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Abstract: The coefficient of x−1 of a formal Laurent series f(x) is called the formal residue of f(x) . Many combinatorial
numbers can be represented by the formal residues of hypergeometric terms. With these representations and the extended
Zeilberger algorithm, we generate recurrence relations for summations involving combinatorial sequences such as Stirling
numbers and their q -analog. As examples, we give computer proofs of several known identities and derive some new
identities. The applicability of this method is also studied.
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1. Introduction
Finding recurrence relations for summations is a key step in computer proofs of combinatorial identities. In
the 1990s, Wilf and Zeilberger [20, 21] developed the method of creative telescoping to generate recurrence
relations for hypergeometric summations. Since then, many extensions and new algorithms have been discovered
and designed for various kinds of summations. See, for example, [3, 5] for holonomic sequences, [1, 19] for
multivariable hypergeometric terms, [17] for nested sums and products, [11, 12] for Stirling-like numbers, and
[4, 13, 14] for nonholonomic sequences.

Our approach is motivated by the work of Chen and Sun [2]. By using the Cauchy contour integral
representations, they transformed sums involving Bernoulli numbers into hypergeometric summations. Then
the recurrence relations for the sums can be derived by the extended Zeilberger algorithm [1].

In the present paper, we combine the formal residue operator and the extended Zeilberger algorithm to
generate recurrence relations for combinatorial sums. With this residue method, we give computer proofs of
some known identities and derive two new identities. By considering the annihilator of our representations for
Stirling numbers of both kinds, we show that our method is a good choice when dealing with summations on
Stirling numbers. Moreover, we study the applicability of this method. We show that in the case of one variable,
it is similar to the Sister Celine method.

We note that Egorychev [7] provided integral representations for many combinatorial numbers and used
them to prove combinatorial identities. Fürst [8] reformulated Egorychev’s method in terms of formal residue
operators. Egorychev transformed sums into geometric series and then evaluated them by some manipulation
rules. We transform sums into hypergeometric sums and find the recurrence relations that they satisfy.

The paper is organized as follows. In Section 2, we describe the residue method. Then, in Section 3, we
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give several examples involving Stirling numbers of both kinds. Section 4 is devoted to deriving two new Stirling
number identities. In Section 5, we consider the q -Stirling numbers as well as other combinatorial sequences
that also fall in the scope of our method. Finally, in Section 6, we study the applicability of the residue method.

2. The method of residue
Let K be a field and K((z)) be the set of formal Laurent series in the indeterminate z over K . For any element

f(z) =

∞∑
n=n0

anz
n ∈ K((z)), (1)

the formal residue operator res
z

(or res if no confusion) is defined by

res f(z) = res
z
f(z) = a−1.

Clearly, the k th coefficient of f(z) can be represented by the formal residue as follows:

ak = res f(z)

zk+1
.

We see that this representation is equivalent to the Cauchy integral representation of ak ,

ak =
1

2πi

∮
|z|=ρ

f(z)

zk+1
dz.

Based on the formal residue, we give a computer-assisted method to derive recurrence relations for sums
involving nonhypergeometric sequences. Consider a definite sum with the form of

f(n) =

∞∑
k=−∞

F (n, k),

where n = (n1, . . . , nr) is the vector of parameters. The residue method consists of the following three steps.

1. Rewrite the summand F (n, k) as res
z
F̃ (n, k, z) , where F̃ (n, k, z) is a hypergeometric term.

2. Take a finite subset S ⊂ Nr and apply the extended Zeilberger algorithm to the similar terms {F̃ (n +

α, k, z)}α∈S , where N denotes the set of nonnegative integers. Here two hypergeometric terms are said
to be similar if their ratio is a rational function. Now, if the algorithm succeeds, we obtain a relation of
the form ∑

α∈S

pα(n)F̃ (n+α, k, z) = ∆kG(n, k, z), (2)

where pα(n) are polynomial coefficients independent of k and z and G(n, k, z) is a hypergeometric term
similar to F̃ (n, k, z) .

3. Summing over k and applying the operator resz , we are led to a recurrence relation for the sum f(n) ,∑
α∈S

pα(n)f(n+α) = res
z
G(n,+∞, z)− res

z
G(n,−∞, z).
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Remark. In most cases, G(n, k, z) is finitely supported and hence we do not need to calculate resz G(n,+∞, z)

and resz G(n,−∞, z) .
To conclude this section, we give an example to illustrate the method of residue. More examples can be

found in Sections 3–5.

Example 1 We have [9, identity (6.15)]

∑
k

(
n

k

)
S2(k,m) = S2(n+ 1,m+ 1), (3)

where S2(n,m) is the Stirling number of the second kind.

Proof It is known that
∞∑

n=k

S2(n, k)z
n =

zk

(1− z)(1− 2z) · · · (1− kz)
.

Therefore,

S2(n, k) = res
z

zk

zn+1(1− z)(1− 2z) · · · (1− kz)
. (4)

Denote the left-hand side of (3) by L(n,m) . We thus have

L(n,m) = res
z

∑
k

(
n

k

)
zm

zk+1
∏m

i=1(1− iz)
.

Now consider the inner summand

C(n,m, k, z) =

(
n

k

)
zm

zk+1
∏m

i=1(1− iz)
.

Applying the extended Zeilberger algorithm to the four similar terms

C(n+ i,m+ j, k, z), 0 ≤ i, j ≤ 1,

we find that

C(n+ 1,m+ 1, k, z)− (m+ 2)C(n,m+ 1, k, z)− C(n,m, k, z) = ∆k
−kzC(n,m, k, z)

(n+ 1− k)(1− (m+ 1)z)
.

Summing over k and applying the formal residue operator, we derive that

−L(n,m)− (m+ 2)L(n,m+ 1) + L(n+ 1,m+ 1) = 0.

This agrees with the recurrence relation satisfied by S2(n+ 1,m+ 1) . Finally, the identity follows by checking
the initial values:

L(0,m) = S2(0,m) = S2(1,m+ 1), L(n, 0) = 1 = S2(n+ 1, 1).

2

We remark that most of the sums appearing in this paper can also be treated by Koutschan’s implementa-
tion of the creative telescoping algorithm on a nonholonomic sequence (for more detail, see [13]). The only excep-
tion is Example 2. We also remark that the extended Zeilberger algorithm has been implemented by Hou. The
corresponding package is available from the URL http://www.combinatorics.net.cn/homepage/hou/apci.html.
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3. Stirling number identities
In this section we shall provide several examples involving Stirling numbers of both kinds to illustrate the residue
method. Recall that

n∑
k=0

S1(n, k)z
k = (z)n = z(z − 1) · · · (z − n+ 1),

and
∞∑

n=k

S2(n, k)z
n =

zk

(1− z)(1− 2z) · · · (1− kz)
,

where S1(n, k) and S2(n, k) are Stirling numbers of the first kind and of the second kind, respectively. We thus
have

S1(n, k) = res
z

(z)n
zk+1

and

S2(n, k) = res
z

zk

zn+1(1− z)(1− 2z) · · · (1− kz)
.

It is worth mentioning that we use the ordinary generating functions of Stirling numbers instead of their
exponential generating functions, which were extensively used in [8]. Let

F1(n, k, z) =
(z)n
zk+1

and F2(n, k, z) =
zk

zn+1(1− z)(1− 2z) · · · (1− kz)
.

We see that both F1(n, k, z) and F2(n, k, z) are hypergeometric terms of n and k . Let N and K be the shift
operators with respect to n and k , respectively. Denote the ring of linear difference operators with rational
coefficients by

K(n, k)⟨N,K⟩ =


I∑

i=0

J∑
j=0

ri,j(n, k)N
iKj : I, J ∈ N, ri,j(n, k) ∈ K(n, k)

 .

Let Ann f(n, k) be the annihilator of f(n, k) , namely,

Ann f(n, k) = {L ∈ K(n, k)⟨N,K⟩ : Lf(n, k) = 0}.

We are now ready to give the following theorem, which is the underlying mechanism of our method.

Theorem 2 We have the following inclusion relations:

AnnS1(n, k) ⊂ AnnF1(n, k, z), AnnS2(n, k) ⊂ AnnF2(n, k, z).

Proof For F1(n, k, z) , it is readily seen that

⟨N − (z − n), zK − 1⟩ ⊂ AnnF1(n, k, z).

Eliminating the parameter z by the left Euclidean division algorithm gives

(NK − 1 + nK)F1(n, k, x) = 0.
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Taking note of Ann(S1(n, k)) = ⟨NK − 1 + nK⟩ (see [11]), we are led to

Ann(S1(n, k)) ⊂ AnnF1(n, k, z).

The second inclusion relation for S2(n, k) can be proved similarly. 2

Given a function F (n, k) , we denote by F̃ (n, k, z) the function obtained from F (n, k) by replacing
S1(n, k) and S2(n, k) with F1(n, k, z) and F2(n, k, z) , respectively. Suppose that there exist Q ∈ K(n, k)⟨N,K⟩
and L ∈ K(n)⟨N⟩ such that

L− (K − 1)Q ∈ AnnF (n, k).

Then we also have
L− (K − 1)Q ∈ Ann F̃ (n, k, z),

which leads to an equation of the form of (2). The extended Zeilberger algorithm will succeed in finding such
L and Q . This fact indicates that the residue method always works as long as the existence of such L and Q

is guaranteed.
With the residue method, we can prove all identities on Stirling numbers that appeared in [11]. Moreover,

we can deal with sums involving products of Stirling numbers, which typically are identities (6.24), (6.25), (6.28),
and (6.29) in [9]. Here we only give two examples.

Example 3 We have [9, identity (6.24)]

∑
k

S1(k,m)S2(n+ 1, k + 1) =

(
n

m

)
. (5)

Proof Denote the left-hand side by L(n,m) . We have

L(n,m) = res
x

res
y

∑
k

xk+1

xn+2
∏k+1

i=1 (1− ix)

(y)k
ym+1

.

For the inner summand F (n,m, k) , Gosper’s algorithm gives

F (n,m, k) = G(n,m, k + 1)−G(n,m, k),

where

G(n,m, k) =
xk

xn+1
∏k

i=1(1− ix)

(y)k
ym+1

1

1− x(1 + y)
.

Since the denominator contains 1− x(1 + y) as a factor, we are unable to deduce a closed form of resx resy G .
However, summing over k from 0 to n , we get

L(n,m) = res
x

res
y

1

(1− x(1 + y))

(
− 1∏n+1

i=1 (1− ix)

(y)n+1

ym
+

1

xn+1ym+1

)
.

Notice that

res
y

res
x

1

(1− x(1 + y))

1∏n+1
i=1 (1− ix)

(y)n+1

ym
= res

y
0 = 0,
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and

res
y

res
x

1

(1− x(1 + y))

1

xn+1ym+1
= res

y

(1 + y)n

ym+1
=

(
n

m

)
.

This completes the proof. 2

Example 4 We have [9, identity (6.28)]

∑
k

(
n

k

)
S2(k, l)S2(n− k,m) =

(
l +m

l

)
S2(n, l +m). (6)

Proof Denote the left-hand side by L(n,m, l) . We have

L(n,m, l) = res
x

res
y

∑
k

(
n

k

)
xlym

xk+1yn−k+1
∏l

i=1(1− ix)
∏m

j=1(1− jy)
.

For the inner summand F (n,m, l, k) , the extended Zeilberger algorithm gives

−F (n,m+ 1, l)− F (n,m, l + 1)− (m+ 2 + l)F (n,m+ 1, l + 1) + F (n+ 1,m+ 1, l + 1) = ∆kG(n,m, l, k),

where

G(n,m, l, k) =

(
n

k

)
−kxlym

(n+ 1− k)xk+1yn−k+1
∏l+1

i=1(1− ix)
∏m+1

j=1 (1− jy)
.

Summing over k and applying the operators resx and resy , we get a recurrence relation:

−L(n,m+ 1, l)− L(n,m, l + 1)− (m+ 2 + l)L(n,m+ 1, l + 1) + L(n+ 1,m+ 1, l + 1) = 0.

It is easy to check that the right-hand side of (6) satisfies the same recurrence relation. Finally, the identity
holds by checking the initial values

L(0,m, l) = δ0,lδ0,m, L(n, 0, l) = S2(n, l), L(n,m, 0) = S2(n,m).

2

4. New identities
In this section, we use two examples to illustrate how to discover new identities by the residue method. In the
first example, we generate new identities by introducing a new parameter in the original summand, while in the
second example, we use Zeilberger’s algorithm to construct new identities, as done by Chen and Sun [2].

We first consider the identity

n∑
k=0

(−1)k
(

2n

n+ k

)
S1(n+ k, k) = (2n− 1)!!, (7)

which was proposed by Kauers and Sheng-Lang Ko as the American Mathematical Monthly Problem 11545. It
was proved by Fürst [8] by the residue representation

S1(n, k) =
n!

k!
res
z

lnk(1 + z)

zn+1
.

In fact, this identity can be generalized as follows.
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Theorem 5 Let n and m be nonnegative integers. Then we have

n∑
k=−m

(−1)k
(

2n

n+ k

)
S1(n+ k, k +m) =

{
(2n− 1)!!, if m = 0,

0, if m ≥ 1.
(8)

Proof Denote the left-hand side of (8) by L(n,m) . By the residue representation, we have

L(n,m) = res
z

n∑
k=−m

(−1)k
(

2n

n+ k

)
(z)n+k

zm+k+1
.

The extended Zeilberger algorithm gives the recurrence relation

2(n+ 1)(2n+ 3)L(n,m)− (2n+ 3)(4n+ 3)

2n+ 1
L(n+ 1,m) + L(n+ 2,m)

+ 2(n+ 1)(2n+ 3)L(n+ 1,m+ 1) = 0. (9)

We now prove that L(n, n − r + 1) = 0 for n ≥ r by induction on the nonnegative integer r . Since
S1(n + k, n + 1 + k) = 0 for any integer k , we have L(n, n + 1) = 0 , i.e. the assertion holds for r = 0 . For
r = 1 , we have

L(n, n) =

n∑
k=−n

(−1)k
(

2n

n+ k

)
= 0, n ≥ 1.

Now suppose that the assertion holds for 1 ≤ r ≤ r0 where r0 ≥ 1 . The recurrence relation (9) implies that

2(n− 1)(2n− 1)L(n− 2, n− r0)−
(2n− 1)(4n− 5)

2n− 3
L(n− 1, n− r0) + L(n, n− r0)

+ 2(n− 1)(2n− 1)L(n− 1, n− r0 + 1) = 0.

By induction, we have

L(n− 2, n− r0) = L(n− 1, n− r0) = L(n− 1, n− r0 + 1) = 0.

Therefore, L(n, n − r0) = 0 , which completes the induction. Notice that the assertion is equivalent to the
statement L(n,m) = 0 for any nonnegative integers n and m ≥ 1 .

For m = 0 , the recurrence relation (9) becomes

2(n+ 1)(2n+ 3)L(n, 0)− (2n+ 3)(4n+ 3)

2n+ 1
L(n+ 1, 0) + L(n+ 2, 0) = 0.

It is easy to check that (2n − 1)!! satisfies this recurrence relation and coincides with the initial values
L(0, 0) = L(1, 0) = 1 . 2

Sitgreaves [18] found the following identity (see also [7]):

n∑
k=0

(
n+m

k

)
(−1)kS2(n+m− k, n− k) = 0, m ≥ 0, n ≥ m+ 1. (10)

From this result, we can establish the following theorem.
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Theorem 6 For nonnegative integers n ≥ m ≥ 0 , we have
n∑

k=0

(
n+m+ 1

k

)
(−1)kS2(n+m− k, n− k) = (−1)n+mm!. (11)

Proof Denoting the left-hand side of (10) by L(n,m) , we have

L(n,m) = res
z

n∑
k=0

(
n+m

k

)
(−1)k

zn−k

zn+m−k+1
∏n−k

i=1 (1− iz)
.

For the inner summand F (n,m, k) , the original Zeilberger algorithm gives

(n+m+ 1)F (n,m, k)− z(m+ 1)F (n,m+ 1, k)− zF (n,m+ 2, k) = ∆k
(n+m+ 1)kF (n,m, k)

(n+m+ 1− k)(n+m+ 2− k)z
.

Summing over k and applying the residue operator, we obtain

(n+m+ 1)L(n,m)− (m+ 1)

n∑
k=0

(
n+m+ 1

k

)
(−1)kS2(n+m− k, n− k)

−
n∑

k=0

(
n+m+ 2

k

)
(−1)kS2(n+m+ 1− k, n− k) = 0.

Denote the left-hand side of (11) by S(n,m) . Substituting L(n,m) = 0 in the above identity, we deduce that

(m+ 1)S(n,m) + S(n,m+ 1) = 0.

Thus, we have
S(n,m+ 1) = (−1)m+1(m+ 1)!S(n, 0).

Note that

S(n, 0) =

n∑
k=0

(
n+ 1

k

)
(−1)kS2(n− k, n− k) =

n∑
k=0

(
n+ 1

k

)
(−1)k = (−1)n.

We finally derive that
S(n,m+ 1) = (−1)n+m+1(m+ 1)!,

as desired. 2

5. More combinatorial sequences
It is readily seen that our approach is also applicable to many other combinatorial sequences as long as the
corresponding generating function is hypergeometric. More generally, the residue operator can be replaced
by any linear operator L . For example, a classical treatment for identities involving harmonic numbers
Hn =

∑n
k=1 1/k (see [15]) is to use the fact

Hn = δ

(
n+ x

x

)
,

where δf(x) = df(x)
dx |x=0 .

Here we list several sequences which could be treated by this method.
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5.1. q -Stirling numbers

A kind of q -analog of Stirling numbers is given by [6, 10]

Sq
1(n, k) = Sq

1(n− 1, k − 1)− [n− 1]Sq
1(n− 1, k), Sq

1(0, k) = δ0,k,

Sq
2(n, k) = Sq

2(n− 1, k − 1) + [k]Sq
2(n− 1, k), Sq

2(0, k) = δ0,k,

where

[n] =
1− qn

1− q
= 1 + q + · · ·+ qn−1.

Their generating functions are

n∑
k=0

Sq
1(n, k)z

k =

n−1∏
k=0

(z − [k]),
∑
n≥k

Sq
2(n, k)z

n =
zk

k∏
i=1

(1− [i]z)

.

Thus, we have

Sq
1(n, k) = res

z

n−1∏
i=0

(z − [i])

zk+1
, Sq

2(n, k) = res
z

zk−n−1

k∏
i=1

(1− [i]z)

.

Note that we also have

AnnSq
1(n, k) ⊂ Ann

n−1∏
i=0

(z − [i])

zk+1
and AnnSq

2(n, k) ⊂ Ann zk−n−1

k∏
i=1

(1− [i]z)

.

Using these representations and the q -analog of the extended Zeilberger algorithm, we can derive recur-
rence relations for sums involving q -Stirling numbers. For instance, let us consider the sum (see [12])

L(n,m) =

n∑
k=m

(−1)n−k

[
k

m

]
q

Sq
1(n, k)q

−k,

where [
k

m

]
q

=
[k][k − 1] · · · [k −m+ 1]

[m][m− 1] · · · [1]

represents the q -binomial coefficients. Our approach gives the recurrence relation

L(n,m) +
q(qm+1 − qm + qn − 1)

q − 1
L(n,m+ 1)− qL(n+ 1,m+ 1) = 0.

Similarly, for the sum

L(n,m) =

n∑
k=0

(−1)n−k

[
n

k

]
q

Sq
2(k,m)q−k,
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we have

(1− qn+1)L(n,m) + L(n+ 1,m) +
(1− qm+1)(1− qn+1)

1− q
L(n,m+ 1)

+
(qm+1 − q2 + q − 1)

q − 1
L(n+ 1,m+ 1)− qL(n+ 2,m+ 1) = 0.

5.2. Exponential functions
Noting that

kn = res
x

1

(1− kx)xn+1
,

we can use the residue method to deal with sums involving kn . For example, consider the sum

L(n,m) =
∑
k

(
m

k

)
kn(−1)m−k.

Applying the extended Zeilberger algorithm to the summand

F (n,m, k) =

(
m

k

)
(−1)m−k

(1− kx)xn+1
,

we find that
−(m+ 1)L(n,m)− (m+ 1)L(n,m+ 1) + L(n+ 1,m+ 1) = 0.

Since m!S2(n,m) satisfies the same recurrence relation and has the same initial values, we finally derive that
(see [9, identity (6.19)]) ∑

k

(
m

k

)
kn(−1)m−k = m!S2(n,m).

5.3. Bernoulli polynomials

Identities involving Bernoulli and Euler numbers were verified in [2]. Here we only point out that we may
also use the extended Zeilberger algorithm to derive differential equations satisfied by the sum. We take the
Bernoulli polynomial Bn(x) as an example. Recall the generating function

∞∑
n=0

Bn(x)
zk

k!
=

zexz

ez − 1
.

We have

L(n, x, y) =
∑
k

(
n

k

)
yn−kBk(x) = res

z

1

ez − 1

∑
k

(
n

k

)
yn−k e

xzk!

zk
.

The extended Zeilberger algorithm generates

∂

∂x
F (n+ 1, k, x, y)− (n+ 1)F (n, k, x, y) = ∆k

(
− (n+ 1)(n+ 1− k − ty)

t(n+ 1− k)
F (n, k, x, y)

)
.
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We thus have
∂

∂x
L(n+ 1, x, y) = (n+ 1)L(n, x, y).

This relation together with the fact L(n, 0, y) = Bn(y) indicates that

∑
k

(
n

k

)
yn−kBk(x) = Bn(x+ y).

6. Applicability of the residue method
We have shown in Section 3 that for sums involving Stirling numbers, the residue method succeeds if the creative
telescoping algorithm works, whereas the converse is uncertain. In this section, we consider sums of the form∑

k

F (n, k)ak,

where F (n, k) is a hypergeometric term and the generating function of ak is independent of k . By the residue
method, we aim to find a finite set S and (k, z) -free polynomial coefficients {pα(n)}α∈S such that

∑
α∈S

pα(n)
F (n+α, k)

zk+1
= ∆kG(n, k, z).

We will show that in most cases, the above equation holds only for G(n, k, z) = 0 . In this case, we have∑
α∈S

pα(n)F (n+α, k) = 0,

which is similar to the equation that appears in the Sister Celine method.
We first give a lemma on the C -finiteness of hypergeometric terms.

Lemma 7 Let f(k) be a hypergeometric term and

f(k + 1)

f(k)
= u

A(k)

B(k)

C(k + 1)

C(k)
(12)

be the GP-representation (see [16] for the definition). If f(k) is C -finite, then

A(k) = B(k) = 1.

Proof Suppose that f(k) is C -finite; that is, there exist constants a0, a1, . . . , ad , not all zeros, such that

a0f(k) + a1f(k + 1) + · · ·+ adf(k + d) = 0.

Dividing f(k) on both sides and substituting (12), we derive that

a0 + a1uz
A(k)

B(k)

C(k + 1)

C(k)
+ a2u

2z
A(k)A(k + 1)

B(k)B(k + 1)

C(k + 1)

C(k)
+ · · · + adu

d

∏d−1
i=0 A(k + i)∏d−1
i=0 B(k + i)

C(k + i)

C(k)
= 0.
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Hence,
d∑

i=0

aiu
iC(k + i)

i−1∏
j=0

A(k + j)

d−1∏
j=i

B(k + j) = 0.

Since A(k) divides all the terms of the left hand side except the first one, it must also divide the first term. By
the definition of GP-representation, A(k) is coprime to C(k) and B(k + j) . We thus deduce that A(k) = 1 .
With a similar discussion, we derive that B(k) = 1 . 2

Now we are ready to give the main theorem.

Theorem 8 Let n = (n1, . . . , nr) and F (n, k) be a hypergeometric term. Suppose that there are a finite set
S ⊆ Nr and (k, z)-free polynomial coefficients {pα(n)}α∈S such that

∑
α∈S

pα(n)
F (n+α, k)

zk+1
= ∆kG(n, k, z). (13)

Let
g(k) =

∑
α∈S

pα(n)F (n+α, k),

and let
g(k + 1)

g(k)
= u

A(k)C(k + 1)

B(k)C(k)

be the GP-representation. Then we have A(k) = B(k) = 1 .

Proof Since F (n, k) is hypergeometric, there exists a rational function R(k, z) (since n is irrelevant, we omit
these variables) such that

G(n, k, z) = R(k, z)F (n, k, z).

Multiplying both sides of (13) by zk+1/F (n, k) , we see that

h(k) = r(k)
R(k + 1, z)

z
−R(k, z)

is independent of z , where

r(k) =
F (n, k + 1)

F (n, k)
.

Suppose that R(k, z) = P (k, z)/Q(k, z) , where P (k, z) and Q(k, z) are relatively prime polynomials in k, z .
Then

r(k)P (k + 1, z)Q(k, z)− zP (k, z)Q(k + 1, z) = h(k)zQ(k + 1, z)Q(k, z). (14)

Noting that r(k) and h(k) are independent of z , by comparing the degrees in z of both sides, we obtain
degz P (k, z) = degz Q(k, z) .

We first prove that z ∤ Q(k, z) . Suppose on the contrary that there is a positive integer m such that
zm | Q(k, z) but zm+1 ∤ Q(k, z) . By (14), we see that zm+1 | P (k+1, z)Q(k, z) . Therefore, z | P (k+1, z) and
hence z | P (k, z) , but this contradicts the condition that P (k, z) and Q(k, z) are relatively prime.
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Then we show that Q(k, z) is independent of k . For any irreducible factor p(k, z) of Q(k, z) , we deduce
from (14) that p(k, z) | zP (k, z)Q(k + 1, z) . Since z ∤ Q(k, z) and P (k, z), Q(k, z) are relatively prime, we
have p(k, z) | Q(k + 1, z) , which implies p(k − 1, z) | Q(k, z) . By iterating the above discussion, we get
p(k − i, z) | Q(k, z) for any nonnegative integer i . Therefore, p(k, z) must be independent of k . Since p(k, z)

is an arbitrary factor of Q(k, z) , we obtain that Q(k, z) is independent of k .
From (14), we see that z | P (k + 1, z) , so we assume that

P (k, z) = z

d∑
i=0

pi(k)z
i, Q(k, z) =

d+1∑
i=0

qiz
i,

where all qi are independent of k . Substituting these expressions into (14) and comparing the coefficient of
each power of z , we find that

r(k)p0(k + 1) = q0h(k), (15)

r(k)p1(k + 1)− p0(k) = q1h(k), (16)

...

−pd(k) = qd+1h(k).

By (15), we have p0(k + 1) = q0h(k)/r(k) . Substituting it into (16), we get

p1(k + 2) = q0
h(k + 1)

r(k)r(k + 1)
+ q1

h(k + 1)

r(k)
.

Continuing this discussion, we finally derive that

q0h(k) + q1r(k)h(k + 1) + q2r(k)r(k + 1)h(k + 2) + · · ·+ qd+1r(k)r(k + 1) · · · r(k + d)h(k + d+ 1) = 0.

Thus, the hypergeometric term

v(k) = h(k)

k−1∏
i=0

r(i)

is C -finite. Clearly,
v(k + 1)

v(k)
=

h(k + 1)

h(k)
r(k) =

g(k + 1)

g(k)
.

By Lemma 7, we deduce that A(k) = B(k) = 1 . 2

For example, we consider the sum

L(n,m) =

n∑
k=0

(
n

k

)
Bm+k,

where Bn is the Bernoulli number defined by

∞∑
n=0

Bn
zn

n!
=

z

ez − 1
.
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Rewrite the sum as

L(n,m) =

n+m∑
k=m

(
n

k −m

)
Bk.

Denote the inner summand by F (n,m, k) . Take

S = {(i, j) : 0 ≤ i, j ≤ 1},

and denote
g(k) =

∑
(i,j)∈S

pi,j(n,m)F (n+ i,m+ j, k).

We find that
g(k + 1)

g(k)
= −k −m− n− 2

k + 1−m

P (k + 1)

P (k)
,

where P (k) is a certain polynomial in k . By Theorem (13), we must have g(k) = 0 . There is a nontrivial
solution

p0,0 = p0,1 = −p1,0,

which implies that
L(n,m) + L(n,m+ 1)− L(n+ 1,m) = 0.

This coincides with the recurrence relation given by Chen and Sun [2], wherein all identities involving only one
Bernoulli number are of this case.
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