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Abstract: In this paper, we mainly investigate the uniqueness problem on meromorphic functions in Cm sharing small
functions with their difference operators or shifts, and we obtain some interesting results that act as some extensions of
previous results from one complex variable to several complex variables.
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1. Introduction and main results
Let f be a meromorphic function in the complex domain. In this paper, we assume that the reader is familiar
with standard notations such as characteristic function T (r, f) , counting function N(r, f) , and fundamental
results of the Nevanlinna theory of meromorphic functions (see [8, 12, 17]). We say that α(z) is a small
function with respect to f if T (r, α) = o(T (r, f)) as r → ∞ outside of a possible exceptional set of finite
logarithmic measure. Usually, S(f) is used to denote the family of all small functions with respect to f .
For two meromorphic functions f, g , if f − α and g − α have the same zeros, counting multiplicity (ignoring
multiplicity), then f and g share the small function α CM (IM).

In the last decades, uniqueness problems on meromorphic functions have been studied deeply due to their
important value in Nevanlinna theory, and many interesting results have been established (see [9, 13, 16, 18]).
As a very active subject, the problems on uniqueness of the entire function sharing values with its derivatives
were initiated by Rubel and Yang[15]. In 1986, Jank et al.[10] obtained the following result:

Theorem 1.1 [10] Let f be a nonconstant entire function, and let a(̸= 0) be a finite constant. If f and f ′

share the value a IM, and f ′′(z) = a whenever f(z) = a , then f = f ′ .

After that, variations and generations for Theorem 1.1 have been extensively studied throughout the last
decades. In [19], Zhong gave an example to show that f ′′ can not be replaced by f (k)(k ≥ 3) in Theorem 1.1.
In addition, Zhong obtained the following result:

Theorem 1.2 [19] Let f be a nonconstant entire function, and let n be a positive integer. If f and f ′ share
a finite, nonzero value a CM, and if f (n)(z) = f (n+1)(z) = a whenever f(z) = a , then f = f (n) .
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In 2001, Li and Yang[9] considered the cases of the higher order derivative and proved the following two
theorems for all entire functions:

Theorem 1.3 [9, Theorem 2.104] Let f be an entire function, let a be nonzero finite value, and let

L(f) = a1f
′ + a2f

′′ + · · ·+ anf
(n) (1.1)

with a1, a2, · · · , an being constants and an ̸= 0 . If f, L(f) , and L′(f) share the value a CM, then
∑n

k=1 ak ̸= 0

and

f(z) =
cez∑n
k=1 ak

+ a− a∑n
k=1 ak

,

or

f(z) = −a

(
n∑

k=1

ak

)
e2z − aez + a,

n∑
k=1

2kak = 0,

where c is a nonzero constant.

Theorem 1.4 [9, Theorem 2.105] Let f be a nonconstant entire function, let a be nonzero finite value, let
n(≥ 2) be a positive integer, and let L(f) be the function defined as in Theorem 1.3. If f, f ′ , and L(f) share
the value a CM, then f must assume the following form:

f(z) = becz − a(1− c)

c
,

where b, c are nonzero constants with
∑n

k=1 akc
k−1 = 1 .

Corresponding to the uniqueness problems on meromorphic functions sharing values with their derivatives,
many authors considered the case of uniqueness of meromorphic functions sharing values or small functions with
their shifts or difference operators, and some significant contributions have been made (see, e.g., [3–5, 14]).

Recently, many authors have paid attention to the uniqueness problems in the case of higher dimension
(see, e.g., [2, 11]). For example, in 2014, Cao[2] obtained difference analogues of the second main theorem for
meromorphic functions in several complex variables, and difference analogues of Picard-type theorems were also
obtained as follows.

Theorem 1.5 [2, Theorem 1.10] Let f be a meromorphic function with hyperorder ρ2(f) < 1 on Cm , and
let τ : Cm → Cm, τ(z) = z + c and c ∈ Cm\{0} satisfy that for any ξ ∈ Sm(1) there exists one c̃ ∈ C1\{0}
such that c = c̃ξ . If three distinct values of f have forward invariant preimages with respect to τ , then f is a
periodic function with period c .

As we mentioned above, a large number of research works on the uniqueness problem have been done
in a complex plane (see, e.g., [3–5, 9, 10, 13, 14, 19]). One may ask whether there exist some corresponding
uniqueness results for meromorphic functions sharing values with their shifts or difference operators in the case
of higher dimension.

The purpose of this paper is to study some uniqueness problems on meromorphic functions in several
complex variables, and some difference uniqueness results can be verified as shown in Theorem 1.6, Theorem
1.7, and Theorem 1.8.
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For a given meromorphic function f : Cm → P1 and nonzero vector c = (c1, c2, · · · , cm) ∈ Cm\{0} , we
define the shift by f(z + c) and the difference operators by

∆cf(z) = f(z1 + c1, · · · , zm + cm)− f(z1, · · · , zm),

∆n
c f(z) = ∆c ◦∆n−1

c f(z), n ∈ N, n ≥ 2,

where z = (z1, z2, · · · zm) ∈ Cm .
Furthermore, we define a difference polynomial in f(z) as follows:

P (f) = a0f(z) + a1f(z + c) + · · ·+ anf(z + nc), (n ∈ N+),

where z ∈ Cm, c ∈ Cm\{0} , and ak(0 ≤ k ≤ n) ∈ C are not all zero complex numbers. Obviously, P (f) can be
regarded as the more general difference polynomial in f . In particular, if ak = Ck

n(−1)n−k(0 ≤ k ≤ n) , then
P (f) = ∆n

c f . Noting that for ∆n
c f ,

∑n
k=0 ak =

∑n
k=0 C

k
n(−1)n−k = 0 , we assume that

∑n
k=0 ak = 0 for some

ak of P (f) in this paper.
In this paper, we use short notations in some necessary cases for brevity as follows:

f(z) := f
0
, f(z + c) := f

1
, · · · , f(z + kc) := f

k
.

First, a different analogue of Theorem 1.3 for meromorphic functions from one complex variable to several
complex variables can be showed as follows.

Theorem 1.6 Let f : Cm → P1 be a nonconstant meromorphic function of finite order and let a(z) , b(z)(̸≡
0) ∈ S(f) be two periodic meromorphic functions with period c , where z, c ∈ Cm . If f(z)− a(z), P (f)− b(z) ,
and ∆c ◦ P (f)− b(z) share 0,∞ CM, then P (f) = ∆c ◦ P (f) .

From Theorem 1.6, the following corollary, which is almost an accurate extension of previous uniqueness
results from one complex variable to several complex variables, is immediately obtained.

Corollary 1.1 Let f : Cm → P1 be a nonconstant meromorphic function of finite order, n ∈ N+ , and
let a(z) , b(z)( ̸≡ 0) ∈ S(f) be two periodic meromorphic functions with period c , where z, c ∈ Cm . If
f(z)− a(z),∆n

c f − b(z) , and ∆n+1
c f − b(z) share 0,∞ CM, then ∆n

c f = ∆n+1
c f .

Furthermore, if P (f) ̸≡ 0 , then by the same conditions in Theorem 1.6, we obtain the following theorem,
which can be seen as an improvement of Theorem 1.6.

Theorem 1.7 Let f : Cm → P1 be a nonconstant meromorphic function of finite order and let a(z) ,
b(z)(̸≡ 0) ∈ S(f) be two periodic meromorphic functions with period c , where z, c ∈ Cm . Assume that
P (f) ̸≡ 0. If f(z)− a(z), P (f)− b(z) , and ∆c ◦ P (f)− b(z) share 0,∞ CM, then

∆cf(z) = f(z)− a(z) +
b(z)

A
or

n∑
k=0

ak4
k = 0,

where A =
∑n

k=0 ak2
k is a nonzero constant.
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In particular, if ak = Ck
n(−1)n−k(0 ≤ k ≤ n) , a(z) ≡ b(z)( ̸≡ 0) , then A = 1 , and Theorem 1.7 can be

rewritten as follows

Corollary 1.2 Let f : Cm → P1 be a nonconstant meromorphic function of finite order and let b(z)( ̸≡ 0) ∈ S(f)

be a periodic meromorphic function with period c , where z, c ∈ Cm . Assume that ∆n
c f ̸≡ 0. If f(z),∆n

c (f) ,
and ∆n+1

c (f) share b(z),∞ CM, then ∆cf(z) = f(z) .

Example 1.1 below shows that the conditions and conclusions in Theorem 1.6 can be satisfied, and it also
implies that the condition P (f) ̸≡ 0 in Theorem 1.7 is necessary.

Example 1.1 Let m = 2, c = (1, 1), z = (z1, z2), a(z) ≡ 1, b(z) ≡ 2 , and f(z) = eπi(z
1+z2) + a(z) . Let

P (f) =
∑n

k=0 akf(z + kc) . Obviously, f(z + kc) = f(z)(k = 0, 1, 2) , ∆cf = 0 , and P (f) = 0 . Thus,

f(z) − a(z) = eπi(z
1+z2), P (f) − b(z) = −2 , and ∆c ◦ P (f) − b(z) = −2 share 0 CM. However, 0 = ∆cf ̸≡

f(z)− a(z) + b(z)
A .

Example 1.2 Let m = 2, c = (1, 0), z = (z1, z2) , and f(z) = e(z
1+z2) ln 2 . Let n = 2 and P (f) =

a0f(z)+a1f(z+c)+a2f(z+2c) . Obviously, f(z+kc) = 2ke(z
1+z2) ln 2(k = 0, 1, 2) and P (f) = e(z

1+z2) ln 2(a0+

2a1 + 22a2) . Hence,
Case 1: a0 = 4, a1 = −5, a2 = 1 , i.e. P (f) ̸≡ ∆2

cf . Let a(z) ≡ 1, b(z) ≡ −2 . Obviously, A = −2 .

f(z)− a(z) = e(z
1+z2) ln 2 − 1 , P (f)− b(z) = −2(e(z

1+z2) ln 2 − 1) , and ∆c ◦ P (f)− b(z) = −2(e(z
1+z2) ln 2 − 1)

share 0 CM. Thus, P (f) = ∆c ◦ P (f) and ∆cf = f .
Case 2: ak = Ck

n(−1)n−k(k = 0, 1, 2) , i.e. P (f) ≡ ∆2
cf . Let a(z) ≡ b(z) . Obviously, f, P (f),∆c◦P (f)

share any small function a(z) CM, and P (f) = ∆cf(z) = f(z) = e(z
1+z2) ln 2 .

The discussion above implies that the examples satisfy all the conditions and the conclusions of Theorem
1.7. From Case 1 and Case 2 in Example 1.2, similarities and differences between P (f) and ∆n

c f can be found.
Therefore, the difference operator P (f) may be seen as the more generalized form of ∆n

c f .
Corresponding to Theorem 1.4, there is also a uniqueness result in several complex variables, as shown

in Theorem 1.8.

Theorem 1.8 Let f : Cm → P1 be a nonconstant meromorphic function of finite order and let a(z) , b(z) ∈ S(f)

be two periodic meromorphic functions with period c , where z, c ∈ Cm . If f(z) − a(z), f(z + c) − a(z) , and

P (f)− b(z) share 0,∞ CM, then f(z+c)−a(z)
f(z)−a(z) = A , where A is a nonzero constant. In particular, if b(z) ̸≡ 0 ,

then f(z) = f(z + c) or
∑n

k=0 akA
k = 0 .

The discussion below implies that the conditions and the conclusions of Theorem 1.8 are reasonable.

Remark 1.1 For the case of b(z) ̸≡ 0 in Theorem 1.8, if P (f) ≡ ∆n
c f , then A = 1 and f(z) = f(z+ c) hold.

On the other hand, if P (f) ̸≡ ∆n
c f , then f(z) = f(z + c) may not hold. For example, let m = 2 , c = (1, 0) ,

z = (z1, z2) , a(z) = 0 , and f(z) = −b(z)e−(z1+z2) ln 3 , and b(z)( ̸≡ 0) is a small periodic function with period
c . Then f(z + c) = 1

3f(z) and f(z + 2c) = 1
9f(z) . Let n = 2 and P (f) = f(z) − 4f(z + c) + 3f(z + 2c) .
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Obviously, P (f) ≡ 0 . Then f(z) − a(z) = −b(z)e−(z1+z2) ln 3, f(z + c) − a(z) = − 1
3b(z)e

−(z1+z2) ln 3 , and

P (f)− b(z) = −b(z) share 0 CM. Note here that A = 1
3 and

∑2
k=0 akA

k = 0 , however f(z) ̸≡ f(z + c) .

Example 1.3 Let m = 2 , c = (c1, c2), z = (z1, z2) , and f(z) = ez
1+z2

+ a(z), and a(z) is a small
periodic function with period c . Let n = 2 and P (f) = a0f(z) + a1f(z + c) + a2f(z + 2c) . Obviously,

f(z + kc) = ek(c
1+c2)ez

1+z2

+ a(z)(k = 1, 2) and P (f) = ez
1+z2

(a0 + a1e
(c1+c2) + a2e

2(c1+c2)) . Hence,
Case 1: b = 0, a0 = 1, a1 = −4, a2 = 3 , i.e. P (f) ̸≡ ∆2

cf . Let a = 2, c = (1, 0) . Then f(z) − a(z) =

ez
1+z2

, f(z + c)− a(z) = eez
1+z2 , and P (f)− b(z) = ez

1+z2

(3e− 1)(e− 1) share 0 CM, and f(z+c)−a(z)
f(z)−a(z) = e .

Case 2: b ̸= 0, a0 = 1, a1 = −4, a2 = 3 , i.e. P (f) ̸≡ ∆2
cf . Let b = 1, c = (πi, πi) . Then f(z) − a(z) =

ez
1+z2

, f(z + c) − a(z) = ez
1+z2 , and P (f) − b(z) = −1 sharing 0 CM holds for any given small periodic

function with period c . Obviously, f(z) = f(z + c) .
Case 3: ak = Ck

n(−1)n−k(k = 0, 1, 2) , i.e. P (f) = ∆2
cf . Similarly, as shown in Case 1 and Case 2, Theorem

1.8 holds for b = 0, a = 2, c = (1, 0) and b = 1, a = 1, c = (πi, πi) , respectively.

The remainder of this paper is organized as follows. In Section 2, basic notions are shown, as well as
some necessary results including some further instructions for Nevanlinna theory in Cm , which play important
roles in the later proofs. In Section 3, we give the proof of Theorem 1.6. In addition, Theorem 1.7 and Theorem
1.8 are proved in Section 4 and the last section, respectively.

2. Basic notions and auxiliary lemmas from Nevanlinna theory

Set ∥z∥ = (|z1|2 + |z2|2 + · · ·+ |zm|2) 1
2 for z = (z1, z2, · · · , zm) ∈ Cm . For r > 0 , define

Bm(r) := {z ∈ Cm|∥z∥ < r}, Sm(r) := {z ∈ Cm|∥z∥ = r}.

Let d = ∂ + ∂ , dc = (4π
√
−1)−1(∂ − ∂) . Thus, ddc =

√
−1
2π ∂∂ . Write

υm(z) := (ddc∥z∥2)m−1, σm(z) := dc log ∥z∥2 ∧ (ddc log ∥z∥2)m−1,

for z ∈ Cm\{0} .
For a divisor ν on Cm , define the following counting function of ν by

N(r, ν) =

∫ r

1

n(t)

t2m−1
dt, (1 < r < ∞),

where

n(t) =

{ ∫
|ν|∩B(t)

ν(z)υm(z), if m ≥ 2,∑
|z|≤t ν(z), if m = 1.

Let f(z) be a nonzero entire function on Cm . For a point z0 ∈ Cm , we write f(z) =
∑∞

i=0 Pi(z − z0) ,
where the term Pi(z) is a homogeneous polynomial of degree i. Denote the zero-multiplicity of f at z0 by
νf (z0) = min{i|Pi ̸= 0} in the sense of [6, Definition 2.1]. Set |νf | := Suppνf , which is a pure (n − 1) -
dimensional analytic subset or empty set.
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Let f(z) be a nonzero meromorphic function on Cm in the sense that f can be written as a quotient of
two relatively prime holomorphic functions. For each z ∈ Cm , write f(z) = (f1(z), f2(z)) where f1(̸≡ 0), f2 are
two relatively prime holomorphic functions such that dim{z ∈ Cm|f1(z) = f2(z) = 0} ≤ m− 2 . Thus, f may
be regarded as a meromorphic mapping f : Cm → P1 such that f−1(∞) ̸= Cm . Define ν0f := νf2 , ν

∞
f := νf1 ,

which are independent of the choice of f1, f2 .
For a meromorphic function f on Cm , we usually write N(r, f) := N(r, ν∞f ) and N(r, 1

f ) := N(r, ν0f ) .
Thus, Jensen’s formula is given as

N(r,
1

f
)−N(r, f) =

∫
Sm(r)

log |f |σm(z)− log |f(0)|,

for all r > 0 , provided that f(0) ̸= 0,∞ . The proximity function of f is defined by

m(r, f) =

∫
Sm(r)

log+ |f |σm(z),

where log+ x = max{logx, 0} for any x > 0 . T (r, f) denotes the Nevanlinna characteristic function of f such
that T (r, f) = m(r, f) +N(r, f) .

In order to prove the main theorems in this paper, the following auxiliary lemmas from Nevanlinna theory
in Cm are needed.

Lemma 2.1 [11, Theorem 3.1] Let f : Cm → P1 be a nonconstant meromorphic function such that f(0) ̸= 0,∞ ,
and let c ∈ Cm, ϵ > 0 . If the hyperorder ς(f) = ς < 2/3 , then∫

∂Bm(r)

log+
∣∣∣∣f(z + c)

f(z)

∣∣∣∣σm(z) = o

(
T (r, f)

r1−
3
2 ς−ϵ

)

where r → ∞ outside of a possible exceptional set E ⊂ [1,+∞) of finite logarithmic measure
∫
E
1/dt < ∞ .

Lemma 2.2 [11, Theorem 4.3] Let f : Cm → P1 be a meromorphic function and let c ∈ Cm, ϵ > 0 . If
hyperorder ς(f) = ς < 2/3 , then

T (r, f(z + c)) = T (r, f) + o

(
T (r, f)

r1−
3
2 ς−ϵ

)
where r → ∞ outside of an exceptional set of finite logarithmic measure.

Lemma 2.3 [9, Theorem 1.26] Let f(z) be a nonconstant meromorphic function in the parabolic manifold M .
Assume that

R(z, w) =
A(z, w)

B(z, w)
.

Then

T (r,Rf ) = max{p, q}T (r, f) +O

 p∑
j=0

T (r, aj) +

q∑
j=0

T (r, bj)

 ,
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where Rf (z) = R(z, f(z)) and two relatively prime polynomials A(z, w), B(z, w) are given respectively as follows:

A(z, w) =

p∑
j=0

aj(z)w
j , B(z, w) =

q∑
j=0

bj(z)w
j .

Lemma 2.4 [1, Corollary 4.5] Let a1(z), a2(z), · · · , an(z) be n meromorphic functions in Cm and g1(z), g2(z), · · · ,
gn(z) be n entire functions in Cm satisfying

n∑
i=1

ai(z)e
gi(z) ≡ 0.

If for all 1 ≤ i ≤ n

T (r, ai) = o(T (r, egj−gk)), j ̸= k,

then ai(z) ≡ 0 for 1 ≤ i ≤ n .

Lemma 2.5 [9, Theorem 1.101] Suppose that f1(z), f2(z), · · · , fn(z) are linearly independent meromorphic
functions in Cm such that

f1 + f2 + · · ·+ fn ≡ 1.

Then for 1 ≤ j ≤ n , R > ρ > r > r0 ,

T (r, fj) ≤ N(r, fj) +

n∑
k=1

{
N(r,

1

fk
)−N(r, fk)

}
+N(r,W )

− N(r,
1

W
) + l log

{
(
ρ

r
)2m−1T (R)

ρ− r

}
+O(1),

where W = Wν1···νn−1
(f1, f2, · · · , fn) ̸≡ 0 is a Wronskian determinant,

n− 1 ≤ l = |ν1|+ · · ·+ |νn−1| ≤
n(n− 1)

2
,

and where
T (r) = max

1≤k≤n
{T (r, fk)}.

The following lemma extends the result due to Halburd and Korhonen[7, Theorem 3.2] on difference
equations from one variable to several variables, which will be used in the later proofs of main results in this
paper frequently.

Lemma 2.6 Let f : Cm → P1 be a nonconstant meromorphic function of finite order satisfying the following
equation:

Q(z, f(z)) = 0, (2.1)

where Q(z, f(z)) is difference polynomial in f(z) , z ∈ Cm . If Q(z, a(z)) ̸≡ 0 for a slowly moving target a(z) ,
then

m

(
r,

1

f − a

)
= S(r, f)

where r → ∞ outside of a possible exceptional set E ⊂ [1,+∞) of finite logarithmic measure
∫
E
1/tdt < ∞ .
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Proof Without loss of generality, assume that the difference polynomial Q(z, f(z)) of degree n can be written
in the following form:

Q(z, f(z)) =

n∑
|I|=0

aIf(z)
i0f(z + c1)

i1 · · · f(z + cl)
il , (2.2)

where I = (i0, i1, · · · , il) ∈ Nl+1 denotes a multiindex with |I| = i0 + i1 + · · · + il, aI = aI(z) being small
functions with respect to f in z ∈ Cm, and cj ∈ Cm(1 ≤ j ≤ l) being some nonzero complex vectors. Taking
g = f − a , then Q(z, f(z)) = Q1(z, g(z)) +Q2(z) , where Q1(z, g(z)) denotes a difference polynomial in g such
that all of its terms are at least of degree one. Therefore, Q(z, g(z)) can be shown as follows:

Q1(z, g(z)) =

n∑
|I|=1

bIg(z)
i0g(z + c1)

i1 · · · g(z + cl)
il , (2.3)

where bI = bI(z) are small functions with respect to f . Note that Q2(z) is a difference polynomial in a(z) ,
aI(z) , and Q1(z, g(z)) = −Q2(z) . Obviously, T (r,Q2) = S(r, f) . On the other hand, when |g(z)| ≤ 1 , we have

∣∣∣∣Q1(z, g(z))

g(z)

∣∣∣∣ =
1

|g(z)|

∣∣∣∣∣∣
n∑

|I|=1

bIg(z)
i0g(z + c1)

i1 · · · g(z + cl)
il

∣∣∣∣∣∣
≤

n∑
|I|=1

|bI |
∣∣∣∣g(z)g(z)

∣∣∣∣i0 ∣∣∣∣g(z + c1)

g(z)

∣∣∣∣i1 · · · ∣∣∣∣g(z + cl)

g(z)

∣∣∣∣il ,
where |I| = i0 + i1 + · · ·+ il ≥ 1 . In view of the definition of m(r, 1/g) , it can be seen that m(r, 1/g) vanishes
on the part of |z| = r where |g(z)| > 1 . Thus, from Lemma 2.1 and T (r,Q2) = S(r, f) , we have

m

(
r,

1

f − a

)
= m

(
r,
1

g

)
≤ m

(
r,
Q1(z, g(z))

g

)
+m

(
r,

1

−Q2(z)

)

≤
n∑

|I|=1

m(r, bI) +

l∑
j=1

ijm

(
r,
g(z + cj)

g(z)

)+ S(r, f)

= S(r, f),

where r → ∞ outside of a possible exceptional set E ⊂ [1,+∞) of finite logarithmic measure
∫
E
1/dt < ∞ .

2

Lemma 2.7 Let α(z) be a polynomial in z , z = (z1, z2, · · · , zm) ∈ Cm . If α(z) is of degree n(≥ 1) , then
deg(α(z + c)− α(z)) < n holds for any given c = (c1, c2, · · · , cm) ∈ Cm .

Proof Without loss of generality, assume that

α(z) =
∑
|I|=n

aI(z
1)i1(z2)i2 · · · (zm)im +

n−1∑
|I|=0

bI(z
1)i1(z2)i2 · · · (zm)im

where aI (not all zero), bI are complex numbers, and I = (i1, · · · , im) ∈ Nm denotes a multiindex with
|I| = i1 + · · · + im . Next, consider the polynomial (z1)i1(z2)i2 · · · (zm)im , i1 + i2 + · · · + im = n. Given

2488



LIU and ZHANG/Turk J Math

c = (c1, c2, · · · , cm) ∈ Cm, assume ij ≥ 1 for all 1 ≤ j ≤ m (if there exists ik = 0 , only consider the rest of the
term). Furthermore, we have

(z1 + c1)i1(z2 + c2)i2 · · · (zm + cm)im

= (z1)i1(z2 + c2)i2 · · · (zm + cm)im + P1,n−1(z)

= (z1)i1(z2)i2(z3 + c3)i3 · · · (zm + cm)im + P2,n−1(z) + P1,n−1(z)

= · · ·

= (z1)i1(z2)i2 · · · (zm)im + Pm,n−1(z) + · · ·+ P2,n−1(z) + P1,n−1(z),

where Pj,n−1(z) (1 ≤ j ≤ m) are some polynomials of degree at most n− 1 . Therefore,

deg((z1 + c1)i1(z2 + c2)i2 · · · (zm + cm)im − (z1)i1(z2)i2 · · · (zm)im) ≤ n− 1.

Similarly to the above discussion, it can be computed that

α(z + c)− α(z) =
∑
|I|=n

aI((z
1 + c1)i1 · · · (zm + cm)im − (z1)i1 · · · (zm)im)

+

n−1∑
|I|=0

bI((z
1 + c1)i1 · · · (zm + cm)im − (z1)i1 · · · (zm)im). (2.4)

From the polynomial in the right side of (2.4), it can be seen that the degree of α(z+c)−α(z) is at most n−1 .
Thus, we complete the proof of Lemma 2.7. 2

3. The proof of Theorem 1.6

Assume P (f) ̸≡ ∆c ◦ P (f) . Obviously, P (f) ̸≡ 0 . By Lemma 2.2, we have

T (r, P (f)) ≤
n∑

k=0

T (r, f(z + kc)) +O(1) ≤ O(T (r, f)). (3.1)

Note that f(z)− a(z), P (f)− b(z) , and ∆c ◦ P (f)− b(z) share 0,∞ CM. Hence, there exist two polynomials
α(z), β(z) , z ∈ Cm such that

P (f)− b(z)

f(z)− a(z)
= eα(z),

∆c ◦ P (f)− b(z)

f(z)− a(z)
= eβ(z). (3.2)

Letting ϕ(z) = P (f)−∆c◦P (f)
f(z)−a(z) , then ϕ(z) = eα(z) − eβ(z) ̸≡ 0 . By

∑n
k=0 ak = 0 and Lemma 2.1, we have

T (r, ϕ) = m(r, ϕ) ≤ m

(
r,

P (f)

f(z)− a(z)

)
+m

(
r,

∆c ◦ P (f)

f(z)− a(z)

)

≤ m

(
r,

n∑
k=0

ak
f(z + kc)− a(z)

f(z)− a(z)

)
+m

(
r,
∆c ◦ P (f)

P (f)
· P (f)

f(z)− a(z)

)
≤ S(r, f) + S(r, P (f)).

Note here that P (f) ̸≡ 0 . Together with (3.1), we know that T (r, ϕ) = S(r, f) .
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Furthermore, by the second main theorem, we have

T (r,
eα

ϕ
) ≤ N(r,

eα

ϕ
) +N(r,

ϕ

eα
) +N(r,

1

eα/ϕ− 1
) + S(r,

eα

ϕ
)

≤ N(r,
ϕ

eβ
) + S(r, f) + S(r, eα)

≤ S(r, f) + S(r, eα).

From the discussion above, it can be seen that T (r, eα) = S(r, f) . Similarly, we conclude that T (r, eβ) = S(r, f) .
Next, the fact that m(r, 1

f−a ) = S(r, f) will be proved.

If a(z) ̸≡ b(z) , by the first equation in (3.2), we have

m(r,
1

f − a
) ≤ m(r,

b

f − a
) +m(r,

1

b
)

≤ m

(
r,

P (f)

f − a

)
+m(r, eα) + +m(r,

1

b
)

= S(r, f).

If a(z) ≡ b(z)( ̸≡ 0) , then the difference polynomial Q(z, g(z)) in g(z) is considered as follows:

Q(z, g(z)) = P (g)− b(z)− eα(z)(g(z)− a(z)).

It follows from (3.2) that Q(z, f(z)) ≡ 0 and Q(z, a(z)) = −b(z) ̸≡ 0 . By Lemma 2.6, m(r, 1
f−a ) = S(r, f)

holds.
On the other hand, (3.2) can be rewritten as follows:

P (f(z)) = b(z) + eα(z)(f(z)− a(z)), ∆c ◦ P (f(z)) = b(z) + eβ(z)(f(z)− a(z)).

Then it can be verified that

P (f(z + c)) = b(z) + eα(z+c)(f(z + c)− a(z)),

P (f(z + c)) = ∆c ◦ P (f(z)) + P (f(z))

= 2b(z) + (eα(z) + eβ(z))(f(z)− a(z)).

Note here that a(z)and b(z)(̸≡ 0) ∈ S(f) are two periodic meromorphic functions with period c . Therefore,
we can conclude that

f(z + c)− a(z) = (eα(z)−α(z+c) + eβ(z)−α(z+c))(f(z)− a(z)) + b(z)e−α(z+c). (3.3)

To simplify the above equality, we set

g(z) = eα(z)−α(z+c) + eβ(z)−α(z+c), h(z) = b(z)e−α(z+c). (3.4)

Thus, f(z + c)− a(z) = g(z)(f(z)− a(z)) + h(z) .
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For c ∈ Cm , f : Cm → P1 , we use the short notations for brevity:

f(z) := f
0
, f(z + c) := f

1
, · · · , f(z + kc) := f

k
.

From (3.3), we have

f
1 − a = g0(f

0 − a) + h
0
,

f
2 − a = g1(f

1 − a) + h
1
= g0g1(f

0 − a) + h
0
g1 + h

1
,

f
3 − a = g1g2(f

1 − a) + h
1
g2 + h

2
= g0g1g2(f

0 − a) + h
0
g1g2 + h

1
g2 + h

2
.

Now apply induction for the positive integer k to prove

f
k − a = g0g1g2 · · · gk−1(f

0 − a) + h
0
g1g2 · · · gk−1

+ h
1
g2g3 · · · gk−1 + h

2
g3g4 · · · gk−1 + · · · (3.5)

+ h
k−2

gk−1 + h
k−1

.

For j = 1 , f
1 − a = g0(f

0 − a) + h
0 holds.

For j = k − 1(k ≥ 2) , assume that

f
k−1 − a = g0g1g2 · · · gk−2(f

0 − a) + h
0
g1g2 · · · gk−2

+ h
1
g2g3 · · · gk−2 + h

2
g3g4 · · · gk−2 + · · ·

+ h
k−3

gk−2 + h
k−2

.

Then we deduce that

f
k − a = g1g2g3 · · · gk−1(f

1 − a) + h
1
g2g3 · · · gk−1

+ h
2
g3g4 · · · gk−1 + h

3
g4g5 · · · gk−1 + · · ·

+ h
k−2

gk−1 + h
k−1

.

Substituting f
1 − a = g0(f

0 − a) + h
0 into the above equality,

f
k − a = g0g1g2 · · · gk−1(f

0 − a) + h
0
g1g2 · · · gk−1

+ h
1
g2g3 · · · gk−1 + h

2
g3g4 · · · gk−1 + · · ·

+ h
k−2

gk−1 + h
k−1

.

Thus, (3.5) is proved.
For the sake of simplicity of computation, we set

γk = g0g1g2 · · · gk−1, (3.6)

ζk = h
0
g1g2 · · · gk−1 + h

1
g2g3 · · · gk−1 + · · ·+ h

k−2
gk−1 + h

k−1
. (3.7)

Thus, f
k − a = γk(f

0 − a) + ζk . In particular, γ0 = 1, ζ0 = 0 .
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By Lemma 2.2, and T (r, eα) = S(r, f) , T (r, eβ) = S(r, f) , we have

T (r, g) = S(r, f), T (r, h) = S(r, f).

Furthermore, we obtain that for all k ≥ 0 ,

T (r, γk) = S(r, f), T (r, ζk) = S(r, f). (3.8)

By the definition of P (f) , we have

P (f)− b =

n∑
k=0

ak(f
k − a)− b = (f

0 − a)

n∑
k=0

akγk +

n∑
k=0

akζk − b. (3.9)

Set P0(f) = P (f) − b − (f − a)

n∑
k=0

akγk. If
n∑

k=0

akζk − b ̸≡ 0, then P0(f) ̸≡ 0. Owing to P (f) − b and f − a

sharing 0 CM, N(r, 1
f−a ) ≤ N(r, 1

P0(f)
) can be verified. Hence, by (3.8) and m(r, 1

f−a ) = S(r, f) , we have

T (r, f) + S(r, f) = N(r,
1

f − a
) ≤ N(r,

1

P0(f)
)

= N

(
r,

1∑n
k=0 akζk − b

)
≤ S(r, f),

which yields a contradiction. Therefore, we have

n∑
k=0

akζk − b ≡ 0. (3.10)

Together with (3.2) and (3.9), we have
n∑

k=0

akγk = eα. (3.11)

Noting that γk = g0g1g2 · · · gk−1 , (3.11) can be rewritten as follows:

a0 + a1g
0 + a2g

0g1 + a3g
0g1g2 + · · ·+ ang

0g1 · · · gn−1 = eα, (3.12)

where g0 = eα
0−α1

(1 + eβ
0−α0

).

We consider it in two cases.
Case 1: deg(β − α) ≥ deg(α) . Letting ω = β − α , it follows from Lemma 2.7 that for any i ̸= j ,

deg(αi − αj) < deg(α) ≤ deg(ω), (3.13)

deg(ωi − ωj) < deg(ω).
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Thus, gk(0 ≤ k ≤ n) can be represented as follows:

g0 = eα
0−α1

(1 + eω
0

) := η0 + θ0e
ω0

,

g1 = eα
1−α2

(1 + eω
1

) = eα
1−α2

(1 + eω
0

· eω
1−ω0

) := η1 + θ1e
ω0

,

g2 = eα
2−α3

(1 + eω
2

) = eα
2−α3

(1 + eω
0

· eω
2−ω0

) := η2 + θ2e
ω0

,

...
...

... (3.14)

gn−2 = eα
n−2−αn−1

(1 + eω
0

· eω
n−2−ω0

) := ηn−2 + θn−2e
ω0

,

gn−1 = eα
n−1−αn

(1 + eω
0

· eω
n−1−ω0

) := ηn−1 + θn−1e
ω0

,

where ηk = eα
k−αk+1

, θk = eα
k−αk+1 · eωk−ω0 for all 0 ≤ k ≤ n− 1 .

Subcase 1.1: deg(ω) > deg(α) ≥ 0 . Obviously, deg(ω) ≥ 1, T (r, eα) = o(T (r, eω)) . In view of the definitions

of ηk, θk(0 ≤ k ≤ n − 1) in (3.14), we conclude that T (r, ηk) = o(T (r, eω)) and T (r, θk) = o(T (r, eω)) for all
0 ≤ k ≤ n− 1 .

Substituting g0, g1, · · · , gn−1 into (3.12), we have

eα = a0 + a1(η0 + θ0e
ω) + a2(η0 + θ0e

ω)(η1 + θ1e
ω) + · · ·

+ an(η0 + θ0e
ω)(η1 + θ1e

ω) · · · (ηn−1 + θn−1e
ω) (3.15)

= b0 + b1e
ω + b2e

2ω + b3e
3ω + · · ·+ bne

nω,

where T (r, bk) = o(T (r, eω)) for all 0 ≤ k ≤ n− 1 . In particular,

b0 = a0 + a1η0 + a2η0η1 + · · ·+ anη0η1 · · · ηn−1

= a0 + a1e
α0−α1

+ a2e
α0−α1

eα
1−α2

+ · · ·+ ane
α0−α1

· · · eα
n−1−αn

(3.16)

= a0 + a1e
α0−α1

+ a2e
α0−α2

+ · · ·+ ane
α0−αn

.

Applying Lemma 2.4 to (3.15), it can be seen that b0 − eα ≡ 0, bk ≡ 0(1 ≤ k ≤ n) .

If eα( ̸= 0) is a constant, then for all 0 ≤ k ≤ n − 1 , ηk = eα
k−αk+1 ≡ 1 and b0 =

∑n
k=0 ak ≡ 0 . Thus,

eα = b0 ≡ 0 , which is a contradiction.
If eα(̸= 0) is not a constant, i.e. α is a nonconstant polynomial, from (3.16),

a0 + a1e
α0−α1

+ a2e
α0−α2

+ · · ·+ ane
α0−αn

= eα.

Hence, by (3.13)

T (r, eα) = T (r, a0 + a1e
α0−α1

+ a2e
α0−α2

+ · · ·+ ane
α0−αn

)

≤ o(T (r, eα)),

which is impossible.
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Subcase 1.2: deg(ω) = deg(α) = 0 .

Obviously, eβ is also a constant. Hence, we can assume that eα = T1, e
β = T2 , where T1, T2 are

two distinct complex numbers for eα ̸≡ eβ . In view of (3.4), we deduce that gk = g0 = g ≡ 1 + T2

T1
and

h
k
= h

0
= h ≡ b

T1
for all 0 ≤ k ≤ n− 1. Together with (3.6),

γk = gk = (1 +
T1

T2
)k

ζk = h(1 + g + g2 + · · ·+ gk−1) =
h

1− g
(1− gk).

Noting that b(z) ̸≡ 0 and
∑n

k=0 ak = 0 , by (3.11) and (3.10),

T1 =

n∑
k=0

akg
k,

T2 =
T2

b
· b = T2

b
·

n∑
k=0

ak
h(1− gk)

(1− g)
=

n∑
k=0

akg
k,

which yields a contradiction for T1 ̸= T2 .
Subcase 1.3: deg(ω) = deg(α) ≥ 1

For this case, a contradiction can be obtained in a similar way as shown in Subcase 1.1. Here, we prove
it in a different way.

Obviously, eα is not a constant. From (3.12) and (3.14), we have

eα = b0 + b1e
ω + b2e

2ω + b3e
3ω + · · ·+ bne

nω, (3.17)

where T (r, bk) = o(T (r, eω)) for all 0 ≤ k ≤ n− 1 . In particular,

b0 = a0 + a1e
α0−α1

+ a2e
α0−α2

,

bn = ane
α0−αn

· eω
1+···+ωn−1−(n−1)ω0

. (3.18)

Next, assume that deg(jω − α) = deg(ω) ≥ 1 for all 0 ≤ j ≤ n . Let φ0 = b0, φ1 = b1e
ω, φ2 =

b2e
2ω, · · · , φn = bne

nω, φn+1 = −eα ; thus,
∑n+1

k=0 φk = 0 . From basic linear algebra, we deduce that there exist
a set κ ⊂ {0, 1, 2, · · · , n} and some nonzero complex numbers λk(k ∈ κ) such that

φn+1 =
∑
k∈κ

λkφk, (3.19)

and {φk|k ∈ κ} is linearly independent. Dividing both of the two sides of (3.19) by φn+1 , we have

1 =
∑
k∈κ

λk
φk

φn+1
=
∑
k∈κ

λkbke
kω−α.
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Note that {λkbke
kω−α}k∈κ is linearly independent. In addition, it is not difficult to verify that zeros and poles

of {λkbke
kω−α}(k ∈ κ) and their Wronskian determinant come only from the zeros and poles of bk(k ∈ κ) .

Then by Lemma 2.5 and T (r, bk) = o(T (r, eω)) for all 0 ≤ k ≤ n− 1 , we have

T (r, λkbke
kω−α) ≤ O

(∑
k∈κ

T (r, bk)

)
= o(T (r, ew)).

This is a desired contradiction for deg(kω − α) = deg(ω)(k ∈ κ) . Hence, there exists k0 ∈ {1, 2, · · · , n} such
that deg(k0ω − α) < deg(ω) . Then eα = ek0ω · eα−k0ω := b∗k0

ek0ω , where T (r, bk0
) = o(T (r, eω)) . Thus, (3.17)

can be rewritten as follows:

b0 + b1e
ω + b2e

2ω + · · ·+ (bk0 − b∗k0
)ek0ω + · · ·+ bne

nω = 0,

where T (r, bk) = o(T (r, eω)) for all 0 ≤ k ≤ n− 1 .
By Lemma 2.4, b0 ≡ 0, b1 ≡ 0, · · · , bk0

− b∗k0
≡ 0, · · · , bn ≡ 0 .

If k0 ̸= n , then by (3.18), bn = ane
α0−αn · eω1+···+ωn−1−(n−1)ω0 ̸= 0 , which yields a contradiction for

bn ≡ 0 .
If k0 = n , i.e. deg(nω − α) < deg(ω) , then by (3.7) and (3.14), we have

ζk = h
0
(η1 + θ1e

ω)(η2 + θ2e
ω) · · · (ηk−1 + θk−1e

ω)

+ h
1
(η2 + θ2e

ω)(η3 + θ3e
ω) · · · (ηk−1 + θk−1e

ω)

+ · · ·+ h
k−2

(ηk−1 + θk−1e
ω) + h

k−1
,

where ηk, θk(0 ≤ k ≤ n−1) are small functions with respect to eω . By (3.4) and some calculation, ζk(1 ≤ k ≤ n)

can be rewritten in a new form:

ζk = be−α(τ0 + τ1e
ω + τ2e

2ω + · · ·+ τk−1e
(k−1)ω),

where τj(0 ≤ j ≤ k − 1) are polynomials of ηj , θj , e
α−αj

(0 ≤ j ≤ k − 1) . Obviously, T (r, τj) = o(T (r, eω))(0 ≤
j ≤ k − 1) . Substituting ζk into (3.10), we get

be−α
n∑

k=0

ak(τ0 + τ1e
ω + τ2e

2ω + · · ·+ τk−1e
(k−1)ω) = b. (3.20)

Noting here b(z) ̸≡ 0 , a routine computation yields

d0 + d1e
ω + d2e

2ω + · · ·+ dn−1e
(n−1)ω = eα, (3.21)

where T (r, dj) = o(T (r, eω))(0 ≤ j ≤ n− 1) .
On the other hand, eα = eα−nω · enω := −dne

nω(dn ̸= 0) . It follows from deg(nω − α) < deg(ω)
that T (r, dn) = o(T (r, eω)) . Thus, (3.21) turns into

∑n
k=0 dke

kω = 0 . Applying Lemma 2.4, we have
dk ≡ 0(0 ≤ k ≤ n) , which is impossible for dn ̸≡ 0 .

Case 2: deg(β − α) < deg(α) . In view of g0 = eα
0−α1

(1 + eβ
0−α0

) , it can be seen that T (r, g0) = o(T (r, eα)) .
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Thus, T (r, gk) = o(T (r, eα)) and T (r, g0g1 · · · gk) = o(T (r, eα)) for all 0 ≤ k ≤ n− 1 . Together with (3.12), we
have

T (r, eα) = T (r, a0 + a1g
0 + a2g

0g1 + a3g
0g1g2 + · · ·+ ang

0g1 · · · gn−1)

≤ o(T (r, eα)),

which is impossible. That completes the proof of Theorem 1.6.

4. The proof of Theorem 1.7

Set g(z) = f(z) + b(z)− a(z) . It follows from the definition of P (f) and ∆c ◦ P (f) that

g(z)− b(z) = f(z)− a(z),

P (g(z))− b(z) = P (f(z))− b(z),

∆c ◦ P (g(z))− b(z) = ∆c ◦ P (f(z))− b(z).

Note that f(z)−a(z), P (f)−b(z) , and ∆c◦P (f)−b(z) share 0,∞ CM. This means that g , P (g) and ∆c◦P (g)

share b(z),∞ CM. From Theorem 1.6, there exists a polynomial α(z) , z ∈ Cm such that

P (g)− b(z)

g(z)− b(z)
= eα(z),

∆c ◦ P (g)− b(z)

g(z)− b(z)
= eα(z).

The above equality can be rewritten as follows:

P (g) = eα(g − b) + b, ∆c ◦ P (g) = eα(g − b) + b. (4.1)

On the other hand,

∆c ◦ P (g) = P (g(z + c))− P (g(z)) = eα
1

(g1 − b)− eα(g − b).

Owing to the second equality of (4.1), we can conclude that

g1 = g(z + c) = 2(g − b)eα−α1

+ b(1 + e−α1

). (4.2)

Applying the induction, we have for 0 ≤ k ≤ n

gk = g(z + kc) = 2k(g − b)eα−αk

+ b(2k − 1)e−αk

+ b.

One can complete the proof similarly to the proof of Theorem 1.6, so we omit the details.
Substituting gk into P (g) and ∆c ◦ P (g) , we have the following:

P (g) =

n∑
k=0

akg
k =

n∑
k=0

ak(2
k(g − b)eα−αk

+ b(2k − 1)e−αk

+ b)

= (g − b)

(
n∑

k=0

ak2
keα−αk

)
+ b

(
n∑

k=0

ak(2
k − 1)e−αk

)
,
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∆c ◦ P (g) = P (g(z + c))− P (g(z)) =

n∑
k=0

akg
k+1 −

n∑
k=0

akg
k

= −a0g +

n−1∑
k=0

(ak − ak+1)g
k+1 + ang

n+1

= (g − b)

(
n−1∑
k=0

(ak − ak+1)2
k+1eα−αk+1

+ an2
n+1eα−αn+1

− a0

)

+ b

(
n−1∑
k=0

(ak − ak+1)(2
k+1 − 1)e−αk+1

+ an(2
n+1 − 1)e−αn+1

)

= (g − b)

(
n∑

k=0

ak2
keα−αk

(2eα
k−αk+1

− 1)

)

+ b

(
n∑

k=0

ak((2
k+1 − 1)e−αk+1

− (2k − 1)e−αk

)

)
.

For brevity, set

An =

n∑
k=0

ak2
keα−αk

, Bn =

n∑
k=0

ak(2
k − 1)e−αk

A∗
n =

n∑
k=0

ak2
keα−αk

(2eα
k−αk+1

− 1) (4.3)

B∗
n =

n∑
k=0

ak((2
k+1 − 1)e−αk+1

− (2k − 1)e−αk

).

Thus, P (g) and ∆c ◦ P (g) can be rewritten as follows:

P (g) = (g − b)An + bBn,

∆c ◦ P (g) = (g − b)A∗
n + bB∗

n.

Together with (4.1), we have

(An − eα)g − b(1−Bn) = 0, (4.4)

(A∗
n − eα)g − b(1−B∗

n) = 0,

which yields

(An − eα)(1−B∗
n) = (1−Bn)(A

∗
n − eα). (4.5)
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On the other hand, it follows from (4.3) that

eαBn =

n∑
k=0

ak(2
k − 1)eα−αk

= An −
n∑

k=0

ake
α−αk

= An − eαP (e−α)

eαB∗
n =

n∑
k=0

ak((2
k+1 − 1)eα−αk+1

− (2k − 1)eα−αk

)

= A∗
n −

n∑
k=0

ake
α−αk+1

+

n∑
k=0

ake
α−αk

= A∗
n − eα∆c ◦ P (e−α).

Furthermore, substituting Bn, B
∗
n into (4.5), we conclude that

(An − eα)∆c ◦ P (e−α) = (A∗
n − eα)P (e−α). (4.6)

In addition, we can deduce that

A∗
n = eα

n∑
k=0

ak2
k+1e−αk+1

−An.

Thus, (4.6) can be rewritten as follows:

e−αAnP (e−α1

) + P (2e−α − e−α1

) =

n∑
k=0

ak2
k+1e−αk+1

P (e−α).

Substituting An into the above equality, we have

P (2e−α − e−α1

) =

n∑
k=0

ak2
k+1e−αk+1

P (e−α)−
n∑

k=0

ak2
ke−αk

P (e−α1

).

Setting dk = 2keα
n+1−αk

(0 ≤ k ≤ n+ 1) , the above equality can be shown as follows:

eα
n+1

P (2e−α − e−α1

) =

n∑
k=0

akdk+1P (e−α)−
n∑

k=0

akdkP (e−α1

). (4.7)

Case 1: α is a constant.
Obviously, eα = A(̸= 0) . From (4.2), we have

∆cg = g1 − g = 2(g − b) + b(1 +
1

A
)− g

= g − b+
b

A
,

which implies ∆cf(z) = f(z)− a(z) + b(z)
A . Furthermore, by (4.3) and (4.4),

An =

n∑
k=0

ak2
k, Bn =

1

A

n∑
k=0

ak2
k,

(An −A)g − b

(
1− An

A

)
= 0.
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If An ̸= A , then g = − b
A . Therefore, T (r, g) ≤ O(T (r, b)) = S(r, g) , which is impossible. Hence, A = An =∑n

k=0 ak2
k is a nonzero constant. Thus, the first conclusion of Theorem 1.7 holds.

Case 2: α is nonconstant polynomial.

In this case, for any 0 ≤ i < j ≤ n+ 1 , we have T (r, eα
i−αj

) = S(r, eα) . Hence, T (r, dk) = S(r, eα)(0 ≤
k ≤ n+ 1) . Therefore, (4.7) can be rewritten as follows:

tn+2 = t0e
−α + t1e

−α1

+ · · ·+ tne
−αn

+ tn+1e
−αn+1

, (4.8)

where T (r, tk) = S(r, eα)(0 ≤ k ≤ n+ 2) and tn+2 = eα
n+1

P (2e−α − e−α1

) .
Subcase 2.1: tn+2 ̸≡ 0 . By (4.8), we have

T (r, eα) = m(r, eα)

= m

(
r,
t0 + t1e

α−α1

+ · · ·+ tne
α−αn

+ tn+1e
α−αn+1

tn+2

)

≤ m(r,
1

tn+2
) +

n+1∑
k=0

m(r, tk) +

n+1∑
k=1

m(r, eα−αk

) + S(r, eα)

≤ S(r, eα),

which yields a desired contradiction.
Subcase 2.2: tn+2 ≡ 0 . In this case, we have

0 = P (2e−α − e−α1

) = 2a0e
−α0

+

n−1∑
k=0

(2ak+1 − ak)e
−αk+1

− ane
−αn+1

.

If deg(αi − αj) > 0 holds for any 0 ≤ i < j ≤ n+ 1 , then by Lemma 2.4, we have

2a0 = 0, 2a1 − a0 = 0

· · · · · ·
2an − an−1 = 0, −an = 0,

which implies ak = 0(0 ≤ k ≤ n) , a contradiction.

Thus, there exist i0, j0 such that deg(αi0 − αj0) = 0 . We may assume that eα
0−α1

= B , and

eα
i−αj

= Bj−i for any 0 ≤ i, j ≤ n. Furthermore, by some calculation, we have the following:

P (2e−α − e−α1

) = (2−B)e−α
n∑

k=0

akB
k.

Since P (2e−α − e−α1

) = 0 , we have
∑n

k=0 akB
k = 0 or B = 2 .

If
∑n

k=0 akB
k = 0 , by (4.3) and (4.4), Bn = e−αAn and g = b(1−Bn)

An−eα = −be−α . Hence, gk = −be−αk
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and

P (f) = P (g) =

n∑
k=0

akg
k = −b

n∑
k=0

ake
−αk

= −be−α
n∑

k=0

ake
α−αk

= −be−α
n∑

k=0

akB
k

= 0,

which is impossible for the hypothesis.
If B = 2 , then from the discussion above, it can be seen that

∑n
k=0 ak2

k ̸= 0 . On the other hand,

P (e−α) =

n∑
k=0

ake
−αk

= e−α
n∑

k=0

ake
α−αk

= e−α
n∑

k=0

ak2
k,

P (e−α1

) =

n∑
k=0

ake
−αk+1

= e−α
n∑

k=0

ake
α−αk+1

= 2e−α
n∑

k=0

ak2
k.

Obviously, ∆c ◦ P (e−α) = P (e−α)(̸= 0) . Furthermore, owing to (4.6), we have An = A∗
n . From (4.3), we get

An =
∑n

k=0 ak4
k and A∗

n = 3
∑n

k=0 ak4
k . It can be concluded that An =

∑n
k=0 ak4

k = 0 . Thus, we complete
the proof of Theorem 1.7.

5. The proof of Theorem 1.8

Since f(z)−a(z), f(z+ c)−a(z) , and P (f)− b(z) share 0,∞ CM, there exist two polynomials α(z), β(z) such
that

f(z + c)− a(z)

f(z)− a(z)
= eα(z),

P (f)− b(z)

f(z)− a(z)
= eβ(z). (5.1)

By the above equalities and Lemma 2.1, we deduce that

T (r, eα) = m(r, eα) = S(r, f).

By the first equality of (5.1), we can deduce that for any k(≥ 1)

f
k − a

f − a
=

f
k − a

f
k−1 − a

· · · f
1 − a

f − a
= e

∑k−1
j=0 αj

.

Here, we use the short notations mentioned above for brevity. Thus, P (f) can be rewritten as follows:

P (f) =

(
a0 +

n∑
k=1

ake
∑k−1

j=0 αj

)
(f − a). (5.2)

Together with the second equality of (5.1),(
eβ − a0 −

n∑
k=1

ake
∑k−1

j=0 αj

)
(f − a) + b ≡ 0. (5.3)
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Case 1: b(z) ≡ 0 . By the fact that f − a ̸≡ 0 and (5.3), we have

a0 + a1e
α + a2e

α+α1

+ · · ·+ ane
∑n−1

k=0 αk

= eβ . (5.4)

If α is a constant, then Theorem 1.8 holds. Hence, we assume that α is not a constant, i.e. deg(α) ≥ 1 . (5.4)
can be rewritten as follows:

b0 + b1e
α + b2e

2α + · · ·+ bne
nα = eβ , (5.5)

where b0 = a0, bk = e
∑k−1

j=0 (α
j−α)( ̸= 0) for 1 ≤ k ≤ n . It follows from Lemma 2.7 that T (r, bk) = S(r, eα) for

0 ≤ k ≤ n .
Subcase 1.1: b0 ̸= 0 .

From (5.5), we conclude that T (r, eβ) = nT (r, eα) + S(r, eα) . Applying the second main theorem, we
have

nT (r, eα) = T (r, b0 + b1e
α + b2e

2α + · · ·+ bne
nα)

≤ N(r, eβ) +N(r,
1

eβ
) +N(r,

1

eβ − b0
) + S(r, eβ)

≤ N

(
r,

1

eα(b1 + b2eα + · · ·+ bne(n−1)eα)

)
+ S(r, eα)

≤ T (r, b1 + b2e
α + · · ·+ bne

(n−1)eα) + S(r, eα)

≤ (n− 1)T (r, eα) + S(r, eα),

which yields a contradiction for α is not a constant.
Subcase 1.2: b0 = 0 .

Obviously, (5.5) can be written as follows:

b1 + b2e
α + · · ·+ bne

(n−1)α = eβ−α. (5.6)

It is not difficult to see that deg(β − α) ≤ deg(α) . Therefore, if deg(β − α) = deg(α) , then n ≥ 2 . By Lemma
2.3,

(n− 1)T (r, eα) = T (r, b1 + b2e
α + · · ·+ bne

(n−1)α)

≤ N(r, eβ−α) +N(r,
1

eβ−α
) +N(r,

1

eβ−α − b1
) + S(r, eα)

≤ N

(
r,

1

eα(b2 + b3eα + · · ·+ bne(n−2)eα)

)
+ S(r, eα)

≤ T (r, b2 + b3e
α + · · ·+ bne

(n−2)eα) + S(r, eα)

≤ (n− 2)T (r, eα) + S(r, eα),

which is impossible. Hence, deg(β − α) < deg(α). Thus, (5.6) can be rewritten as follows:

b1 − eβ−α + b2e
α + · · ·+ bne

(n−1)eα = 0. (5.7)
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Applying Lemma 2.4, it can be seen that b1 = eβ−α , bk ≡ 0(2 ≤ k ≤ n) , which contradicts the fact that

bk = e
∑k−1

j=0 (α
j−α) ̸= 0(1 ≤ k ≤ n) .

Case 2: b(z) ̸≡ 0 .
In this case, all we need is to prove that eα ≡ A, and A = 1 or

∑n
k=0 akA

k = 0. From (5.1), we have

T (r, eβ) = m(r, eβ) ≤ m

(
r,

P (f)

f − a

)
+m

(
r,

1

f − a

)
+ S(r, f)

≤
n∑

k=0

m

(
r,
f
k − a

f − a

)
+ T (r, f) + S(r, f)

≤ T (r, f) + S(r, f).

Subcase 2.1: T (r, eβ) = S(r, f) .

If eβ − a0 −
∑n

k=1 ake
∑k−1

j=0 αj

̸≡ 0 , then from (5.3),

f =
−b

eβ − a0 −
∑n

k=1 ake
∑k−1

j=0 αj
+ a,

which implies T (r, f) = S(r, f) , a contradiction. Thus,

eβ = a0 +

n∑
k=1

ake
∑k−1

j=0 αj

.

It follows from (5.3) that b(z) ≡ 0 , a contradiction.
Subcase 2.2: T (r, eβ) ̸= S(r, f) .

If α is a constant, then we may assume that eα = A(̸= 0) . From (5.2), we have

P (f) = (f − a)

n∑
k=0

akA
k

P (f(z + c)) = (f
1 − a)

n∑
k=0

akA
k.

Together with the second equality of (5.1), we deduce

b = (f − a)

(
n∑

k=0

akA
k − eβ

)
,

b = (f − a)A

(
n∑

k=0

akA
k − eβ

1

)
, (5.8)

which implies (1 − A)

n∑
k=0

akA
k = eβ(1 − Aeβ

1−β) . By Lemma 2.4, we have (1 − A)
∑n

k=0 akA
k = 0 . Hence,

A = 1 or
∑n

k=0 akA
k = 0 .
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If α is not a constant, then it follows from T (r, eβ) ̸= S(r, f) that

eβ ̸≡ a0 +

n∑
k=1

ake
∑k−1

j=0 αj

.

Therefore, by (5.3), we have

f − a =
−b

eβ − a0 −
∑n

k=1 ake
∑k−1

j=0 αj
.

Furthermore, by the first equality of (5.1), we have

eα =
f
1 − a

f − a
=

−b

eβ
1−a0−

∑n
k=1 ake

∑k
j=1

αj

−b

eβ−a0−
∑n

k=1 ake
∑k−1

j=0
αj

.

The above equality can be rewritten as follows:

eα+β
1

− eβ = a0(e
α − 1) +

n∑
k=1

ake
∑k−1

j=0 αj

(eα
k

− 1).

From the right side of the above equality and T (r, eα) = S(r, f) , it can be seen that eβ(eα+β
1−β−1) = eα+β

1

−eβ

is small function with respect to f . By Lemma 2.7 and T (r, eβ) ̸= S(r, f) , we deduce that eα+β
1−β − 1 =

S(r, eβ) . If eα+β
1−β − 1 ̸≡ 0 holds, then

eβ =
eα+β

1

− eβ

eα+β
1−β − 1

,

which implies that eβ is small function with respect to f , a contradiction. Thus, eα+β
1−β − 1 ≡ 0 . Owing to

(5.1), we can conclude that

P (f(z + c))− b(z)

P (f(z))− b(z)
≡ 1,

which implies P (f(z)) = P (f(z + c)) . From (5.2) and the first equality of (5.1), we have

P (f(z + c)) =

(
a0 +

n∑
k=1

ake
∑k−1

j=0 αj+1

)
(f

1 − a)

=

(
n∑

k=0

ake
∑k

j=0 αj

)
(f − a).

Owing to f − a ̸= 0 and P (f(z)) = P (f(z + c)) , we have

a0 + (a1 − a0)e
α + (a2 − a1)e

α+α1

+ (a3 − a2)e
∑2

j=0 αj

+ · · ·

+ (an − an−1)e
∑n−1

j=0 αj

− ane
∑n

j=0 αj

= 0.
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Furthermore, the above equality can be rewritten as follows:

d0 + d1e
α + d2e

2α + · · ·+ dne
nα + dn+1e

(n+1)α = 0, (5.9)

where

d0 = a0,

d1 = a1 − a0,

d2 = (a2 − a1)e
α1−α,

d3 = (a3 − a2)e
∑2

j=1(α
j−α),

· · · · · ·

dn = (an − an−1)e
∑n−1

j=1 (αj−α),

dn+1 = −ane
∑n

j=1(α
j−α).

Note here that T (r, dk) = S(r, eα)(0 ≤ k ≤ n+1) . Applying Lemma 2.4 for (5.9), we have dk ≡ 0(0 ≤ k ≤ n+1) .
Hence, a0 = a1 = · · · = an = 0 , which contradicts the fact that ak(0 ≤ k ≤ n) are not all zero. That completes
the proof of Theorem 1.8.
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