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Abstract: Let T (X) be the full transformation semigroup on a set X . For two equivalence relations E and F on X

with F ⊆ E , let
T (X,E, F ) = {α ∈ T (X) : ∀x, y ∈ X, (x, y) ∈ E ⇒ (xα, yα) ∈ F}.

Then T (X,E, F ) is a subsemigroup of T (X) . In this paper, we describe Green’s relations and the regularity of elements
for T (X,E, F ) . Also, the relations F and E for which T (X,E, F ) is a regular semigroup are described.
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1. Introduction
In 1951, Green defined the equivalence relations L , R , and J on a semigroup S by the rules that, for a, b ∈ S ,

(a, b) ∈ L if and only if S1a = S1b ,
(a, b) ∈ R if and only if aS1 = bS1 , and
(a, b) ∈ J if and only if S1aS1 = S1bS1

where S1 is the semigroup with identity obtained from S by adjoining an identity if necessary. Then he also
defined the equivalence relations H = L ∩R and D = L ◦ R . These five equivalence relations are known as
Green’s relations: see the book by Howie [4].

An element x of a semigroup S is called a regular element if there exists y ∈ S such that x = xyx , and
S is called a regular semigroup if every element of S is regular.

Let X be a nonempty set. As usual, T (X) denotes the semigroup (under composition) of all full trans-
formations of X (that is, all mappings α : X → X ). It is a well-known fact that T (X) is a regular semigroup
(see [3]) and every semigroup is isomorphic to a subsemigroup of some full transformation semigroup (see [4]).
Hence, in order to study the structure of semigroups, it suffices to consider some subsemigroups of T (X) .
Therefore, several researchers are interested in characterization of subsemigroups of the full transformation
semigroup. Particularly, characterization of regularity and Green’s relations on subsemigroups of T (X) have
been investigated. See [1, 2, 5–11].

Let E be an equivalence relation on X . Recently, Pei [6] introduced a family of subsemigroups of T (X)
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defined by
TE(X) = {α ∈ T (X) : ∀x, y ∈ X, (x, y) ∈ E ⇒ (xα, yα) ∈ E}

and called it the semigroup of transformation preserving an equivalence relation on X . It is easy to see that
if E = X × X or E = IX = {(x, x) : x ∈ X} , then TE(X) is equal to T (X) . The author studied Green’s
relations and regularity on TE(X) .

Suppose that E and F are equivalence relations on X with F ⊆ E . Sun and Pei [11] studied the
subsemigroup of T (X) defined by

TEF (X) = TE(X) ∩ TF (X).

They described the condition under which elements of TEF (X) are regular and discussed Green’s relations on
TEF (X) .

The semigroup TE(X) motivates us to define T (X,E, F ) as follows:

T (X,E, F ) = {α ∈ T (X) : ∀x, y ∈ X, (x, y) ∈ E ⇒ (xα, yα) ∈ F},

where E and F are equivalence relations on X with F ⊆ E . It is easy to see that T (X,E, F ) is a subsemigroup
of T (X) and that T (X,E, F ) ⊆ TEF (X) ⊆ TE(X) ⊆ T (X) .

The purpose of this paper is to investigate the regularity of elements and Green’s relations for the
semigroup T (X,E, F ) . Accordingly, in Section 2, the condition under which elements of T (X,E, F ) are regular
is analyzed. In Section 3, Green’s relations on T (X,E, F ) are described.

In the remainder of this paper, let E and F be equivalence relations on a set X such that F ⊆ E .

2. Regularity of T (X,E, F )

For α ∈ T (X) , the symbol π(α) will denote the decomposition of X induced by the map α , namely

π(α) = {xα−1 : x ∈ Xα}.

Hence, π(α) = X/ kerα where kerα = {(x, y) ∈ X ×X : xα = yα} . Denote

E(α) = {Aα−1 : A ∈ X/E,Aα−1 ̸= ∅},

where E is an equivalence relation on X . Then E(α) is a partition of X .

Lemma 2.1 Let α ∈ T (X,E, F ) . For each A ∈ X/E , there exists B ∈ X/F such that Aα ⊆ B .

Proof Let A ∈ X/E and a ∈ A . Then there exists B ∈ X/F such that aα ∈ B . Let y ∈ Aα . Then xα = y

for some x ∈ A . Since (a, x) ∈ E and α ∈ T (X,E, F ) , we have (aα, y) = (aα, xα) ∈ F . This means that
y ∈ B . 2

Since F ⊆ E and by Lemma 2.1, we certainly have the following corollary.

Corollary 2.2 Let α ∈ T (X,E, F ) . Then the following statements hold.

(i) For each A ∈ X/F , there exists B ∈ X/F such that Aα ⊆ B .

(ii) For each A ∈ X/E , there exists B ∈ X/E such that Aα ⊆ B .
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Let P and Q be two partitions of a set X . If for every P ∈ P , there exists Q ∈ Q such that P ⊆ Q ,
we write P ⪯ Q . It is obvious that ⪯ is a partial order on the set of all partitions of X .

Proposition 2.3 Let α, β, γ ∈ T (X,E, F ) be such that α = βγ . Then π(β) ⪯ π(α) , F (β) ⪯ F (α) , and
E(β) ⪯ E(α) .

Proof (i) Let A ∈ π(β) . Then A = yβ−1 for some y ∈ Xβ . Thus, Aα = Aβγ = yγ and so A ⊆ (Aα)α−1 ⊆
(yγ)α−1 . Since (yγ)α−1 ∈ π(α) , we conclude that π(β) ⪯ π(α) .

(ii) Let A ∈ F (β) . Then A = Bβ−1 for some B ∈ X/F with Bβ−1 ̸= ∅ and so Aβ ⊆ B . By Corollary
2.2(i), we have Bγ ⊆ C for some C ∈ X/F . Therefore, Aα = Aβγ ⊆ Bγ ⊆ C , so that A ⊆ (Aα)α−1 ⊆ Cα−1 .
Since A ̸= ∅ and C ∈ X/F , Cα−1 ∈ F (α) . Hence, F (β) ⪯ F (α) .

(iii) Similar to the proof of (ii). 2

Proposition 2.4 Let α ∈ T (X,E, F ) . Then the following statements hold.

(i) If A ∩Xα = Bα for some A,B ∈ X/F , then Aα−1 =
∪
{yα−1 : y ∈ X, yα−1 ∩B ̸= ∅} .

(ii) If A ∩Xα = Bα for some A,B ∈ X/E , then Aα−1 =
∪
{yα−1 : y ∈ X, yα−1 ∩B ̸= ∅} .

Proof (i) Suppose that A∩Xα = Bα for some A,B ∈ X/F . Let x ∈ Aα−1 . Then xα ∈ A and so xα ∈ Bα .
Thus, xα = bα for some b ∈ B . Therefore, b ∈ (xα)α−1 , which implies that (xα)α−1 ∩B ≠ ∅ and hence

x ∈ (xα)α−1 ⊆
∪

{yα−1 : y ∈ X, yα−1 ∩B ̸= ∅}.

For the reverse inclusion, let x ∈
∪
{yα−1 : y ∈ X, yα−1 ∩ B ̸= ∅} . Then x ∈ yα−1 for some y ∈ X with

yα−1∩B ̸= ∅ . Thus, xα = y = bα for some b ∈ yα−1∩B . Since bα ∈ Bα = A∩Xα , xα = bα ∈ A . Therefore,
x ∈ (xα)α−1 ⊆ Aα−1 .

(ii) Similar to the proof of (i). 2

Proposition 2.5 Let α ∈ T (X,E, F ) . Then α is a right zero element of T (X,E, F ) if and only if α is
constant.

Proof Suppose that α is nonconstant. Then there exist distinct elements a, b ∈ Xα . Thus, a′α = a and
b′α = b for some a′, b′ ∈ X . Thus b′ ∈ B for some B ∈ X/E . Define β ∈ T (X) by

xβ =

{
a′ if x ∈ B,
b′ otherwise.

It is clear that β ∈ T (X,E, F ) . Since b′βα = a′α = a ̸= b = b′α , we conclude that βα ̸= α . This proves that
α is not a right zero element of T (X,E, F ) . 2

As a consequence of Proposition 2.5, a necessary and sufficient condition for being a right zero semigroup
can be given as follows.

Corollary 2.6 T (X,E, F ) is a right zero semigroup if and only if E = X ×X and F = IX .
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Proof We will prove the contrapositive of this statement. We can consider two cases as follows.
Case 1. E ̸= X × X . Then there exist A,B ∈ X/E such that A ̸= B . Let a ∈ A and b ∈ B . Define
α ∈ T (X) by

xα =

{
a if x ∈ A,
b otherwise.

Certainly, α ∈ T (X,E, F ) and α is nonconstant. By Proposition 2.5, we obtain that α is not a right zero
element of T (X,E, F ) .
Case 2. F ̸= IX . Then there exist distinct elements c, d ∈ X such that (c, d) ∈ F . Define α ∈ T (X) by

xα =

{
c if x = c,
d otherwise.

Clearly, α ∈ T (X,E, F ) and α is nonconstant. It then follows from Proposition 2.5 that α is not a right zero
element of T (X,E, F ) .

From the two cases we conclude that T (X,E, F ) is not a right zero semigroup.
The converse is clear. 2

In fact, the following example shows that T (X,E, F ) is not necessarily regular.

Example 2.7 Let X = {1, 2, 3, 4, 5, 6, 7, 8} , X/E = {{1, 2, 3}, {4, 5}, {6, 7, 8}} , and X/F = {{1, 2}, {3}, {4, 5}, {6, 8}, {7}} .
Let α ∈ T (X,E, F ) be defined by

α =

(
1 2 3 4 5 6 7 8
6 8 6 3 3 2 1 2

)
.

Suppose that α is regular. Then α = αβα for some β ∈ T (X,E, F ) . Since 1 = 7α = 7αβα = 1βα and
3 = 4α = 4αβα = 3βα , we obtain that 1β = 7 and 3β ∈ {4, 5} . Since (1, 3) ∈ E and β ∈ T (X,E, F ) ,
(1β, 3β) ∈ F , which is a contradiction. Hence, α is not a regular element of T (X,E, F ) .

Next, we give a characterization of regular elements in T (X,E, F ) .

Theorem 2.8 Let α ∈ T (X,E, F ) . Then α is regular if and only if for each A ∈ X/E , there exists B ∈ X/F

such that A ∩Xα ⊆ Bα .

Proof Suppose that α is a regular element of T (X,E, F ) . Then α = αβα for some β ∈ T (X,E, F ) . Let
A ∈ X/E . By Lemma 2.1, Aβ ⊆ B for some B ∈ X/F . Let y ∈ A ∩Xα . Then y = xα for some x ∈ X and
hence yβ ∈ Aβ ⊆ B . It then follows that y = xα = xαβα = yβα ∈ Bα . Hence, A ∩Xα ⊆ Bα .

Conversely, assume that for each A ∈ X/E , there exists B ∈ X/F such that A ∩ Xα ⊆ Bα . Let
A ∈ X/E be such that A ∩Xα ̸= ∅ . By assumption, we choose and fix BA ∈ X/F with A ∩Xα ⊆ BAα . For
each y ∈ A ∩Xα , we choose ay ∈ BA such that y = ayα . Let bA ∈ BA . Define βA : A→ X by

xβA =

{
ax if x ∈ Xα,
bA otherwise.

Let β : X → X be defined by

β|A =

{
βA if A ∩Xα ̸= ∅,
CA otherwise
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for all A ∈ X/E and CA is a constant map from A into X . Then β ∈ T (X) . Let x, y ∈ X be such
that (x, y) ∈ E . Then x, y ∈ A for some A ∈ X/E and, by assumption, there is BA ∈ X/F such that
A ∩Xα ⊆ BAα . We consider two cases as follows.
Case 1. A ∩Xα = ∅ . Then

(xβ, yβ) = (xCA, yCA) ∈ F,

by reflexivity of F .
Case 2. A ∩Xα ̸= ∅ . Then there are three cases to consider.

If x, y ∈ Xα , then ax, ay ∈ BA and so (xβ, yβ) = (ax, ay) ∈ F .
If x, y /∈ Xα , then (xβ, yβ) = (bA, bA) ∈ F .
If x ∈ Xα and y /∈ Xα , then ax, bA ∈ BA and so

(xβ, yβ) = (ax, bA) ∈ F.

From the two cases, we have β ∈ T (X,E, F ) , and xαβα = axαα = xα for all x ∈ X . This shows that
α is a regular element of T (X,E, F ) as desired. 2

From Example 2.7, let A = {1, 2, 3} ∈ X/E . Then A ∩Xα ⊈ Bα for all B ∈ X/F . By Theorem 2.8,
we have that α is not a regular element of T (X,E, F ) .

Note that F ⊆ E ; it follows from Theorem 2.8 and we obtain a corollary as follows.

Corollary 2.9 Let α be a regular element of T (X,E, F ) . Then the following statements hold.

(i) For each A ∈ X/F , there exists B ∈ X/F such that A ∩Xα ⊆ Bα .

(ii) For each A ∈ X/E , there exists B ∈ X/E such that A ∩Xα ⊆ Bα .

We also have the following theorem, which characterizes when T (X,E, F ) is a regular semigroup.

Theorem 2.10 T (X,E, F ) is a regular semigroup if and only if T (X,E, F ) = T (X) or T (X,E, F ) is a right
zero semigroup.

Proof Assume that T (X,E, F ) ̸= T (X) and T (X,E, F ) is not a right zero semigroup. Since T (X,E, F ) ̸=
T (X) , E ̸= IX and F ̸= X × X . By Corollary 2.6, we obtain E ̸= X × X or F ̸= IX . We distinguish two
cases as follows.
Case 1. E ̸= X×X . Since E ̸= IX , there exist distinct elements a, b ∈ X such that (a, b) ∈ E . Then a, b ∈ A

for some A ∈ X/E . Define α : X → X by

xα =

{
a if x ∈ A,
b otherwise.

Obviously, α ∈ T (X,E, F ) . Suppose that α is regular. By Theorem 2.8, there exists B ∈ X/F such that
A∩Xα ⊆ Bα . Since E ̸= X ×X and a, b ∈ A , it follows that A∩Xα = {a, b} . Thus, xα = a and yα = b for
some x, y ∈ B . By the definition of α , we get that x ∈ A and y ∈ X \ A . These imply that B ∩ A ̸= ∅ and
B ∩ (X \A) ̸= ∅ , a contradiction. Thereby, α is not a regular element of T (X,E, F ) .
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Case 2. F ̸= IX . Then there exist distinct elements c, d ∈ X such that (c, d) ∈ F . Then c, d ∈ A for some
A ∈ X/F . Define α : X → X by

xα =

{
c if x ∈ A,
d otherwise.

Since (c, d) ∈ F , α ∈ T (X,E, F ) . Suppose that α is regular. By Corollary 2.9(i), there exists B ∈ X/F such
that A ∩Xα ⊆ Bα . Since F ̸= X ×X and c, d ∈ A , we get that A ∩Xα = {c, d} . Thus, xα = c and yα = d

for some x, y ∈ B . Therefore, x ∈ A and y ∈ X \A , which implies that B ∩A ̸= ∅ and B ∩ (X \A) ̸= ∅ . This
is a contradiction. Hence, α is not a regular element of T (X,E, F ) .

The converse is clear. 2

Next, we observe three properties for regular elements of the semigroup T (X,E, F ) .

Proposition 2.11 Let α be a regular element of T (X,E, F ) . Then the following statements hold.

(i) If ∅ ̸= A ∩Xα ⊆ Bα for some A,B ∈ X/F , then A ∩Xα = Bα .

(ii) If ∅ ̸= A ∩Xα ⊆ Bα for some A,B ∈ X/E , then A ∩Xα = Bα .

Proof (i) Suppose that ∅ ̸= A ∩ Xα ⊆ Bα for some A,B ∈ X/F . By Corollary 2.2(i), Bα ⊆ C for some
C ∈ X/F . This implies that

Aα−1 = Aα−1 ∩X = (A ∩Xα)α−1 ⊆ (Bα)α−1 ⊆ Cα−1.

Since F (α) is a partition of X , we get that Aα−1 = Cα−1 and so A = C . It follows that Bα ⊆ A ∩ Xα .
Hence, A ∩Xα = Bα .

(ii) The proof is similar to the proof of (i). 2

Proposition 2.12 Let α and β be regular elements of T (X,E, F ) . If π(α) = π(β) , then F (α) = F (β) and
E(α) = E(β) .

Proof Suppose that π(α) = π(β) . Let A ∈ X/F be such that Aα−1 ̸= ∅ . By Corollary 2.9(i), ∅ ̸=
A ∩Xα ⊆ Bα for some B ∈ X/F . It follows from Propositions 2.11(i) and 2.4(i) that Aα−1 =

∪
{yα−1 : y ∈

X, yα−1 ∩B ̸= ∅} . By assumption, we obtain that

Aα−1 =
∪

{yα−1 : y ∈ X, yα−1 ∩B ̸= ∅} =
∪

{zβ−1 : z ∈ X, zβ−1 ∩B ̸= ∅}.

For each x ∈ Aα−1 we have x ∈ yβ−1 for some y ∈ X with yβ−1 ∩ B ̸= ∅ . Then there is b ∈ B such that
xβ = y = bβ . Thus, xβ ∈ Bβ and therefore (Aα−1)β ⊆ Bβ . Corollary 2.2(i) implies that Bβ ⊆ D for some
D ∈ X/F . This implies that Aα−1 ⊆ (Aα−1)ββ−1 ⊆ Dβ−1 ∈ F (β) . Therefore, F (α) ⪯ F (β) . Similarly,
F (β) ⪯ F (α) . Hence, F (α) = F (β) .

Similarly, E(α) = E(β) . 2

Proposition 2.13 Let α and β be regular elements of T (X,E, F ) . If Xα = Xβ , then for each A ∈ X/E ,
there exist B,C ∈ X/F such that Aα ⊆ Bβ and Aβ ⊆ Cα .
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Proof Suppose that Xα = Xβ . Let A ∈ X/E . We can see from Lemma 2.1 that Aα ⊆ B for some
B ∈ X/F . Regularity of β and Corollary 2.9(i) yield B ∩Xβ ⊆ B′β for some B′ ∈ X/F . It is evident that

Aα ⊆ B ∩Xα = B ∩Xβ ⊆ B′β.

Similarly, it can be shown that Aβ ⊆ Cα for some C ∈ X/F . 2

As a consequence of Proposition 2.13, the following result follows readily.

Corollary 2.14 Let α and β be regular elements of T (X,E, F ) such that Xα = Xβ . Then the following
statements hold.

(i) For each A ∈ X/F , there exist B,C ∈ X/F such that Aα ⊆ Bβ and Aβ ⊆ Cα .

(ii) For each A ∈ X/E , there exist B,C ∈ X/E such that Aα ⊆ Bβ and Aβ ⊆ Cα .

3. Green’s relations on T (X,E, F )

In this section, we describe Green’s relations on T (X,E, F ) . Since H = L ∩R , we only consider the Green’s
relations L,R,J , and D in the following.

Next, we introduce the following terminology. For α ∈ T (X) and A ⊆ X , we denote

πA(α) = {P ∈ π(α) : P ∩A ̸= ∅}.

Theorem 3.1 [4] Let a and b be elements of a semigroup S . Then the following statements hold.

(i) (a, b) ∈ R if and only if there exist x, y ∈ S1 such that a = bx and b = ay .

(ii) (a, b) ∈ L if and only if there exist x, y ∈ S1 such that a = xb and b = ya .

(iii) (a, b) ∈ J if and only if there exist w, x, y, z ∈ S1 such that a = wbx and b = yaz .

Lemma 3.2 Let α, β ∈ T (X,E, F ) . Then α = βµ for some µ ∈ T (X,E, F ) if and only if

(i) kerβ ⊆ kerα and

(ii) for all x, y ∈ X , (xβ, yβ) ∈ E implies that (xα, yα) ∈ F .

Proof The necessity is clear. To prove the sufficiency, we assume that conditions (i) and (ii) hold. For each
y ∈ Xβ , there exists ay ∈ X such that ayβ = y . Let A ∈ X/E be such that A ∩ Xβ ̸= ∅ . Then there
exists y ∈ A ∩Xβ . Thus, ayβ = y for some ay ∈ X . We choose and fix bA ∈ X with (bA, ayα) ∈ F . Define
µA : A→ X by

xµA =

{
axα if x ∈ Xβ,
bA otherwise.

Let x, y ∈ A be such that x = y . If x, y ∈ Xβ , then there are ax, ay ∈ X such that axβ = x and ayβ = y .
Thus, (ax, ay) ∈ kerβ and so axα = ayα by (i), which implies that xµA = yµA . If x, y /∈ Xβ , then
xµA = bA = yµA .
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From the above discussion, we obtain that µA is well defined. Define µ : X → X by

µ|A =

{
µA if A ∩Xβ ̸= ∅,
CA otherwise

for all A ∈ X/E where CA is a constant map from A into X . Since X/E is a partition of X , we have that
µ is well defined and so µ ∈ T (X) . To show that µ ∈ T (X,E, F ) , let x, y ∈ X be such that (x, y) ∈ E . Then
x, y ∈ A for some A ∈ X/E .
Case 1. A ∩ Xβ ̸= ∅ . Then there exists z ∈ A ∩ Xβ such that azβ = z and (bA, azα) ∈ F . We note that
(x, z) ∈ E . It suffices to consider three cases as follows.
Subcase 1.1. x, y ∈ Xβ . Then axβ = x and ayβ = y for some ax, ay ∈ X . Thus, (axβ, ayβ) = (x, y) ∈ E

and so (xµ, yµ) = (xµA, yµA) = (axα, ayα) ∈ F by (ii).
Subcase 1.2. x ∈ Xβ and y /∈ Xβ . Then axβ = x for some ax ∈ X and so (axβ, azβ) = (x, z) ∈ E . By (ii),
we have (axα, azα) ∈ F . Since (azα, bA) ∈ F , (xµ, yµ) = (xµA, yµA) = (axα, bA) ∈ F by transitivity of F .
Subcase 1.3. x, y /∈ Xβ . Then by reflexivity of F , we obtain that

(xµ, yµ) = (xµA, yµA) = (bA, bA) ∈ F.

Case 2. A ∩Xβ = ∅ . Then by reflexivity of F , we have (xµ, yµ) = (xCA, yCA) ∈ F .
From the two cases, we deduce that µ ∈ T (X,E, F ) . Let x ∈ X . Then xβ ∈ Xβ and xβ ∈ A for some

A ∈ X/E and so axββ = xβ for some axβ ∈ X . Thus, (axβ , x) ∈ kerβ so that xα = axβα = (xβ)µA = xβµ

by (i). This shows that α = βµ as required. 2

As an immediate consequence of Lemma 3.2, we have the following.

Theorem 3.3 Let α, β ∈ T (X,E, F ) . Then (α, β) ∈ R if and only if

(i) kerβ = kerα ,

(ii) for all x, y ∈ X , (xβ, yβ) ∈ E implies that (xα, yα) ∈ F , and

(iii) for all x, y ∈ X , (xα, yα) ∈ E implies that (xβ, yβ) ∈ F .

To describe the R -relation again, the following lemma is required.

Lemma 3.4 Let α, β ∈ T (X,E, F ) . Then α = βµ for some µ ∈ T (X,E, F ) if and only if there exists a
mapping φ : Xβ → Xα satisfying

(i) α = βφ and

(ii) for all x, y ∈ Xβ , (x, y) ∈ E implies that (xφ, yφ) ∈ F .

Proof The necessity is clear from Lemma 3.2 by just taking φ = µ|Xβ . To prove the sufficiency, we suppose
that φ : Xβ → Xα is a mapping satisfying the conditions (i) and (ii). Let A ∈ X/E be such that A∩Xβ ̸= ∅ .
Then there exists a unique B ∈ X/F such that (A ∩Xβ)φ = B ∩Xα by (ii). Fix some bA ∈ B and define
µA : A→ B by

xµA =

{
xφ if x ∈ Xβ,
bA otherwise.
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Let µ : X → X be defined by

µ|A =

{
µA if A ∩Xβ ̸= ∅,
CA otherwise

for all A ∈ X/E and CA is a constant map from A into X . Since X/E is a partition of X , we have that µ
is well defined. Let x, y ∈ X be such that (x, y) ∈ E . Then x, y ∈ A for some A ∈ X/E .
Case 1. A ∩Xβ ̸= ∅ . Then there exists B ∈ X/F such that (A ∩Xβ)φ = B ∩Xα by (ii) and so bA ∈ B .
Subcase 1.1. x, y ∈ Xβ . Then (xµ, yµ) = (xµA, yµA) = (xφ, yφ) ∈ F by (ii).
Subcase 1.2. x ∈ Xβ and y /∈ Xβ . Then xφ ∈ B and so (xµ, yµ) = (xµA, yµA) = (xφ, bA) ∈ F .
Subcase 1.3. x, y /∈ Xβ . Then by reflexivity of F , we have

(xµ, yµ) = (xµA, yµA) = (bA, bA) ∈ F.

Case 2. A ∩Xβ = ∅ . Then by reflexivity of F , we have (xµ, yµ) = (xCA, yCA) ∈ F .
From the two cases we deduce that µ ∈ T (X,E, F ) . It is routine to check that α = βµ , as required. 2

The following theorem is a direct consequence of Lemma 3.4.

Theorem 3.5 Let α, β ∈ T (X,E, F ) . Then (α, β) ∈ R if and only if there exists a bijection φ : Xβ → Xα

satisfying

(i) α = βφ ,

(ii) for all x, y ∈ Xβ , (x, y) ∈ E implies that (xφ, yφ) ∈ F , and

(iii) for all x, y ∈ Xα , (x, y) ∈ E implies that (xφ−1, yφ−1) ∈ F .

For an equivalence E on a set X and φ : A → B where A,B ⊆ X , we say that φ is E∗ -preserving if
(x, y) ∈ E if and only if (xφ, yφ) ∈ E .

As a consequence, we obtain a corollary of Theorem 3.5.

Corollary 3.6 Let α, β ∈ T (X,E, F ) . If (α, β) ∈ R , then there exists a bijection φ : Xβ → Xα is an
F ∗ -preserving bijection and an E∗ -preserving bijection such that α = βφ .

Let α, β ∈ T (X,E, F ) and φ be a map from π(α) into π(β) . If for each A ∈ X/E , there exists B ∈ X/F

such that
(πA(α))φ ⊆ πB(β),

then φ is said to be EF -admissible. Note that, if E = F , then φ is said to be E -admissible. If φ is a bijection
and both φ and φ−1 are EF -admissible, then φ is said to be EF ∗ -admissible, and if E = F , we say that φ
is said to be E∗ -admissible. If γ ∈ T (X,E, F ) , then denote by γ∗ the map from π(γ) onto Xγ induced by γ ,
namely Pγ∗ = pγ for each P ∈ π(γ) and all p ∈ P . Obviously, γ∗ is a bijection.

Proposition 3.7 Let α, β ∈ T (X,E, F ) . Then φ : π(α) → π(β) is EF -admissible if and only if for each
A ∈ X/E there exists B ∈ X/F such that B ∩ Pφ ̸= ∅ for all P ∈ πA(α) .
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Proof Suppose that φ : π(α) → π(β) is EF -admissible. Let A ∈ X/E . Then there exists B ∈ X/F such
that

(πA(α))φ ⊆ πB(β).

Let P ∈ πA(α) . Then Pφ ∈ πB(β) . Hence, B ∩ Pφ ≠ ∅ .
Conversely, suppose that for each A ∈ X/E , there exists B ∈ X/F such that B ∩ Pφ ̸= ∅ for all

P ∈ πA(α) . Let A ∈ X/E . Then there exists B ∈ X/F such that B ∩ Pφ ̸= ∅ for all P ∈ πA(α) . Let
P ∈ πA(α) . Then Pφ ∈ π(β) and B ∩ Pφ ̸= ∅ . Thus, Pφ ∈ πB(β) . Hence, (πA(α))φ ⊆ πB(β) . 2

The following lemma is used for characterizing the L -relation on T (X,E, F ) .

Lemma 3.8 Let α, β ∈ T (X,E, F ) . Then the following statements are equivalent.

(i) α = λβ for some λ ∈ T (X,E, F ) .

(ii) For each A ∈ X/E , there exists B ∈ X/F such that Aα ⊆ Bβ .

(iii) There exists EF -admissible φ : π(α) → π(β) such that α∗ = φβ∗ .

Proof (i) ⇒ (ii) Assume that α = λβ for some λ ∈ T (X,E, F ) . Let A ∈ X/E . Then by Lemma 2.1, we
have Aλ ⊆ B for some B ∈ X/F . By assumption, we obtain that Aα = Aλβ ⊆ Bβ .

(ii) ⇒ (iii) To show that Xα ⊆ Xβ , let y ∈ Xα . Then xα = y for some x ∈ X . Thus, x ∈ A for some
A ∈ X/E . By (ii), there exists B ∈ X/F such that

y = xα ∈ Aα ⊆ Bβ ⊆ Xβ.

Therefore, Xα ⊆ Xβ . For each P ∈ π(α) , we have Pα∗ = xα ∈ Xα ⊆ Xβ for all x ∈ P . Define
φ : π(α) → π(β) by

Pφ = (Pα∗)β
−1 for all P ∈ π(α).

Then φ is well defined. Let A ∈ X/E and let IA = {i ∈ Xα : iα−1 ∩ A ̸= ∅} . For each i ∈ IA , we let
Pi := iα−1 . Then

πA(α) = {Pi : i ∈ IA} and i = Piα∗ for all i ∈ IA.

Let i ∈ IA . By (ii), we have i ∈ Aα ⊆ Bβ for some B ∈ X/F . Then B∩Piφ = B∩(Piα∗)β
−1 = B∩iβ−1 ̸= ∅ .

Hence, φ is EF -admissible by Proposition 3.7. Finally, we will show that α∗ = φβ∗ . Let P ∈ π(α) and p ∈ P .
Then pα ∈ Xα ⊆ Xβ and so pα = xβ for some x ∈ X . Thus, x ∈ (pα)β−1 = (Pα∗)β

−1 = Pφ . Therefore,

Pα∗ = pα = xβ = Pφβ∗,

as required.
(iii) ⇒ (i) Suppose that φ : π(α) → π(β) is EF -admissible such that α∗ = φβ∗ . Let A ∈ X/E . Then

(πA(α))φ ⊆ πB(β) for some B ∈ X/F . For each x ∈ A , we let Px = (xα)α−1 ∈ πA(α) . By assumption and
Proposition 3.7, we have Pxφ ∩B ̸= ∅ . We choose bx ∈ Pxφ ∩B . Define λA : A→ X by

xλA = bx for all x ∈ A.
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Let λ ∈ T (X) be such that λ|A = λA for all A ∈ X/E . Since X/E is a partition of X , λ is well defined.
Obviously, λ ∈ T (X,E, F ) . Let x ∈ X . Then x ∈ A for some A ∈ X/E . By Proposition 3.7, there is
B ∈ X/F such that xλ = xλ|A = bx ∈ Pxφ ∩B where Px ∈ πA(α) . Since α∗ = φβ∗ , we obtain that

xα = Pxα∗ = Pxφβ∗ = bxβ = xλβ.

Hence, α = λβ . 2

Using Lemma 3.8, we can establish the next result.

Theorem 3.9 Let α, β ∈ T (X,E, F ) . Then the following statements are equivalent.

(i) (α, β) ∈ L .

(ii) For each A ∈ X/E , there exist B,C ∈ X/F such that Aα ⊆ Bβ and Aβ ⊆ Cα.

(iii) There exists an EF ∗ -admissible bijection φ : π(α) → π(β) such that α∗ = φβ∗.

As an immediate consequence of Theorem 3.9, we have the following.

Corollary 3.10 Let α, β ∈ T (X,E, F ) be such that (α, β) ∈ L . Then the following statements hold.

(i) For each A ∈ X/E , there exist B,C ∈ X/E such that Aα ⊆ Bβ and Aβ ⊆ Cα .

(ii) For each A ∈ X/F , there exist B,C ∈ X/F such that Aα ⊆ Bβ and Aβ ⊆ Cα .

(iii) There is an E∗ -admissible bijection φ : π(α) → π(β) such that α∗ = φβ∗ .

(iv) There is an F ∗ -admissible bijection φ : π(α) → π(β) such that α∗ = φβ∗ .

(v) Xα = Xβ .

Now we can determine L for two regular elements of T (X,E, F ) . As an immediate consequence of
Proposition 2.13 and Theorem 3.9, we obtain:

Theorem 3.11 Let α and β be regular elements of T (X,E, F ) . Then (α, β) ∈ L if and only if Xα = Xβ .

To describe the J -relation on T (X,E, F ) , we first give the following lemma.

Lemma 3.12 Let α, β ∈ T (X,E, F ) . Then α = λβµ for some λ, µ ∈ T (X,E, F ) if and only if there exists
φ : Xβ → X satisfying the following:

(i) for each x, y ∈ Xβ , (x, y) ∈ E implies that (xφ, yφ) ∈ F and

(ii) for each A ∈ X/E , there exists B ∈ X/F such that Aα ⊆ (Bβ)φ .

Proof Suppose that α = λβµ for some λ, µ ∈ T (X,E, F ) . Let φ = µ|Xβ and let x, y ∈ Xβ be such that
(x, y) ∈ E . Then since µ ∈ T (X,E, F ) , we have

(xφ, yφ) = (xµ|Xβ , yµ|Xβ) = (xµ, yµ) ∈ F.
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Let A ∈ X/E . By Lemma 2.1, there exists B ∈ X/F such that Aλ ⊆ B . Thus, Aα = Aλβµ ⊆ Bβµ =

Bβµ|Xβ = (Bβ)φ .
Conversely, assume that there exists φ : Xβ → X satisfying the conditions (i) and (ii). Let A ∈ X/E be

such that A ∩Xβ ̸= ∅ . By (i), (A ∩Xβ)φ ⊆ B for some B ∈ X/F . Fix some bA ∈ B and define µA : A→ B

by

xµA =

{
xφ if x ∈ Xβ,
bA otherwise.

Let µ : X → X be defined by

µ|A =

{
µA if A ∩Xβ ̸= ∅,
CA otherwise

for all A ∈ X/E and CA is a constant map from A into X . Since X/E is a partition of X , it follows that µ
is well defined. From (i), we have µ ∈ T (X,E, F ) .

For each A ∈ X/E , by (ii) we choose and fix BA ∈ X/F such that Aα ⊆ (BAβ)φ . Let x ∈ A . Then
we choose and fix bx ∈ BA such that xα = (bxβ)φ . Define λ : X → X by xλ = bx for all x ∈ X . Then
λ ∈ T (X,E, F ) . Furthermore, for x ∈ X ,

xλβµ = bxβµ = (bxβ)φ = xα,

which implies that α = λβµ , as desired. 2

Lemma 3.12 is useful to obtain this result.

Theorem 3.13 Let α, β ∈ T (X,E, F ) . Then (α, β) ∈ J if and only if there exist φ : Xβ → X and
ψ : Xα→ X satisfying the following:

(i) for each x, y ∈ Xβ , (x, y) ∈ E implies that (xφ, yφ) ∈ F ,

(ii) for each x, y ∈ Xα , (x, y) ∈ E implies that (xψ, yψ) ∈ F , and

(iii) for each A ∈ X/E , there exist B,C ∈ X/F such that Aα ⊆ (Bβ)φ and Aβ ⊆ (Cα)ψ .

Next, to describe the D -relation on T (X,E, F ) , the following corollary follows from Theorem 3.3 and
Proposition 2.3.

Corollary 3.14 Let α, β ∈ T (X,E, F ) . If (α, β) ∈ R , then π(α) = π(β) and F (α) = F (β) .

Theorem 3.15 Let α, β ∈ T (X,E, F ) . Then (α, β) ∈ D if and only if there exist an EF ∗ -admissible bijection
φ : π(α) → π(β) and a bijection ψ : Xα→ Xβ satisfying the following:

(i) for each x, y ∈ Xα , (x, y) ∈ E implies that (xψ, yψ) ∈ F ,

(ii) for each x, y ∈ Xβ , (x, y) ∈ E implies that (xψ−1, yψ−1) ∈ F , and

(iii) α∗ψ = φβ∗ .
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Proof Suppose that (α, β) ∈ D . Then (α, γ) ∈ R and (γ, β) ∈ L for some γ ∈ T (X,E, F ) . By Corollaries
3.14, and 3.10(v), we have π(α) = π(γ) and Xβ = Xγ , respectively. Since (α, γ) ∈ R , by Theorem 3.5, there
exists a bijection ψ : Xα→ Xβ satisfying (i), (ii), and

γ = αψ.

Let P ∈ π(γ) = π(α) and x ∈ P . Then Pγ∗ = xγ = xαψ = Pα∗ψ . Thus, γ∗ = α∗ψ . Since (γ, β) ∈ L , by
Theorem 3.9, there exists an EF ∗ -admissible bijection φ : π(α) → π(β) such that

γ∗ = φβ∗.

Hence, α∗ψ = φβ∗ and the assertion follows.
Conversely, assume that φ : π(α) → π(β) is an EF ∗ -admissible bijection and ψ : Xα → Xβ is a

bijection satisfying the conditions (i), (ii), and (iii). Define γ ∈ T (X) by xγ = (xα)ψ for all x ∈ X . Then
γ ∈ T (X,E, F ) by (i) and

γ = αψ.

Next, we will show that π(α) = π(γ) . Let y ∈ Xα . Then {yψ} = (yα−1)αψ = (yα−1)γ . Thus, yα−1 ⊆
(yα−1)γγ−1 ⊆ (yψ)γ−1 ∈ π(γ) . Hence, π(α) ⪯ π(γ) . On the other hand, let z ∈ Xγ . Then {zψ−1} =

(zγ−1)γψ−1 = (zγ−1)αψψ−1 = (zγ−1)αidXα = (zγ−1)α . Thus, zγ−1 ⊆ (zψ−1)α−1 ∈ π(α) and hence
π(γ) ⪯ π(α) . Consequently, π(α) = π(γ) . Let P ∈ π(γ) and x ∈ P . Then

Pγ∗ = xγ = xαψ = Pα∗ψ,

and this implies that γ∗ = α∗ψ . By (iii), we obtain that γ∗ = α∗ψ = φβ∗ . By Theorem 3.9, we have that
(γ, β) ∈ L . It follows from Corollary 3.10(v) that Xγ = Xβ . This implies that ψ : Xα → Xγ such that
γ = αψ . From (i) and (ii), it follows from Theorem 3.5 that (α, γ) ∈ R . Hence, (α, β) ∈ D , as required. 2

In order to describe Green’s relation D for regular elements of T (X,E, F ) , we observe the following.

Lemma 3.16 Let α and β be regular elements of T (X,E, F ) . Suppose that ψ : Xα → Xβ is a bijection
satisfying the following:

(i) for all x, y ∈ Xα , (x, y) ∈ E implies that (xψ, yψ) ∈ F and

(ii) for all x, y ∈ Xβ , (x, y) ∈ E implies that (xψ−1, yψ−1) ∈ F .

Then there exists an EF ∗ -admissible bijection φ : π(α) → π(β) such that α∗ψ = φβ∗ .

Proof Define φ : π(α) → π(β) by

Pφ = (Pα∗ψ)β
−1
∗ for all P ∈ π(α).

Obviously, φ is well defined and φβ∗ = α∗ψ . Notice that α∗ , β−1
∗ and ψ are all bijection, and so also is φ .

Thus, what remains is to verify that φ is EF ∗ -admissible. Let A ∈ X/E . Then B′ = Aα ⊆ B for some
B ∈ X/E by Corollary 2.2(ii). By (i), we have that C ′ = B′ψ ⊆ Bψ ⊆ C for some C ∈ X/F . By regularity
of β and Corollary 2.9(i), we can write

C ′ ⊆ C ∩Xβ ⊆ Dβ
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for some D ∈ X/F . We assert that (πA(α))φ ⊆ πD(β) . In fact, if P ∈ πA(α) , then Pα∗ ∈ Aα = B′ . Hence,

Pα∗ψ ∈ B′ψ = C ′ ⊆ Dβ

and Pφ ∩ D = (Pα∗ψ)β
−1
∗ ∩ D ̸= ∅ , which implies that Pφ ∈ πD(β) and the assertion holds. Hence, φ is

EF -admissible. Similarly, φ−1 is EF -admissible and the conclusion follows. 2

As an immediate consequence of Theorem 3.15 and Lemma 3.16, we have the next result.

Theorem 3.17 Let α and β be regular elements of T (X,E, F ) . Then (α, β) ∈ D if and only if there exists a
bijection ψ : Xα→ Xβ satisfying the following:

(i) for all x, y ∈ Xα , (x, y) ∈ E implies that (xψ, yψ) ∈ F and

(ii) for all x, y ∈ Xβ , (x, y) ∈ E implies that (xψ−1, yψ−1) ∈ F .
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