial \rho}-\frac{1}{\rho}\right) \sum_{k=1}^{3} \frac{\partial^{2}\left(a \vartheta(\mathbf{x})+b \vartheta_{1}(\mathbf{x})\right)}{\partial S_{k}^{2}(x)} \\
& -\left\{c\left(k_{5}+k_{6}\right)\left[\rho \frac{\partial^{2}}{\partial \rho^{2}}+\frac{\partial}{\partial \rho}-\frac{1}{\rho}\right]+k_{5} \rho\right\} \sum_{k=1}^{3} \frac{\partial^{2} \varphi_{3}(\mathbf{x})}{\partial S_{k}^{2}(x)} \tag{17}\\
& \left.\sum_{k=1}^{3} \frac{\partial}{\partial S_{k}(x)}\left[\mathbf{P}^{(2)}(\partial \mathbf{x}, \mathbf{n}) \mathbf{w}\right)\right]_{k}=k_{5}\left(\frac{\partial}{\partial \rho}-\frac{1}{\rho}\right) \sum_{k=1}^{3} \frac{\partial^{2} \varphi_{4}(\mathbf{x})}{\partial S_{k}^{2}(x)} \\
& \frac{\partial \theta}{\partial n}=\frac{\partial \vartheta}{\partial \rho}+\frac{\partial \vartheta_{1}}{\partial \rho}, \quad(\mathbf{x} \cdot \mathbf{w})=a \rho \frac{\partial \vartheta}{\partial \rho}+b \rho \frac{\partial \vartheta_{1}}{\partial \rho}+c \sum_{k=1}^{3} \frac{\partial^{2} \varphi_{3}}{\partial S_{k}^{2}(\mathbf{x})}
\end{align*}
$$

Let us assume that functions ϑ, ϑ_{1} and $\varphi_{j}, j=3,4$ are sought in the following form [25]:

$$
\begin{align*}
& \vartheta(\mathbf{x})=\sum_{n=0}^{\infty} \frac{R^{n+2}}{(2 n+1) \rho^{n+1}} Y_{1 n}(\vartheta, \varphi) \\
& \vartheta_{1}(\mathbf{x})=\sum_{n=0}^{\infty} \Psi_{n}\left(i s_{1} \rho\right) Y_{2 n}(\vartheta, \varphi) \tag{18}\\
& \varphi_{j}(\mathbf{x})=\sum_{n=0}^{\infty} \Psi_{n}\left(i s_{2} \rho\right) Y_{j n}(\vartheta, \varphi), \quad \rho>R, \quad j=3,4
\end{align*}
$$

BITSADZE/Turk J Math

respectively, where $Y_{1 m}, \quad Y_{2 m} \mathrm{~m}$ and $Y_{j m}$ are the unknown spherical harmonic of order n,

$$
\Psi_{n}\left(i s_{k} \rho\right)=\frac{\sqrt{R_{1}} H_{n+\frac{1}{2}}^{(1)}\left(i s_{k} \rho\right)}{\sqrt{\rho} H_{n+\frac{1}{2}}^{(1)}\left(i s_{k} R\right)}, \quad k=1,2
$$

By substituting (18) into (17) we obtain:

$$
\begin{align*}
& \left(\mathbf{x} \cdot \mathbf{P}^{(2)}(\partial \mathbf{x}, \mathbf{n}) \mathbf{w}\right) \\
& =\sum_{n=0}^{\infty}\left\{\left(k_{5}+k_{6}\right) a \frac{(n+1)(n+2) R^{n+2}}{(2 n+1) \rho^{n+2}} Y_{1 n}+\left[\left(k_{5}+k_{6}\right) b \rho \frac{\partial^{2}}{\partial \rho^{2}}+k_{4} b s_{1}^{2} \rho\right] \Psi_{n}\left(i s_{1} \rho\right) Y_{2 n}(\xi, \eta)\right. \\
& \left.-c\left(k_{5}+k_{6}\right)\left(\frac{\partial}{\partial \rho}-\frac{1}{\rho}\right) n(n+1) \Psi_{n}\left(i s_{2} \rho\right) Y_{3 n}\right\}, \\
& \sum_{k=1}^{3} \frac{\partial}{\partial S_{k}(x)}\left[\mathbf{x} \cdot \mathbf{P}^{(2)}(\partial \mathbf{x}, \mathbf{n}) \mathbf{w}\right]_{k}= \\
& \sum_{n=0}^{\infty} n(n+1)\left\{\left(k_{5}+k_{6}\right)\left[a \frac{(n+2) R^{n+2}}{(2 n+1) \rho^{n+2}} Y_{1 n}-\left(\frac{\partial}{\partial \rho}-\frac{1}{\rho}\right) b \Psi_{n}\left(i s_{1} \rho\right) Y_{2 n}\right]+\right. \\
& \left.\quad\left[\left(k_{5}+k_{6}\right)\left(\rho \frac{\partial^{2}}{\partial \rho^{2}}+\frac{\partial}{\partial \rho}-\frac{1}{\rho}\right)+k_{5} \rho\right] \Psi_{n}\left(i s_{2} \rho\right) Y_{3 n}\right\}, \tag{19}\\
& \left.\quad \sum_{k=1}^{3} \frac{\partial}{\partial S_{k}(x)}\left[\mathbf{P}^{(2)}(\partial \mathbf{x}, \mathbf{n}) \mathbf{w}\right)\right]_{k}=-k_{5} \sum_{n=0}^{\infty} n(n+1)\left(\frac{\partial}{\partial \rho}-\frac{1}{\rho}\right) \Psi_{n}\left(i s_{2} \rho\right) Y_{4 n}, \\
& \quad(\mathbf{x} \cdot \mathbf{w})=\sum_{n=0}^{\infty}\left\{-\frac{a(n+1) R^{n+2}}{(2 n+1) \rho^{n+1}} Y_{1 n}+b \rho \frac{\partial}{\partial \rho} \Psi_{n}\left(i s_{1} \rho\right) Y_{2 n}-c n(n+1) \Psi_{n}\left(i s_{2} \rho\right) Y_{3 n}\right\}, \\
& \quad{ }^{2} \frac{\partial \theta}{\partial \mathbf{n}}+k_{1}(\mathbf{n} \mathbf{w})=\sum_{n=0}^{\infty}\left[-\frac{\left(k+a k_{1}\right)(n+1) R^{n+2}}{(2 n+1) \rho^{n+2}} Y_{1 n}-\frac{c k_{1} n(n+1)}{R} \Psi_{m}\left(i s_{2} \rho\right) Y_{3 n}\right]
\end{align*}
$$

Let us introduce the following functions:

$$
\begin{aligned}
& (\mathbf{z} \cdot \mathbf{G})^{-}=h_{1}(\mathbf{z}), \quad \sum_{k=1}^{3} \frac{\partial}{\partial S_{k}(\mathbf{z})}[\mathbf{z} \cdot \mathbf{G}]_{k}^{-}=h_{2}(\mathbf{z}), \\
& \sum_{k=1}^{3}\left(\frac{\partial G_{k}}{\partial S_{k}(\mathbf{z})}\right)^{-}=h_{3}(\mathbf{z}), \quad(\mathbf{z} \cdot \mathbf{f})^{-}=h_{4}(\mathbf{z}) \\
& \sum_{k=1}^{3} \frac{\partial}{\partial S_{k}(\mathbf{z})}[\mathbf{z} \cdot \mathbf{f}]_{k}^{-}=h_{5}(\mathbf{z}), \quad \sum_{k=1}^{3}\left(\frac{\partial f_{k}}{\partial S_{k}(\mathbf{z})}\right)^{-}=h_{6}(\mathbf{z}) \\
& \left(k \frac{\partial \theta}{\partial \mathbf{n}}+k_{1}(\mathbf{n w})\right)^{-}=h_{7}(\mathbf{y}), \quad\left(\gamma \frac{\partial \varphi}{\partial \mathbf{n}}-d(\mathbf{n w})\right)^{-}=h_{8}(\mathbf{y}), \quad \mathbf{y} \in S
\end{aligned}
$$

Let us assume that functions $h_{k}, \quad k=1, . ., 8$, are representable in the form of the following series:

$$
h_{k}(\mathbf{y})=\sum_{n=0}^{\infty} h_{k n}\left(\xi_{0}, \eta_{0}\right),
$$

where $h_{k n} \quad k=1, . ., 8$ are the spherical harmonics of order n :

$$
h_{k n}=\frac{2 n+1}{4 \pi R^{2}} \int_{S} P_{n}(\cos \gamma) h_{k}(\mathbf{y}) d S_{y}
$$

P_{n} is the Legender polynomial of the nth order, and γ is an angle formed by the radius-vectors $O x$ and $O y$,

$$
\cos \gamma=\frac{1}{|\mathbf{x}||\mathbf{y}|} \sum_{k=1}^{3} x_{k} y_{k}
$$

Remark. ([3]) The condition $\int_{S\left(0, a_{1}\right)} \varphi_{j} d s=0 \quad$ implies that $Y_{30}=Y_{40}=0$.
Keeping in mind the boundary conditions, from (19), when $\rho \rightarrow R$, we get the following system of algebraic equations:

$$
\begin{align*}
& \left(k_{5}+k_{6}\right) a \frac{(n+1)(n+2)}{(2 n+1)} Y_{1 n}+\left[\left(k_{5}+k_{6}\right) b R\left(\frac{\partial^{2} \Psi_{n}\left(i s_{1} \rho\right)}{\partial \rho^{2}}\right)_{\rho=R}+k_{4} b s_{1}^{2} R\right] Y_{2 n}(\xi, \eta) \\
& -c\left(k_{5}+k_{6}\right) n(n+1)\left[\left(\frac{\partial}{\partial \rho}-\frac{1}{\rho}\right) \Psi_{n}\left(i s_{2} \rho\right)\right]_{\rho=R} Y_{3 n}=h_{4 n}, \\
& n(n+1)\left\{\left(k_{5}+k_{6}\right)\left[a \frac{n+2}{2 n+1} Y_{1 n}-b\left(\frac{\partial \Psi_{n}\left(i s_{1} \rho\right)}{\partial \rho}\right)_{\rho=R} Y_{2 n}+\frac{b}{R} Y_{2 n}\right]+\right. \\
& \left.\left[c\left(k_{5}+k_{6}\right)\left(R \frac{\partial^{2} \Psi_{n}\left(i s_{2} \rho\right)}{\partial \rho^{2}}+\frac{\partial \Psi_{n}\left(i s_{2} \rho\right)}{\partial \rho}-\frac{1}{R}\right)_{\rho=R}+k_{5} R\right] Y_{3 n}\right\}=h_{5 n}, \\
& -k_{5} n(n+1)\left(\frac{\partial \Psi_{n}\left(i s_{2} \rho\right)}{\partial \rho}-\frac{1}{\rho}\right)_{\rho=R} Y_{4 n}=h_{6 n}, \quad h_{50}=0, \quad h_{60}=0, \tag{20}\\
& {\left[\frac{\left(k+a k_{1}\right)(n+1)}{(2 n+1)} Y_{1 n}+\frac{c k_{1} n(n+1)}{R} Y_{3 n}\right]=-h_{7 n} .}
\end{align*}
$$

According to Theorem 2.1, we conclude that system (20) for $n \geq 0$ is uniquely solvable and we shall find functions $Y_{j n}$. This means that functions \mathbf{w} and θ are known.

BITSADZE/Turk J Math

In the same way, from formulas (11) and (12), as above, we can easily derive [3]:

$$
\begin{align*}
& (\mathbf{x} \cdot \mathbf{u})=(\mathbf{x} \cdot \boldsymbol{\Phi})+\rho \frac{\partial}{\partial \rho}\left\{\frac{\beta \beta_{1}-m(\lambda+\mu)}{\mu \beta_{1}} \vartheta_{0}+\frac{(\lambda+\mu) \varsigma-\beta_{1}^{2}}{\mu \beta_{1}} \Psi_{0}-\frac{\beta_{1}}{\mu_{0} s_{3}^{2}} \psi_{3}+\frac{a_{22}}{s_{1}^{2}} \vartheta_{1}\right\} \\
& \sum_{k=1}^{3} \frac{\partial}{\partial S_{k}(x)}[\mathbf{x} \cdot \mathbf{u}]_{k}=\sum_{k=1}^{3} \frac{\partial}{\partial S_{k}(x)}[\mathbf{x} \cdot \mathbf{\Phi}]_{k} \\
& +\sum_{k=1}^{3} \frac{\partial^{2}}{\partial S_{k}^{2}(x)}\left\{\frac{\beta \beta_{1}-m(\lambda+\mu)}{\mu \beta_{1}} \vartheta_{0}+\frac{(\lambda+\mu) \varsigma-\beta_{1}^{2}}{\mu \beta_{1}} \Psi_{0}-\frac{\beta_{1}}{\mu_{0} s_{3}^{2}} \psi_{3}+\frac{a_{22}}{s_{1}^{2}} \vartheta_{1}\right\} \tag{21}\\
& \sum_{k=1}^{3} \frac{\partial u_{k}}{\partial S_{k}(x)}=\sum_{k=1}^{3} \frac{\partial \Phi_{k}}{\partial S_{k}(x)}, \quad \gamma \frac{\partial}{\partial \mathbf{n}} \varphi-d(\mathbf{n w})=\gamma \frac{\partial}{\partial \rho}\left[\psi+\psi_{3}+\frac{a_{11} \vartheta_{1}}{s_{1}^{2}-s_{3}^{2}}\right]-d(\mathbf{n w})
\end{align*}
$$

where function ϑ_{1} is defined from (20) and (18), and the function ϑ_{0} is defined as:

$$
\begin{equation*}
\vartheta_{0}(\mathbf{x})=\frac{1}{2} \sum_{n=0}^{\infty} \frac{R^{n+2}}{\left(1-4 n^{2}\right) \rho^{n-1}} Y_{1 n}(\vartheta, \eta) \tag{22}
\end{equation*}
$$

Functions $(\mathbf{x} \cdot \boldsymbol{\Phi})$ and $\sum_{k=1}^{3} \frac{\partial}{\partial S_{k}(x)}[\mathbf{x} \cdot \boldsymbol{\Phi}]_{k}$ can be replaced with functions $\vartheta, \vartheta_{0}, \Psi_{0}$, and ψ in the following form [3]:

$$
\begin{align*}
& (\mathbf{x} \cdot \boldsymbol{\Phi})=\Omega+2\left[\frac{m \mu_{0}-\beta \beta_{1}}{\mu \beta_{1}} \vartheta_{0}-\frac{\mu_{0} \gamma s_{3}^{2}}{\beta_{1} \mu} \Psi_{0}\right] \tag{23}\\
& \sum_{k=1}^{3} \frac{\partial}{\partial S_{k}(x)}[\mathbf{x} \cdot \boldsymbol{\Phi}]_{k}=\rho^{2}\left[\frac{m \mu_{0}-\beta \beta_{1}}{\mu \beta_{1}} \vartheta-\frac{\mu_{0} \gamma s_{3}^{2}}{\beta_{1} \mu} \psi\right]-\left(\rho \frac{\partial}{\partial \rho}+1\right)(\mathbf{x} \cdot \boldsymbol{\Phi})
\end{align*}
$$

where Ω is an arbitrary harmonic function $\Delta \Omega=0$.
Then (21) takes the following form:

$$
\begin{align*}
& (\mathbf{x} \cdot \mathbf{u})=\Omega-2 \frac{\mu_{0} \gamma s_{3}^{2}}{\beta_{1} \mu} \Psi_{0}+\rho \frac{\partial}{\partial \rho}\left\{\frac{(\lambda+\mu) \varsigma-\beta_{1}^{2}}{\mu \beta_{1}} \Psi_{0}-\frac{\beta_{1}}{\mu_{0} s_{3}^{2}} \psi_{3}\right\} \\
& +2 \frac{m \mu_{0}-\beta \beta_{1}}{\mu \beta_{1}} \vartheta_{0}+\rho \frac{\partial}{\partial \rho}\left\{\frac{\beta \beta_{1}-m(\lambda+\mu)}{\mu \beta_{1}} \vartheta_{0}+\frac{a_{22}}{s_{1}^{2}} \vartheta_{1}\right\} \\
& \sum_{k=1}^{3} \frac{\partial}{\partial S_{k}(x)}[\mathbf{x} \cdot \mathbf{u}]_{k}=-\rho^{2} \frac{\mu_{0} \gamma s_{3}^{2}}{\beta_{1} \mu} \psi-\left(1+\rho \frac{\partial}{\partial \rho}\right)\left[\Omega-2 \frac{\mu_{0} \gamma s_{3}^{2}}{\beta_{1} \mu} \Psi_{0}\right] \\
& +\sum_{k=1}^{3} \frac{\partial^{2}}{\partial S_{k}^{2}}\left[\frac{(\lambda+\mu) \varsigma-\beta_{1}^{2}}{\mu \beta_{1}} \Psi_{0}-\frac{\beta_{1}}{\mu_{0} s_{3}^{2}} \psi_{3}\right]+\sum_{k=1}^{3} \frac{\partial^{2}}{\partial S_{k}^{2}}\left[\frac{\beta \beta_{1}-m(\lambda+\mu)}{\mu \beta_{1}} \vartheta_{0}++\frac{a_{22}}{s_{1}^{2}} \vartheta_{1}\right] \tag{24}\\
& +R^{2} \frac{m \mu_{0}-\beta \beta_{1}}{\mu \beta_{1}} \vartheta-2 \frac{m \mu_{0}-\beta \beta_{1}}{\mu \beta_{1}}\left(1+\rho \frac{\partial}{\partial \rho}\right) \vartheta_{0}, \\
& \sum_{k=1}^{3} \frac{\partial u_{k}}{\partial S_{k}(x)}=\sum_{k=1}^{3} \frac{\partial \Phi_{k}}{\partial S_{k}(x)}, \quad \gamma \frac{\partial}{\partial \mathbf{n}} \varphi-d(\mathbf{n w})=\gamma \frac{\partial}{\partial \rho}\left[\psi+\psi_{3}+\frac{a_{11} \vartheta_{1}}{s_{1}^{2}-s_{3}^{2}}\right]-d(\mathbf{n w}) .
\end{align*}
$$

BITSADZE/Turk J Math

Let functions ψ, Ω, ψ_{3}, and $\sum_{k=1}^{3} \frac{\partial \Phi_{k}}{\partial S_{k}(x)}$ be sought in the following form [25]:

$$
\begin{align*}
& \psi(\mathbf{x})=\sum_{n=0}^{\infty} \frac{R^{n+2}}{(2 n+1) \rho^{n+1}} Z_{n}(\xi, \eta), \quad \rho>R \\
& \Omega(\mathbf{x})=\sum_{n=0}^{\infty} \frac{R^{n+2}}{(2 n+1) \rho^{n+1}} Z_{1 n}(\xi, \eta), \quad \rho>R \\
& \psi_{3}(\mathbf{x})=\sum_{n=0}^{\infty} \Psi_{n}\left(i s_{3} \rho\right) Z_{3 n}(\xi, \eta), \quad \rho>R \tag{25}\\
& \sum_{k=1}^{3} \frac{\partial \Phi_{k}}{\partial S_{k}(x)}=\sum_{n=0}^{\infty} \frac{R^{n+2}}{(2 n+1) \rho^{n+1}} Z_{4 n}(\xi, \eta), \quad \rho>R
\end{align*}
$$

where $Z_{n}, Z_{1 n}$, and $Z_{j n}, j=3,4$, are the unknown spherical harmonics of order n. Using (25), the solution of equation $\Delta \Psi_{0}=\psi$ can be written in the following form:

$$
\begin{equation*}
\Psi_{0}(\mathbf{x})=\frac{1}{2} \sum_{n=0}^{\infty} \frac{R^{n+2}}{\left(1-4 n^{2}\right) \rho^{n-1}} Z_{n}(\xi, \eta) \tag{26}
\end{equation*}
$$

Substituting (26) and (25) into (24), passing to the limit as $\rho \rightarrow R$, for the determination of unknown functions we arrive at the following system of algebraic equations:

$$
\begin{align*}
& \frac{R Z_{1 n}}{2 n+1}+\frac{-\mu_{0} \gamma s_{3}^{2}(n+1)+\varsigma \mu(n-1)}{2 \mu \beta_{1}\left(1-4 n^{2}\right)} R^{3} Z_{n}-\frac{\beta_{1} R}{\mu_{0} s_{3}^{2}}\left[\frac{\partial}{\partial \rho} \Psi_{n}\left(i s_{3} \rho\right)\right]_{\rho=R} Z_{3 n}=\omega_{5 n} \\
& \frac{n R Z_{1 n}}{2 n+1}+\frac{(n+1) R^{3}}{2 \mu \beta_{1}\left(1-4 n^{2}\right)}\left[(2-n) \mu_{0} \gamma s_{3}^{2}+n \mu \varsigma\right] Z_{n}+\frac{\beta_{1} n(n+1)}{\mu_{0} s_{3}^{2}} Z_{3 n}=-\omega_{6 n} \tag{27}\\
& \frac{R Z_{4 n}}{2 n+1}=h_{3 n}, \quad-\gamma \frac{n+1}{2 n+1} Z_{n}+\gamma\left[\frac{\partial}{\partial \rho} \Psi_{n}\left(i s_{3} \rho\right)\right]_{\rho=R} Z_{3 n}=\omega_{7 n}
\end{align*}
$$

where

$$
\begin{gathered}
\omega_{5}=h_{1}-2 \frac{m \mu_{0}-\beta \beta_{1}}{\mu \beta_{1}}\left[\vartheta_{0}\right]_{\rho=R}-\left\{\rho \frac{\partial}{\partial \rho}\left[\frac{\beta \beta_{1}-m(\lambda+\mu)}{\mu \beta_{1}} \vartheta_{0}+\frac{a_{22}}{s_{1}^{2}} \vartheta_{1}\right]\right\}_{\rho=R}=\sum_{m=0}^{\infty} \omega_{5 m}, \\
\omega_{6}=h_{2}-\left\{\sum_{k=1}^{3} \frac{\partial^{2}}{\partial S_{k}^{2}}\left[\frac{\beta \beta_{1}-m(\lambda+\mu)}{\mu \beta_{1}} \vartheta_{0}+\frac{a_{22}}{s_{1}^{2}} \vartheta_{1}\right]\right\}_{\rho=R} \\
-R^{2} \frac{m \mu_{0}-\beta \beta_{1}}{\mu \beta_{1}}[\vartheta]_{\rho=R}+2 \frac{m \mu_{0}-\beta \beta_{1}}{\mu \beta_{1}}\left[\left(\rho \frac{\partial}{\partial \rho}+1\right) \vartheta_{0}\right]_{\rho=R}=\sum_{m=0}^{\infty} \omega_{6 m} \\
\omega_{7}=h_{8}-\frac{\gamma a_{11}}{s_{1}^{2}-s_{3}^{2}}\left[\frac{\partial}{\partial \rho} \vartheta_{1}\right]_{\rho=R}+[d(\mathbf{n w})]_{\rho=R}=\sum_{m=0}^{\infty} \omega_{7 m}, \\
\omega_{k n}=\frac{2 n+1}{4 \pi R^{2}} \int_{S} P_{n}(\cos \gamma) \omega_{k}(\mathbf{y}) d S_{y}, \quad k=5,6,7 .
\end{gathered}
$$

By virtue of Theorem 2.1, we get the following result: the system (27) for $n \geq 0$ is uniquely solvable.

5. Conclusions

By using the above-mentioned method, it is possible to construct explicitly the solutions of basic BVPs for systems (1)-(4) for simple cases of 2D domains (circle, plane with a circular hole) in the form of absolutely and uniformly convergent series.

This method can be extended to the systems of equations in modern linear theories of poroelasticity and thermoelasticity for materials with microstructures.

References

[1] Bitsadze L. Effective solution of the Dirichlet BVP of the linear theory of thermoelasticity with microtemperatures for a spherical ring. J Therm Stresses 2013; 36: 714-726.
[2] Bitsadze L. Effective solution of the Neumann BVP of the linear theory of thermoelasticity with microtemperatures for a spherical ring. Georgian International Journal of Science and Technology 2013; 5: 5-19.
[3] Bitsadze L. The Dirichlet BVP of the theory of thermoelasticity with microtemperatures for microstretch sphere. J Therm Stresses 2016; 39: 1074-1083.
[4] Bitsadze L, Jaiani G. Some basic boundary value problems of the plane thermoelasticity with microtemperatures. Math Method Appl Sci 2013; 36: 956-966.
[5] Bitsadze L, Zirakashvili N. Explicit solutions of the boundary value problems for an ellipse with double porosity. Adv Math Phys 2016; 2016: 1810795.
[6] Ciarletta M, Scalia A. Some results in linear theory of thermo-microstretch elastic solids. Meccanica 2004; 39: 191-206.
[7] De Cicco S, Nappa L. On the theory of thermo-microstretch elastic solids. J Therm Stresses 1999; 22: 565-580.
[8] De Cicco S, Nappa L. Some results in the linear theory of thermo-microstretch elastic solids. Math Mech Solids 2000; 5: 467-484.
[9] Eringen AC. Theory of thermo-microstretch elastic solids. Int J Eng Sci 1990; 28: 1291-1301.
[10] Eringen AC. Microcontinuum Field Theories I: Foundations and Solids. New York, NY, USA: Springer, 1999.
[11] Grot RA. Thermodynamics of a continuum with microtemperature. Int J Eng Sci 1969; 7: 801-814.
[12] Ieşan D. On a theory of micromorphic elastic solids with microtemperatures. J Therm Stresses 2001; 24: 737-752.
[13] Ieşan D. Thermoelastic Models of Continua. Solid Mechanics and Applications, Vol. 118. Dordrecht, the Netherlands: Kluwer, 2004.
[14] Ieşan D. Thermoelasticity of solids with microstructure and microtemperatures. Int J Solids Struct 2006; 43: 34143427.
[15] Ieşan D. Thermoelasticity of bodies with microstructure and microtemperatures. Int J Solids Struct 2007; 44: 8648-8662.
[16] Ieşan D, Quintanilla R. On a theory of thermoelasticity with microtemperatures. J Therm Stresses 2000; 23: 199215.
[17] Ieşan D, Quintanilla R. Thermal stresses in microstretch elastic plates. Int J Eng Sci 2005; 43: 885-907.
[18] Ieşan D, Quintanilla R. On thermoelastic bodies with inner structure and microtemperatures. J Math Anal Appl 2009; 354: 12-23.
[19] Kupradze VD, Gegelia TG, Basheleishvili MO, Burchuladze TV. Three Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. Amsterdam, the Netherlands: North Holland, 1979.
[20] Özer T. Symmetry group classification for two-dimensional elastodynamics problems in nonlocal elasticity. Int J Eng Sci 2003; 41: 2193-2211.
[21] Özer T. An application of symmetry groups to nonlocal continuum mechanics. Comput Math Appl 2008; 55: 1923-1942.
[22] Scalia A, Svanadze M. On the representation of solutions of the theory of thermoelasticity with microtemperatures. J Therm Stresses 2006; 29: 849-593.
[23] Scalia A, Svanadze M. Uniqueness theorems in the equilibrium theory of thermoelasticity with microtemperatures for microstretch solids. J Mech Mater Struct 2011; 6: 1295-1311.
[24] Scalia A, Svanadze M, Tracina R. Basic theorems in the equilibrium theory of thermoelasticity with microtemperatures. J Therm Stresses 2010; 33: 721-753.
[25] Smirnov VI. A Course of Higher Mathematics. Complex Variables, Special Functions. V.3, Part 2, International Series of Monographs in Pure and Applied Mathematics V. 60 (Translated by DE Brown). Oxford, UK: Pergamon, 1964.
[26] Svanadze M. Fundamental solutions in the theory of micromorphic elastic solids with microtemperatures. J Therm Stresses 2004; 27: 345-366.
[27] Svanadze M, Tracina R. Representation of solutions in the theory of thermoelasticity with microtemperatures for microstretch solids. J Therm Stresses 2011; 34: 161-178.

[^0]: *Correspondence: lamarabitsadze@yahoo.com
 2010 AMS Mathematics Subject Classification: 74G05, 74F05, 74F99

