http://journals.tubitak.gov.tr/math/
tübitak
Research Article

Turk J Math
(2018) 42: 2513 - 2526
© TÜBİTAK
doi:10.3906/mat-1805-50

Green's relations and regularity on some subsemigroups of transformations that preserve equivalences

Nares SAWATRAKSA*, Chaiwat NAMNAK
Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, Thailand

| Received: 11.05 .2018 | Accepted/Published Online: $16.07 .2018 \quad$ Final Version: 27.09 .2018 |
| :--- | :--- | :--- | :--- |

Abstract

Let $T(X)$ be the full transformation semigroup on a set X. For two equivalence relations E and F on X with $F \subseteq E$, let $$
T(X, E, F)=\{\alpha \in T(X): \forall x, y \in X,(x, y) \in E \Rightarrow(x \alpha, y \alpha) \in F\}
$$

Then $T(X, E, F)$ is a subsemigroup of $T(X)$. In this paper, we describe Green's relations and the regularity of elements for $T(X, E, F)$. Also, the relations F and E for which $T(X, E, F)$ is a regular semigroup are described.

Key words: Transformation semigroup, equivalence, Green s relations, regular.

1. Introduction

In 1951, Green defined the equivalence relations \mathcal{L}, \mathcal{R}, and \mathcal{J} on a semigroup S by the rules that, for $a, b \in S$,

$$
(a, b) \in \mathcal{L} \text { if and only if } S^{1} a=S^{1} b
$$

$$
(a, b) \in \mathcal{R} \text { if and only if } a S^{1}=b S^{1}, \text { and }
$$

$$
(a, b) \in \mathcal{J} \text { if and only if } S^{1} a S^{1}=S^{1} b S^{1}
$$

where S^{1} is the semigroup with identity obtained from S by adjoining an identity if necessary. Then he also defined the equivalence relations $\mathcal{H}=\mathcal{L} \cap \mathcal{R}$ and $\mathcal{D}=\mathcal{L} \circ \mathcal{R}$. These five equivalence relations are known as Green's relations: see the book by Howie [4].

An element x of a semigroup S is called a regular element if there exists $y \in S$ such that $x=x y x$, and S is called a regular semigroup if every element of S is regular.

Let X be a nonempty set. As usual, $T(X)$ denotes the semigroup (under composition) of all full transformations of X (that is, all mappings $\alpha: X \rightarrow X$). It is a well-known fact that $T(X)$ is a regular semigroup (see [3]) and every semigroup is isomorphic to a subsemigroup of some full transformation semigroup (see [4]). Hence, in order to study the structure of semigroups, it suffices to consider some subsemigroups of $T(X)$. Therefore, several researchers are interested in characterization of subsemigroups of the full transformation semigroup. Particularly, characterization of regularity and Green's relations on subsemigroups of $T(X)$ have been investigated. See [1, 2, 5-11].

Let E be an equivalence relation on X. Recently, Pei [6] introduced a family of subsemigroups of $T(X)$
*Correspondence: naress58@nu.ac.th
2010 AMS Mathematics Subject Classification: 20M20
defined by

$$
T_{E}(X)=\{\alpha \in T(X): \forall x, y \in X,(x, y) \in E \Rightarrow(x \alpha, y \alpha) \in E\}
$$

and called it the semigroup of transformation preserving an equivalence relation on X. It is easy to see that if $E=X \times X$ or $E=I_{X}=\{(x, x): x \in X\}$, then $T_{E}(X)$ is equal to $T(X)$. The author studied Green's relations and regularity on $T_{E}(X)$.

Suppose that E and F are equivalence relations on X with $F \subseteq E$. Sun and Pei [11] studied the subsemigroup of $T(X)$ defined by

$$
T_{E F}(X)=T_{E}(X) \cap T_{F}(X)
$$

They described the condition under which elements of $T_{E F}(X)$ are regular and discussed Green's relations on $T_{E F}(X)$.

The semigroup $T_{E}(X)$ motivates us to define $T(X, E, F)$ as follows:

$$
T(X, E, F)=\{\alpha \in T(X): \forall x, y \in X,(x, y) \in E \Rightarrow(x \alpha, y \alpha) \in F\}
$$

where E and F are equivalence relations on X with $F \subseteq E$. It is easy to see that $T(X, E, F)$ is a subsemigroup of $T(X)$ and that $T(X, E, F) \subseteq T_{E F}(X) \subseteq T_{E}(X) \subseteq T(X)$.

The purpose of this paper is to investigate the regularity of elements and Green's relations for the semigroup $T(X, E, F)$. Accordingly, in Section 2, the condition under which elements of $T(X, E, F)$ are regular is analyzed. In Section 3, Green's relations on $T(X, E, F)$ are described.

In the remainder of this paper, let E and F be equivalence relations on a set X such that $F \subseteq E$.

2. Regularity of $T(X, E, F)$

For $\alpha \in T(X)$, the symbol $\pi(\alpha)$ will denote the decomposition of X induced by the map α, namely

$$
\pi(\alpha)=\left\{x \alpha^{-1}: x \in X \alpha\right\}
$$

Hence, $\pi(\alpha)=X / \operatorname{ker} \alpha$ where ker $\alpha=\{(x, y) \in X \times X: x \alpha=y \alpha\}$. Denote

$$
E(\alpha)=\left\{A \alpha^{-1}: A \in X / E, A \alpha^{-1} \neq \emptyset\right\}
$$

where E is an equivalence relation on X. Then $E(\alpha)$ is a partition of X.
Lemma 2.1 Let $\alpha \in T(X, E, F)$. For each $A \in X / E$, there exists $B \in X / F$ such that $A \alpha \subseteq B$.
Proof Let $A \in X / E$ and $a \in A$. Then there exists $B \in X / F$ such that $a \alpha \in B$. Let $y \in A \alpha$. Then $x \alpha=y$ for some $x \in A$. Since $(a, x) \in E$ and $\alpha \in T(X, E, F)$, we have $(a \alpha, y)=(a \alpha, x \alpha) \in F$. This means that $y \in B$.

Since $F \subseteq E$ and by Lemma 2.1, we certainly have the following corollary.
Corollary 2.2 Let $\alpha \in T(X, E, F)$. Then the following statements hold.
(i) For each $A \in X / F$, there exists $B \in X / F$ such that $A \alpha \subseteq B$.
(ii) For each $A \in X / E$, there exists $B \in X / E$ such that $A \alpha \subseteq B$.

Let \mathcal{P} and \mathcal{Q} be two partitions of a set X. If for every $P \in \mathcal{P}$, there exists $Q \in \mathcal{Q}$ such that $P \subseteq Q$, we write $\mathcal{P} \preceq \mathcal{Q}$. It is obvious that \preceq is a partial order on the set of all partitions of X.

Proposition 2.3 Let $\alpha, \beta, \gamma \in T(X, E, F)$ be such that $\alpha=\beta \gamma$. Then $\pi(\beta) \preceq \pi(\alpha)$, $F(\beta) \preceq F(\alpha)$, and $E(\beta) \preceq E(\alpha)$.

Proof (i) Let $A \in \pi(\beta)$. Then $A=y \beta^{-1}$ for some $y \in X \beta$. Thus, $A \alpha=A \beta \gamma=y \gamma$ and so $A \subseteq(A \alpha) \alpha^{-1} \subseteq$ $(y \gamma) \alpha^{-1}$. Since $(y \gamma) \alpha^{-1} \in \pi(\alpha)$, we conclude that $\pi(\beta) \preceq \pi(\alpha)$.
(ii) Let $A \in F(\beta)$. Then $A=B \beta^{-1}$ for some $B \in X / F$ with $B \beta^{-1} \neq \emptyset$ and so $A \beta \subseteq B$. By Corollary 2.2(i), we have $B \gamma \subseteq C$ for some $C \in X / F$. Therefore, $A \alpha=A \beta \gamma \subseteq B \gamma \subseteq C$, so that $A \subseteq(A \alpha) \alpha^{-1} \subseteq C \alpha^{-1}$. Since $A \neq \emptyset$ and $C \in X / F, C \alpha^{-1} \in F(\alpha)$. Hence, $F(\beta) \preceq F(\alpha)$.
(iii) Similar to the proof of (ii).

Proposition 2.4 Let $\alpha \in T(X, E, F)$. Then the following statements hold.
(i) If $A \cap X \alpha=B \alpha$ for some $A, B \in X / F$, then $A \alpha^{-1}=\bigcup\left\{y \alpha^{-1}: y \in X, y \alpha^{-1} \cap B \neq \emptyset\right\}$.
(ii) If $A \cap X \alpha=B \alpha$ for some $A, B \in X / E$, then $A \alpha^{-1}=\bigcup\left\{y \alpha^{-1}: y \in X, y \alpha^{-1} \cap B \neq \emptyset\right\}$.

Proof (i) Suppose that $A \cap X \alpha=B \alpha$ for some $A, B \in X / F$. Let $x \in A \alpha^{-1}$. Then $x \alpha \in A$ and so $x \alpha \in B \alpha$. Thus, $x \alpha=b \alpha$ for some $b \in B$. Therefore, $b \in(x \alpha) \alpha^{-1}$, which implies that $(x \alpha) \alpha^{-1} \cap B \neq \emptyset$ and hence

$$
x \in(x \alpha) \alpha^{-1} \subseteq \bigcup\left\{y \alpha^{-1}: y \in X, y \alpha^{-1} \cap B \neq \emptyset\right\}
$$

For the reverse inclusion, let $x \in \bigcup\left\{y \alpha^{-1}: y \in X, y \alpha^{-1} \cap B \neq \emptyset\right\}$. Then $x \in y \alpha^{-1}$ for some $y \in X$ with $y \alpha^{-1} \cap B \neq \emptyset$. Thus, $x \alpha=y=b \alpha$ for some $b \in y \alpha^{-1} \cap B$. Since $b \alpha \in B \alpha=A \cap X \alpha, x \alpha=b \alpha \in A$. Therefore, $x \in(x \alpha) \alpha^{-1} \subseteq A \alpha^{-1}$.
(ii) Similar to the proof of (i).

Proposition 2.5 Let $\alpha \in T(X, E, F)$. Then α is a right zero element of $T(X, E, F)$ if and only if α is constant.

Proof Suppose that α is nonconstant. Then there exist distinct elements $a, b \in X \alpha$. Thus, $a^{\prime} \alpha=a$ and $b^{\prime} \alpha=b$ for some $a^{\prime}, b^{\prime} \in X$. Thus $b^{\prime} \in B$ for some $B \in X / E$. Define $\beta \in T(X)$ by

$$
x \beta= \begin{cases}a^{\prime} & \text { if } x \in B \\ b^{\prime} & \text { otherwise }\end{cases}
$$

It is clear that $\beta \in T(X, E, F)$. Since $b^{\prime} \beta \alpha=a^{\prime} \alpha=a \neq b=b^{\prime} \alpha$, we conclude that $\beta \alpha \neq \alpha$. This proves that α is not a right zero element of $T(X, E, F)$.

As a consequence of Proposition 2.5, a necessary and sufficient condition for being a right zero semigroup can be given as follows.

Corollary 2.6 $T(X, E, F)$ is a right zero semigroup if and only if $E=X \times X$ and $F=I_{X}$.

SAWATRAKSA and NAMNAK/Turk J Math

Proof We will prove the contrapositive of this statement. We can consider two cases as follows.
Case 1. $E \neq X \times X$. Then there exist $A, B \in X / E$ such that $A \neq B$. Let $a \in A$ and $b \in B$. Define $\alpha \in T(X)$ by

$$
x \alpha= \begin{cases}a & \text { if } x \in A \\ b & \text { otherwise }\end{cases}
$$

Certainly, $\alpha \in T(X, E, F)$ and α is nonconstant. By Proposition 2.5, we obtain that α is not a right zero element of $T(X, E, F)$.
Case 2. $F \neq I_{X}$. Then there exist distinct elements $c, d \in X$ such that $(c, d) \in F$. Define $\alpha \in T(X)$ by

$$
x \alpha= \begin{cases}c & \text { if } x=c \\ d & \text { otherwise }\end{cases}
$$

Clearly, $\alpha \in T(X, E, F)$ and α is nonconstant. It then follows from Proposition 2.5 that α is not a right zero element of $T(X, E, F)$.

From the two cases we conclude that $T(X, E, F)$ is not a right zero semigroup.
The converse is clear.
In fact, the following example shows that $T(X, E, F)$ is not necessarily regular.
Example 2.7 Let $X=\{1,2,3,4,5,6,7,8\}, X / E=\{\{1,2,3\},\{4,5\},\{6,7,8\}\}$, and $X / F=\{\{1,2\},\{3\},\{4,5\},\{6,8\},\{7\}\}$. Let $\alpha \in T(X, E, F)$ be defined by

$$
\alpha=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 8 & 6 & 3 & 3 & 2 & 1 & 2
\end{array}\right) .
$$

Suppose that α is regular. Then $\alpha=\alpha \beta \alpha$ for some $\beta \in T(X, E, F)$. Since $1=7 \alpha=7 \alpha \beta \alpha=1 \beta \alpha$ and $3=4 \alpha=4 \alpha \beta \alpha=3 \beta \alpha$, we obtain that $1 \beta=7$ and $3 \beta \in\{4,5\}$. Since $(1,3) \in E$ and $\beta \in T(X, E, F)$, $(1 \beta, 3 \beta) \in F$, which is a contradiction. Hence, α is not a regular element of $T(X, E, F)$.

Next, we give a characterization of regular elements in $T(X, E, F)$.
Theorem 2.8 Let $\alpha \in T(X, E, F)$. Then α is regular if and only if for each $A \in X / E$, there exists $B \in X / F$ such that $A \cap X \alpha \subseteq B \alpha$.

Proof Suppose that α is a regular element of $T(X, E, F)$. Then $\alpha=\alpha \beta \alpha$ for some $\beta \in T(X, E, F)$. Let $A \in X / E$. By Lemma 2.1, $A \beta \subseteq B$ for some $B \in X / F$. Let $y \in A \cap X \alpha$. Then $y=x \alpha$ for some $x \in X$ and hence $y \beta \in A \beta \subseteq B$. It then follows that $y=x \alpha=x \alpha \beta \alpha=y \beta \alpha \in B \alpha$. Hence, $A \cap X \alpha \subseteq B \alpha$.

Conversely, assume that for each $A \in X / E$, there exists $B \in X / F$ such that $A \cap X \alpha \subseteq B \alpha$. Let $A \in X / E$ be such that $A \cap X \alpha \neq \emptyset$. By assumption, we choose and fix $B_{A} \in X / F$ with $A \cap X \alpha \subseteq B_{A} \alpha$. For each $y \in A \cap X \alpha$, we choose $a_{y} \in B_{A}$ such that $y=a_{y} \alpha$. Let $b_{A} \in B_{A}$. Define $\beta_{A}: A \rightarrow X$ by

$$
x \beta_{A}= \begin{cases}a_{x} & \text { if } x \in X \alpha \\ b_{A} & \text { otherwise }\end{cases}
$$

Let $\beta: X \rightarrow X$ be defined by

$$
\left.\beta\right|_{A}= \begin{cases}\beta_{A} & \text { if } A \cap X \alpha \neq \emptyset \\ C_{A} & \text { otherwise }\end{cases}
$$

for all $A \in X / E$ and C_{A} is a constant map from A into X. Then $\beta \in T(X)$. Let $x, y \in X$ be such that $(x, y) \in E$. Then $x, y \in A$ for some $A \in X / E$ and, by assumption, there is $B_{A} \in X / F$ such that $A \cap X \alpha \subseteq B_{A} \alpha$. We consider two cases as follows.
Case 1. $A \cap X \alpha=\emptyset$. Then

$$
(x \beta, y \beta)=\left(x C_{A}, y C_{A}\right) \in F,
$$

by reflexivity of F.
Case 2. $A \cap X \alpha \neq \emptyset$. Then there are three cases to consider.
If $x, y \in X \alpha$, then $a_{x}, a_{y} \in B_{A}$ and so $(x \beta, y \beta)=\left(a_{x}, a_{y}\right) \in F$.
If $x, y \notin X \alpha$, then $(x \beta, y \beta)=\left(b_{A}, b_{A}\right) \in F$.
If $x \in X \alpha$ and $y \notin X \alpha$, then $a_{x}, b_{A} \in B_{A}$ and so

$$
(x \beta, y \beta)=\left(a_{x}, b_{A}\right) \in F .
$$

From the two cases, we have $\beta \in T(X, E, F)$, and $x \alpha \beta \alpha=a_{x \alpha} \alpha=x \alpha$ for all $x \in X$. This shows that α is a regular element of $T(X, E, F)$ as desired.

From Example 2.7, let $A=\{1,2,3\} \in X / E$. Then $A \cap X \alpha \nsubseteq B \alpha$ for all $B \in X / F$. By Theorem 2.8, we have that α is not a regular element of $T(X, E, F)$.

Note that $F \subseteq E$; it follows from Theorem 2.8 and we obtain a corollary as follows.
Corollary 2.9 Let α be a regular element of $T(X, E, F)$. Then the following statements hold.
(i) For each $A \in X / F$, there exists $B \in X / F$ such that $A \cap X \alpha \subseteq B \alpha$.
(ii) For each $A \in X / E$, there exists $B \in X / E$ such that $A \cap X \alpha \subseteq B \alpha$.

We also have the following theorem, which characterizes when $T(X, E, F)$ is a regular semigroup.

Theorem $2.10 T(X, E, F)$ is a regular semigroup if and only if $T(X, E, F)=T(X)$ or $T(X, E, F)$ is a right zero semigroup.

Proof Assume that $T(X, E, F) \neq T(X)$ and $T(X, E, F)$ is not a right zero semigroup. Since $T(X, E, F) \neq$ $T(X), E \neq I_{X}$ and $F \neq X \times X$. By Corollary 2.6, we obtain $E \neq X \times X$ or $F \neq I_{X}$. We distinguish two cases as follows.
Case 1. $E \neq X \times X$. Since $E \neq I_{X}$, there exist distinct elements $a, b \in X$ such that $(a, b) \in E$. Then $a, b \in A$ for some $A \in X / E$. Define $\alpha: X \rightarrow X$ by

$$
x \alpha= \begin{cases}a & \text { if } x \in A, \\ b & \text { otherwise } .\end{cases}
$$

Obviously, $\alpha \in T(X, E, F)$. Suppose that α is regular. By Theorem 2.8, there exists $B \in X / F$ such that $A \cap X \alpha \subseteq B \alpha$. Since $E \neq X \times X$ and $a, b \in A$, it follows that $A \cap X \alpha=\{a, b\}$. Thus, $x \alpha=a$ and $y \alpha=b$ for some $x, y \in B$. By the definition of α, we get that $x \in A$ and $y \in X \backslash A$. These imply that $B \cap A \neq \emptyset$ and $B \cap(X \backslash A) \neq \emptyset$, a contradiction. Thereby, α is not a regular element of $T(X, E, F)$.

SAWATRAKSA and NAMNAK/Turk J Math

Case 2. $F \neq I_{X}$. Then there exist distinct elements $c, d \in X$ such that $(c, d) \in F$. Then $c, d \in A$ for some $A \in X / F$. Define $\alpha: X \rightarrow X$ by

$$
x \alpha= \begin{cases}c & \text { if } x \in A \\ d & \text { otherwise }\end{cases}
$$

Since $(c, d) \in F, \alpha \in T(X, E, F)$. Suppose that α is regular. By Corollary 2.9(i), there exists $B \in X / F$ such that $A \cap X \alpha \subseteq B \alpha$. Since $F \neq X \times X$ and $c, d \in A$, we get that $A \cap X \alpha=\{c, d\}$. Thus, $x \alpha=c$ and $y \alpha=d$ for some $x, y \in B$. Therefore, $x \in A$ and $y \in X \backslash A$, which implies that $B \cap A \neq \emptyset$ and $B \cap(X \backslash A) \neq \emptyset$. This is a contradiction. Hence, α is not a regular element of $T(X, E, F)$.

The converse is clear.
Next, we observe three properties for regular elements of the semigroup $T(X, E, F)$.

Proposition 2.11 Let α be a regular element of $T(X, E, F)$. Then the following statements hold.
(i) If $\emptyset \neq A \cap X \alpha \subseteq B \alpha$ for some $A, B \in X / F$, then $A \cap X \alpha=B \alpha$.
(ii) If $\emptyset \neq A \cap X \alpha \subseteq B \alpha$ for some $A, B \in X / E$, then $A \cap X \alpha=B \alpha$.

Proof (i) Suppose that $\emptyset \neq A \cap X \alpha \subseteq B \alpha$ for some $A, B \in X / F$. By Corollary 2.2(i), B $\subseteq C$ for some $C \in X / F$. This implies that

$$
A \alpha^{-1}=A \alpha^{-1} \cap X=(A \cap X \alpha) \alpha^{-1} \subseteq(B \alpha) \alpha^{-1} \subseteq C \alpha^{-1}
$$

Since $F(\alpha)$ is a partition of X, we get that $A \alpha^{-1}=C \alpha^{-1}$ and so $A=C$. It follows that $B \alpha \subseteq A \cap X \alpha$. Hence, $A \cap X \alpha=B \alpha$.
(ii) The proof is similar to the proof of (i).

Proposition 2.12 Let α and β be regular elements of $T(X, E, F)$. If $\pi(\alpha)=\pi(\beta)$, then $F(\alpha)=F(\beta)$ and $E(\alpha)=E(\beta)$.

Proof Suppose that $\pi(\alpha)=\pi(\beta)$. Let $A \in X / F$ be such that $A \alpha^{-1} \neq \emptyset$. By Corollary 2.9(i), $\emptyset \neq$ $A \cap X \alpha \subseteq B \alpha$ for some $B \in X / F$. It follows from Propositions 2.11(i) and 2.4(i) that $A \alpha^{-1}=\bigcup\left\{y \alpha^{-1}: y \in\right.$ $\left.X, y \alpha^{-1} \cap B \neq \emptyset\right\}$. By assumption, we obtain that

$$
A \alpha^{-1}=\bigcup\left\{y \alpha^{-1}: y \in X, y \alpha^{-1} \cap B \neq \emptyset\right\}=\bigcup\left\{z \beta^{-1}: z \in X, z \beta^{-1} \cap B \neq \emptyset\right\}
$$

For each $x \in A \alpha^{-1}$ we have $x \in y \beta^{-1}$ for some $y \in X$ with $y \beta^{-1} \cap B \neq \emptyset$. Then there is $b \in B$ such that $x \beta=y=b \beta$. Thus, $x \beta \in B \beta$ and therefore $\left(A \alpha^{-1}\right) \beta \subseteq B \beta$. Corollary 2.2(i) implies that $B \beta \subseteq D$ for some $D \in X / F$. This implies that $A \alpha^{-1} \subseteq\left(A \alpha^{-1}\right) \beta \beta^{-1} \subseteq D \beta^{-1} \in F(\beta)$. Therefore, $F(\alpha) \preceq F(\beta)$. Similarly, $F(\beta) \preceq F(\alpha)$. Hence, $F(\alpha)=F(\beta)$.

Similarly, $E(\alpha)=E(\beta)$.

Proposition 2.13 Let α and β be regular elements of $T(X, E, F)$. If $X \alpha=X \beta$, then for each $A \in X / E$, there exist $B, C \in X / F$ such that $A \alpha \subseteq B \beta$ and $A \beta \subseteq C \alpha$.

SAWATRAKSA and NAMNAK/Turk J Math

Proof Suppose that $X \alpha=X \beta$. Let $A \in X / E$. We can see from Lemma 2.1 that $A \alpha \subseteq B$ for some $B \in X / F$. Regularity of β and Corollary 2.9(i) yield $B \cap X \beta \subseteq B^{\prime} \beta$ for some $B^{\prime} \in X / F$. It is evident that

$$
A \alpha \subseteq B \cap X \alpha=B \cap X \beta \subseteq B^{\prime} \beta
$$

Similarly, it can be shown that $A \beta \subseteq C \alpha$ for some $C \in X / F$.
As a consequence of Proposition 2.13, the following result follows readily.

Corollary 2.14 Let α and β be regular elements of $T(X, E, F)$ such that $X \alpha=X \beta$. Then the following statements hold.
(i) For each $A \in X / F$, there exist $B, C \in X / F$ such that $A \alpha \subseteq B \beta$ and $A \beta \subseteq C \alpha$.
(ii) For each $A \in X / E$, there exist $B, C \in X / E$ such that $A \alpha \subseteq B \beta$ and $A \beta \subseteq C \alpha$.

3. Green's relations on $T(X, E, F)$

In this section, we describe Green's relations on $T(X, E, F)$. Since $\mathcal{H}=\mathcal{L} \cap \mathcal{R}$, we only consider the Green's relations $\mathcal{L}, \mathcal{R}, \mathcal{J}$, and \mathcal{D} in the following.

Next, we introduce the following terminology. For $\alpha \in T(X)$ and $A \subseteq X$, we denote

$$
\pi_{A}(\alpha)=\{P \in \pi(\alpha): P \cap A \neq \emptyset\} .
$$

Theorem 3.1 [4] Let a and b be elements of a semigroup S. Then the following statements hold.
(i) $(a, b) \in \mathcal{R}$ if and only if there exist $x, y \in S^{1}$ such that $a=b x$ and $b=a y$.
(ii) $(a, b) \in \mathcal{L}$ if and only if there exist $x, y \in S^{1}$ such that $a=x b$ and $b=y a$.
(iii) $(a, b) \in \mathcal{J}$ if and only if there exist $w, x, y, z \in S^{1}$ such that $a=w b x$ and $b=y a z$.

Lemma 3.2 Let $\alpha, \beta \in T(X, E, F)$. Then $\alpha=\beta \mu$ for some $\mu \in T(X, E, F)$ if and only if
(i) $\operatorname{ker} \beta \subseteq \operatorname{ker} \alpha$ and
(ii) for all $x, y \in X,(x \beta, y \beta) \in E$ implies that $(x \alpha, y \alpha) \in F$.

Proof The necessity is clear. To prove the sufficiency, we assume that conditions (i) and (ii) hold. For each $y \in X \beta$, there exists $a_{y} \in X$ such that $a_{y} \beta=y$. Let $A \in X / E$ be such that $A \cap X \beta \neq \emptyset$. Then there exists $y \in A \cap X \beta$. Thus, $a_{y} \beta=y$ for some $a_{y} \in X$. We choose and fix $b_{A} \in X$ with $\left(b_{A}, a_{y} \alpha\right) \in F$. Define $\mu_{A}: A \rightarrow X$ by

$$
x \mu_{A}= \begin{cases}a_{x} \alpha & \text { if } x \in X \beta \\ b_{A} & \text { otherwise }\end{cases}
$$

Let $x, y \in A$ be such that $x=y$. If $x, y \in X \beta$, then there are $a_{x}, a_{y} \in X$ such that $a_{x} \beta=x$ and $a_{y} \beta=y$. Thus, $\left(a_{x}, a_{y}\right) \in \operatorname{ker} \beta$ and so $a_{x} \alpha=a_{y} \alpha$ by (i), which implies that $x \mu_{A}=y \mu_{A}$. If $x, y \notin X \beta$, then $x \mu_{A}=b_{A}=y \mu_{A}$.

SAWATRAKSA and NAMNAK/Turk J Math

From the above discussion, we obtain that μ_{A} is well defined. Define $\mu: X \rightarrow X$ by

$$
\left.\mu\right|_{A}= \begin{cases}\mu_{A} & \text { if } A \cap X \beta \neq \emptyset \\ C_{A} & \text { otherwise }\end{cases}
$$

for all $A \in X / E$ where C_{A} is a constant map from A into X. Since X / E is a partition of X, we have that μ is well defined and so $\mu \in T(X)$. To show that $\mu \in T(X, E, F)$, let $x, y \in X$ be such that $(x, y) \in E$. Then $x, y \in A$ for some $A \in X / E$.
Case 1. $A \cap X \beta \neq \emptyset$. Then there exists $z \in A \cap X \beta$ such that $a_{z} \beta=z$ and $\left(b_{A}, a_{z} \alpha\right) \in F$. We note that $(x, z) \in E$. It suffices to consider three cases as follows.
Subcase 1.1. $x, y \in X \beta$. Then $a_{x} \beta=x$ and $a_{y} \beta=y$ for some $a_{x}, a_{y} \in X$. Thus, $\left(a_{x} \beta, a_{y} \beta\right)=(x, y) \in E$ and so $(x \mu, y \mu)=\left(x \mu_{A}, y \mu_{A}\right)=\left(a_{x} \alpha, a_{y} \alpha\right) \in F$ by (ii).
Subcase 1.2. $x \in X \beta$ and $y \notin X \beta$. Then $a_{x} \beta=x$ for some $a_{x} \in X$ and so $\left(a_{x} \beta, a_{z} \beta\right)=(x, z) \in E$. By (ii), we have $\left(a_{x} \alpha, a_{z} \alpha\right) \in F$. Since $\left(a_{z} \alpha, b_{A}\right) \in F,(x \mu, y \mu)=\left(x \mu_{A}, y \mu_{A}\right)=\left(a_{x} \alpha, b_{A}\right) \in F$ by transitivity of F.
Subcase 1.3. $x, y \notin X \beta$. Then by reflexivity of F, we obtain that

$$
(x \mu, y \mu)=\left(x \mu_{A}, y \mu_{A}\right)=\left(b_{A}, b_{A}\right) \in F
$$

Case 2. $A \cap X \beta=\emptyset$. Then by reflexivity of F, we have $(x \mu, y \mu)=\left(x C_{A}, y C_{A}\right) \in F$.
From the two cases, we deduce that $\mu \in T(X, E, F)$. Let $x \in X$. Then $x \beta \in X \beta$ and $x \beta \in A$ for some $A \in X / E$ and so $a_{x \beta} \beta=x \beta$ for some $a_{x \beta} \in X$. Thus, $\left(a_{x \beta}, x\right) \in \operatorname{ker} \beta$ so that $x \alpha=a_{x \beta} \alpha=(x \beta) \mu_{A}=x \beta \mu$ by (i). This shows that $\alpha=\beta \mu$ as required.

As an immediate consequence of Lemma 3.2, we have the following.
Theorem 3.3 Let $\alpha, \beta \in T(X, E, F)$. Then $(\alpha, \beta) \in \mathcal{R}$ if and only if
(i) $\operatorname{ker} \beta=\operatorname{ker} \alpha$,
(ii) for all $x, y \in X,(x \beta, y \beta) \in E$ implies that $(x \alpha, y \alpha) \in F$, and
(iii) for all $x, y \in X,(x \alpha, y \alpha) \in E$ implies that $(x \beta, y \beta) \in F$.

To describe the \mathcal{R}-relation again, the following lemma is required.
Lemma 3.4 Let $\alpha, \beta \in T(X, E, F)$. Then $\alpha=\beta \mu$ for some $\mu \in T(X, E, F)$ if and only if there exists a mapping $\varphi: X \beta \rightarrow X \alpha$ satisfying
(i) $\alpha=\beta \varphi$ and
(ii) for all $x, y \in X \beta,(x, y) \in E$ implies that $(x \varphi, y \varphi) \in F$.

Proof The necessity is clear from Lemma 3.2 by just taking $\varphi=\left.\mu\right|_{X \beta}$. To prove the sufficiency, we suppose that $\varphi: X \beta \rightarrow X \alpha$ is a mapping satisfying the conditions (i) and (ii). Let $A \in X / E$ be such that $A \cap X \beta \neq \emptyset$. Then there exists a unique $B \in X / F$ such that $(A \cap X \beta) \varphi=B \cap X \alpha$ by (ii). Fix some $b_{A} \in B$ and define $\mu_{A}: A \rightarrow B$ by

$$
x \mu_{A}= \begin{cases}x \varphi & \text { if } x \in X \beta \\ b_{A} & \text { otherwise }\end{cases}
$$

Let $\mu: X \rightarrow X$ be defined by

$$
\left.\mu\right|_{A}= \begin{cases}\mu_{A} & \text { if } A \cap X \beta \neq \emptyset \\ C_{A} & \text { otherwise }\end{cases}
$$

for all $A \in X / E$ and C_{A} is a constant map from A into X. Since X / E is a partition of X, we have that μ is well defined. Let $x, y \in X$ be such that $(x, y) \in E$. Then $x, y \in A$ for some $A \in X / E$.
Case 1. $A \cap X \beta \neq \emptyset$. Then there exists $B \in X / F$ such that $(A \cap X \beta) \varphi=B \cap X \alpha$ by (ii) and so $b_{A} \in B$.
Subcase 1.1. $x, y \in X \beta$. Then $(x \mu, y \mu)=\left(x \mu_{A}, y \mu_{A}\right)=(x \varphi, y \varphi) \in F$ by (ii).
Subcase 1.2. $x \in X \beta$ and $y \notin X \beta$. Then $x \varphi \in B$ and so $(x \mu, y \mu)=\left(x \mu_{A}, y \mu_{A}\right)=\left(x \varphi, b_{A}\right) \in F$.
Subcase 1.3. $x, y \notin X \beta$. Then by reflexivity of F, we have

$$
(x \mu, y \mu)=\left(x \mu_{A}, y \mu_{A}\right)=\left(b_{A}, b_{A}\right) \in F
$$

Case 2. $A \cap X \beta=\emptyset$. Then by reflexivity of F, we have $(x \mu, y \mu)=\left(x C_{A}, y C_{A}\right) \in F$.
From the two cases we deduce that $\mu \in T(X, E, F)$. It is routine to check that $\alpha=\beta \mu$, as required.
The following theorem is a direct consequence of Lemma 3.4.

Theorem 3.5 Let $\alpha, \beta \in T(X, E, F)$. Then $(\alpha, \beta) \in \mathcal{R}$ if and only if there exists a bijection $\varphi: X \beta \rightarrow X \alpha$ satisfying
(i) $\alpha=\beta \varphi$,
(ii) for all $x, y \in X \beta,(x, y) \in E$ implies that $(x \varphi, y \varphi) \in F$, and
(iii) for all $x, y \in X \alpha,(x, y) \in E$ implies that $\left(x \varphi^{-1}, y \varphi^{-1}\right) \in F$.

For an equivalence E on a set X and $\varphi: A \rightarrow B$ where $A, B \subseteq X$, we say that φ is E^{*}-preserving if $(x, y) \in E$ if and only if $(x \varphi, y \varphi) \in E$.

As a consequence, we obtain a corollary of Theorem 3.5.

Corollary 3.6 Let $\alpha, \beta \in T(X, E, F)$. If $(\alpha, \beta) \in \mathcal{R}$, then there exists a bijection $\varphi: X \beta \rightarrow X \alpha$ is an F^{*}-preserving bijection and an E^{*}-preserving bijection such that $\alpha=\beta \varphi$.

Let $\alpha, \beta \in T(X, E, F)$ and φ be a map from $\pi(\alpha)$ into $\pi(\beta)$. If for each $A \in X / E$, there exists $B \in X / F$ such that

$$
\left(\pi_{A}(\alpha)\right) \varphi \subseteq \pi_{B}(\beta)
$$

then φ is said to be $E F$-admissible. Note that, if $E=F$, then φ is said to be E-admissible. If φ is a bijection and both φ and φ^{-1} are $E F$-admissible, then φ is said to be $E F^{*}-a d m i s s i b l e$, and if $E=F$, we say that φ is said to be E^{*}-admissible. If $\gamma \in T(X, E, F)$, then denote by γ_{*} the map from $\pi(\gamma)$ onto $X \gamma$ induced by γ, namely $P \gamma_{*}=p \gamma$ for each $P \in \pi(\gamma)$ and all $p \in P$. Obviously, γ_{*} is a bijection.

Proposition 3.7 Let $\alpha, \beta \in T(X, E, F)$. Then $\varphi: \pi(\alpha) \rightarrow \pi(\beta)$ is $E F$-admissible if and only if for each $A \in X / E$ there exists $B \in X / F$ such that $B \cap P \varphi \neq \emptyset$ for all $P \in \pi_{A}(\alpha)$.

SAWATRAKSA and NAMNAK/Turk J Math

Proof Suppose that $\varphi: \pi(\alpha) \rightarrow \pi(\beta)$ is $E F$-admissible. Let $A \in X / E$. Then there exists $B \in X / F$ such that

$$
\left(\pi_{A}(\alpha)\right) \varphi \subseteq \pi_{B}(\beta)
$$

Let $P \in \pi_{A}(\alpha)$. Then $P \varphi \in \pi_{B}(\beta)$. Hence, $B \cap P \varphi \neq \emptyset$.
Conversely, suppose that for each $A \in X / E$, there exists $B \in X / F$ such that $B \cap P \varphi \neq \emptyset$ for all $P \in \pi_{A}(\alpha)$. Let $A \in X / E$. Then there exists $B \in X / F$ such that $B \cap P \varphi \neq \emptyset$ for all $P \in \pi_{A}(\alpha)$. Let $P \in \pi_{A}(\alpha)$. Then $P \varphi \in \pi(\beta)$ and $B \cap P \varphi \neq \emptyset$. Thus, $P \varphi \in \pi_{B}(\beta)$. Hence, $\left(\pi_{A}(\alpha)\right) \varphi \subseteq \pi_{B}(\beta)$.

The following lemma is used for characterizing the \mathcal{L}-relation on $T(X, E, F)$.

Lemma 3.8 Let $\alpha, \beta \in T(X, E, F)$. Then the following statements are equivalent.
(i) $\alpha=\lambda \beta$ for some $\lambda \in T(X, E, F)$.
(ii) For each $A \in X / E$, there exists $B \in X / F$ such that $A \alpha \subseteq B \beta$.
(iii) There exists EF-admissible $\varphi: \pi(\alpha) \rightarrow \pi(\beta)$ such that $\alpha_{*}=\varphi \beta_{*}$.

Proof (i) \Rightarrow (ii) Assume that $\alpha=\lambda \beta$ for some $\lambda \in T(X, E, F)$. Let $A \in X / E$. Then by Lemma 2.1, we have $A \lambda \subseteq B$ for some $B \in X / F$. By assumption, we obtain that $A \alpha=A \lambda \beta \subseteq B \beta$.
(ii) \Rightarrow (iii) To show that $X \alpha \subseteq X \beta$, let $y \in X \alpha$. Then $x \alpha=y$ for some $x \in X$. Thus, $x \in A$ for some $A \in X / E$. By (ii), there exists $B \in X / F$ such that

$$
y=x \alpha \in A \alpha \subseteq B \beta \subseteq X \beta
$$

Therefore, $X \alpha \subseteq X \beta$. For each $P \in \pi(\alpha)$, we have $P \alpha_{*}=x \alpha \in X \alpha \subseteq X \beta$ for all $x \in P$. Define $\varphi: \pi(\alpha) \rightarrow \pi(\beta)$ by

$$
P \varphi=\left(P \alpha_{*}\right) \beta^{-1} \text { for all } P \in \pi(\alpha)
$$

Then φ is well defined. Let $A \in X / E$ and let $I_{A}=\left\{i \in X \alpha: i \alpha^{-1} \cap A \neq \emptyset\right\}$. For each $i \in I_{A}$, we let $P_{i}:=i \alpha^{-1}$. Then

$$
\pi_{A}(\alpha)=\left\{P_{i}: i \in I_{A}\right\} \text { and } i=P_{i} \alpha_{*} \text { for all } i \in I_{A}
$$

Let $i \in I_{A}$. By (ii), we have $i \in A \alpha \subseteq B \beta$ for some $B \in X / F$. Then $B \cap P_{i} \varphi=B \cap\left(P_{i} \alpha_{*}\right) \beta^{-1}=B \cap i \beta^{-1} \neq \emptyset$. Hence, φ is $E F$-admissible by Proposition 3.7. Finally, we will show that $\alpha_{*}=\varphi \beta_{*}$. Let $P \in \pi(\alpha)$ and $p \in P$. Then $p \alpha \in X \alpha \subseteq X \beta$ and so $p \alpha=x \beta$ for some $x \in X$. Thus, $x \in(p \alpha) \beta^{-1}=\left(P \alpha_{*}\right) \beta^{-1}=P \varphi$. Therefore,

$$
P \alpha_{*}=p \alpha=x \beta=P \varphi \beta_{*},
$$

as required.
(iii) \Rightarrow (i) Suppose that $\varphi: \pi(\alpha) \rightarrow \pi(\beta)$ is $E F$-admissible such that $\alpha_{*}=\varphi \beta_{*}$. Let $A \in X / E$. Then $\left(\pi_{A}(\alpha)\right) \varphi \subseteq \pi_{B}(\beta)$ for some $B \in X / F$. For each $x \in A$, we let $P_{x}=(x \alpha) \alpha^{-1} \in \pi_{A}(\alpha)$. By assumption and Proposition 3.7, we have $P_{x} \varphi \cap B \neq \emptyset$. We choose $b_{x} \in P_{x} \varphi \cap B$. Define $\lambda_{A}: A \rightarrow X$ by

$$
x \lambda_{A}=b_{x} \text { for all } x \in A
$$

SAWATRAKSA and NAMNAK/Turk J Math

Let $\lambda \in T(X)$ be such that $\left.\lambda\right|_{A}=\lambda_{A}$ for all $A \in X / E$. Since X / E is a partition of X, λ is well defined. Obviously, $\lambda \in T(X, E, F)$. Let $x \in X$. Then $x \in A$ for some $A \in X / E$. By Proposition 3.7, there is $B \in X / F$ such that $x \lambda=\left.x \lambda\right|_{A}=b_{x} \in P_{x} \varphi \cap B$ where $P_{x} \in \pi_{A}(\alpha)$. Since $\alpha_{*}=\varphi \beta_{*}$, we obtain that

$$
x \alpha=P_{x} \alpha_{*}=P_{x} \varphi \beta_{*}=b_{x} \beta=x \lambda \beta .
$$

Hence, $\alpha=\lambda \beta$.
Using Lemma 3.8, we can establish the next result.

Theorem 3.9 Let $\alpha, \beta \in T(X, E, F)$. Then the following statements are equivalent.
(i) $(\alpha, \beta) \in \mathcal{L}$.
(ii) For each $A \in X / E$, there exist $B, C \in X / F$ such that $A \alpha \subseteq B \beta$ and $A \beta \subseteq C \alpha$.
(iii) There exists an $E F^{*}$-admissible bijection $\varphi: \pi(\alpha) \rightarrow \pi(\beta)$ such that $\alpha_{*}=\varphi \beta_{*}$.

As an immediate consequence of Theorem 3.9, we have the following.

Corollary 3.10 Let $\alpha, \beta \in T(X, E, F)$ be such that $(\alpha, \beta) \in \mathcal{L}$. Then the following statements hold.
(i) For each $A \in X / E$, there exist $B, C \in X / E$ such that $A \alpha \subseteq B \beta$ and $A \beta \subseteq C \alpha$.
(ii) For each $A \in X / F$, there exist $B, C \in X / F$ such that $A \alpha \subseteq B \beta$ and $A \beta \subseteq C \alpha$.
(iii) There is an E^{*}-admissible bijection $\varphi: \pi(\alpha) \rightarrow \pi(\beta)$ such that $\alpha_{*}=\varphi \beta_{*}$.
(iv) There is an F^{*}-admissible bijection $\varphi: \pi(\alpha) \rightarrow \pi(\beta)$ such that $\alpha_{*}=\varphi \beta_{*}$.
(v) $X \alpha=X \beta$.

Now we can determine \mathcal{L} for two regular elements of $T(X, E, F)$. As an immediate consequence of Proposition 2.13 and Theorem 3.9, we obtain:

Theorem 3.11 Let α and β be regular elements of $T(X, E, F)$. Then $(\alpha, \beta) \in \mathcal{L}$ if and only if $X \alpha=X \beta$.
To describe the \mathcal{J}-relation on $T(X, E, F)$, we first give the following lemma.
Lemma 3.12 Let $\alpha, \beta \in T(X, E, F)$. Then $\alpha=\lambda \beta \mu$ for some $\lambda, \mu \in T(X, E, F)$ if and only if there exists $\varphi: X \beta \rightarrow X$ satisfying the following:
(i) for each $x, y \in X \beta,(x, y) \in E$ implies that $(x \varphi, y \varphi) \in F$ and
(ii) for each $A \in X / E$, there exists $B \in X / F$ such that $A \alpha \subseteq(B \beta) \varphi$.

Proof Suppose that $\alpha=\lambda \beta \mu$ for some $\lambda, \mu \in T(X, E, F)$. Let $\varphi=\left.\mu\right|_{X \beta}$ and let $x, y \in X \beta$ be such that $(x, y) \in E$. Then since $\mu \in T(X, E, F)$, we have

$$
(x \varphi, y \varphi)=\left(\left.x \mu\right|_{X \beta},\left.y \mu\right|_{X \beta}\right)=(x \mu, y \mu) \in F .
$$

SAWATRAKSA and NAMNAK/Turk J Math

Let $A \in X / E$. By Lemma 2.1, there exists $B \in X / F$ such that $A \lambda \subseteq B$. Thus, $A \alpha=A \lambda \beta \mu \subseteq B \beta \mu=$ $\left.B \beta \mu\right|_{X \beta}=(B \beta) \varphi$.

Conversely, assume that there exists $\varphi: X \beta \rightarrow X$ satisfying the conditions (i) and (ii). Let $A \in X / E$ be such that $A \cap X \beta \neq \emptyset$. By (i), $(A \cap X \beta) \varphi \subseteq B$ for some $B \in X / F$. Fix some $b_{A} \in B$ and define $\mu_{A}: A \rightarrow B$ by

$$
x \mu_{A}= \begin{cases}x \varphi & \text { if } x \in X \beta \\ b_{A} & \text { otherwise }\end{cases}
$$

Let $\mu: X \rightarrow X$ be defined by

$$
\left.\mu\right|_{A}= \begin{cases}\mu_{A} & \text { if } A \cap X \beta \neq \emptyset \\ C_{A} & \text { otherwise }\end{cases}
$$

for all $A \in X / E$ and C_{A} is a constant map from A into X. Since X / E is a partition of X, it follows that μ is well defined. From (i), we have $\mu \in T(X, E, F)$.

For each $A \in X / E$, by (ii) we choose and fix $B_{A} \in X / F$ such that $A \alpha \subseteq\left(B_{A} \beta\right) \varphi$. Let $x \in A$. Then we choose and fix $b_{x} \in B_{A}$ such that $x \alpha=\left(b_{x} \beta\right) \varphi$. Define $\lambda: X \rightarrow X$ by $x \lambda=b_{x}$ for all $x \in X$. Then $\lambda \in T(X, E, F)$. Furthermore, for $x \in X$,

$$
x \lambda \beta \mu=b_{x} \beta \mu=\left(b_{x} \beta\right) \varphi=x \alpha
$$

which implies that $\alpha=\lambda \beta \mu$, as desired.
Lemma 3.12 is useful to obtain this result.

Theorem 3.13 Let $\alpha, \beta \in T(X, E, F)$. Then $(\alpha, \beta) \in \mathcal{J}$ if and only if there exist $\varphi: X \beta \rightarrow X$ and $\psi: X \alpha \rightarrow X$ satisfying the following:
(i) for each $x, y \in X \beta,(x, y) \in E$ implies that $(x \varphi, y \varphi) \in F$,
(ii) for each $x, y \in X \alpha,(x, y) \in E$ implies that $(x \psi, y \psi) \in F$, and
(iii) for each $A \in X / E$, there exist $B, C \in X / F$ such that $A \alpha \subseteq(B \beta) \varphi$ and $A \beta \subseteq(C \alpha) \psi$.

Next, to describe the \mathcal{D}-relation on $T(X, E, F)$, the following corollary follows from Theorem 3.3 and Proposition 2.3.

Corollary 3.14 Let $\alpha, \beta \in T(X, E, F)$. If $(\alpha, \beta) \in \mathcal{R}$, then $\pi(\alpha)=\pi(\beta)$ and $F(\alpha)=F(\beta)$.

Theorem 3.15 Let $\alpha, \beta \in T(X, E, F)$. Then $(\alpha, \beta) \in \mathcal{D}$ if and only if there exist an $E F^{*}$-admissible bijection $\varphi: \pi(\alpha) \rightarrow \pi(\beta)$ and a bijection $\psi: X \alpha \rightarrow X \beta$ satisfying the following:
(i) for each $x, y \in X \alpha,(x, y) \in E$ implies that $(x \psi, y \psi) \in F$,
(ii) for each $x, y \in X \beta,(x, y) \in E$ implies that $\left(x \psi^{-1}, y \psi^{-1}\right) \in F$, and
(iii) $\alpha_{*} \psi=\varphi \beta_{*}$.

Proof Suppose that $(\alpha, \beta) \in \mathcal{D}$. Then $(\alpha, \gamma) \in \mathcal{R}$ and $(\gamma, \beta) \in \mathcal{L}$ for some $\gamma \in T(X, E, F)$. By Corollaries 3.14, and $3.10(\mathrm{v})$, we have $\pi(\alpha)=\pi(\gamma)$ and $X \beta=X \gamma$, respectively. Since $(\alpha, \gamma) \in \mathcal{R}$, by Theorem 3.5, there exists a bijection $\psi: X \alpha \rightarrow X \beta$ satisfying (i), (ii), and

$$
\gamma=\alpha \psi .
$$

Let $P \in \pi(\gamma)=\pi(\alpha)$ and $x \in P$. Then $P \gamma_{*}=x \gamma=x \alpha \psi=P \alpha_{*} \psi$. Thus, $\gamma_{*}=\alpha_{*} \psi$. Since $(\gamma, \beta) \in \mathcal{L}$, by Theorem 3.9, there exists an $E F^{*}$-admissible bijection $\varphi: \pi(\alpha) \rightarrow \pi(\beta)$ such that

$$
\gamma_{*}=\varphi \beta_{*}
$$

Hence, $\alpha_{*} \psi=\varphi \beta_{*}$ and the assertion follows.
Conversely, assume that $\varphi: \pi(\alpha) \rightarrow \pi(\beta)$ is an $E F^{*}$-admissible bijection and $\psi: X \alpha \rightarrow X \beta$ is a bijection satisfying the conditions (i), (ii), and (iii). Define $\gamma \in T(X)$ by $x \gamma=(x \alpha) \psi$ for all $x \in X$. Then $\gamma \in T(X, E, F)$ by (i) and

$$
\gamma=\alpha \psi .
$$

Next, we will show that $\pi(\alpha)=\pi(\gamma)$. Let $y \in X \alpha$. Then $\{y \psi\}=\left(y \alpha^{-1}\right) \alpha \psi=\left(y \alpha^{-1}\right) \gamma$. Thus, $y \alpha^{-1} \subseteq$ $\left(y \alpha^{-1}\right) \gamma \gamma^{-1} \subseteq(y \psi) \gamma^{-1} \in \pi(\gamma)$. Hence, $\pi(\alpha) \preceq \pi(\gamma)$. On the other hand, let $z \in X \gamma$. Then $\left\{z \psi^{-1}\right\}=$ $\left(z \gamma^{-1}\right) \gamma \psi^{-1}=\left(z \gamma^{-1}\right) \alpha \psi \psi^{-1}=\left(z \gamma^{-1}\right) \alpha i d_{X \alpha}=\left(z \gamma^{-1}\right) \alpha$. Thus, $z \gamma^{-1} \subseteq\left(z \psi^{-1}\right) \alpha^{-1} \in \pi(\alpha)$ and hence $\pi(\gamma) \preceq \pi(\alpha)$. Consequently, $\pi(\alpha)=\pi(\gamma)$. Let $P \in \pi(\gamma)$ and $x \in P$. Then

$$
P \gamma_{*}=x \gamma=x \alpha \psi=P \alpha_{*} \psi,
$$

and this implies that $\gamma_{*}=\alpha_{*} \psi$. By (iii), we obtain that $\gamma_{*}=\alpha_{*} \psi=\varphi \beta_{*}$. By Theorem 3.9, we have that $(\gamma, \beta) \in \mathcal{L}$. It follows from Corollary $3.10(\mathrm{v})$ that $X \gamma=X \beta$. This implies that $\psi: X \alpha \rightarrow X \gamma$ such that $\gamma=\alpha \psi$. From (i) and (ii), it follows from Theorem 3.5 that $(\alpha, \gamma) \in \mathcal{R}$. Hence, $(\alpha, \beta) \in \mathcal{D}$, as required.

In order to describe Green's relation \mathcal{D} for regular elements of $T(X, E, F)$, we observe the following.
Lemma 3.16 Let α and β be regular elements of $T(X, E, F)$. Suppose that $\psi: X \alpha \rightarrow X \beta$ is a bijection satisfying the following:
(i) for all $x, y \in X \alpha,(x, y) \in E$ implies that $(x \psi, y \psi) \in F$ and
(ii) for all $x, y \in X \beta,(x, y) \in E$ implies that $\left(x \psi^{-1}, y \psi^{-1}\right) \in F$.

Then there exists an $E F^{*}$-admissible bijection $\varphi: \pi(\alpha) \rightarrow \pi(\beta)$ such that $\alpha_{*} \psi=\varphi \beta_{*}$.
Proof Define $\varphi: \pi(\alpha) \rightarrow \pi(\beta)$ by

$$
P \varphi=\left(P \alpha_{*} \psi\right) \beta_{*}^{-1} \text { for all } P \in \pi(\alpha) .
$$

Obviously, φ is well defined and $\varphi \beta_{*}=\alpha_{*} \psi$. Notice that $\alpha_{*}, \beta_{*}^{-1}$ and ψ are all bijection, and so also is φ. Thus, what remains is to verify that φ is $E F^{*}$-admissible. Let $A \in X / E$. Then $B^{\prime}=A \alpha \subseteq B$ for some $B \in X / E$ by Corollary 2.2(ii). By (i), we have that $C^{\prime}=B^{\prime} \psi \subseteq B \psi \subseteq C$ for some $C \in X / F$. By regularity of β and Corollary 2.9(i), we can write

$$
C^{\prime} \subseteq C \cap X \beta \subseteq D \beta
$$

for some $D \in X / F$. We assert that $\left(\pi_{A}(\alpha)\right) \varphi \subseteq \pi_{D}(\beta)$. In fact, if $P \in \pi_{A}(\alpha)$, then $P \alpha_{*} \in A \alpha=B^{\prime}$. Hence,

$$
P \alpha_{*} \psi \in B^{\prime} \psi=C^{\prime} \subseteq D \beta
$$

and $P \varphi \cap D=\left(P \alpha_{*} \psi\right) \beta_{*}^{-1} \cap D \neq \emptyset$, which implies that $P \varphi \in \pi_{D}(\beta)$ and the assertion holds. Hence, φ is $E F$-admissible. Similarly, φ^{-1} is $E F$-admissible and the conclusion follows.

As an immediate consequence of Theorem 3.15 and Lemma 3.16, we have the next result.

Theorem 3.17 Let α and β be regular elements of $T(X, E, F)$. Then $(\alpha, \beta) \in \mathcal{D}$ if and only if there exists a bijection $\psi: X \alpha \rightarrow X \beta$ satisfying the following:
(i) for all $x, y \in X \alpha,(x, y) \in E$ implies that $(x \psi, y \psi) \in F$ and
(ii) for all $x, y \in X \beta,(x, y) \in E$ implies that $\left(x \psi^{-1}, y \psi^{-1}\right) \in F$.

Acknowledgment

The authors would like to express gratitude to the Science Achievement Scholarship of Thailand (SAST) for the full scholarship to one of the authors and support in academic activities.

References

[1] Deng L, Zeng J, Xu B. Green's relations and regularity for semigroups of transformations that preserve double direction equivalence. Semigroup Forum 2010; 80: 416-425.
[2] Deng L, Zeng H, You T. Green's relations and regularity for semigroups of transformations that preserve order and a double direction equivalence. Semigroup Forum 2009; 84: 59-68.
[3] Doss C. Certain equivalence relations in transformation semigroups. MSc, University of Tennessee, Knoxville, TN, USA, 1995.
[4] Howie JM. Fundamentals of Semigroup Theory. New York, NY, USA: Oxford university Press, 1995.
[5] Ma M, You T, Luo S, Yang Y, Wang L. Regularity and Green's relations for finite E-order-preserving transformations semigroups. Semigroup Forum 2010; 80: 164-173.
[6] Pei H. Regularity and Green's relations for semigroups of transformations that preserve an equivalence. Comm Algebra 2005; 33: 109-118.
[7] Pei H, Deng W. A note on Green's relations in the semigroups $T(X, \rho)$. Semigroup Forum 2009; 79: 210-213.
[8] Pei H, Dingyu D. Green's equivalences on semigroups of transformations preserving order and an equivalence relation. Semigroup Forum 2005; 71: 241-251.
[9] Ping Z, Mei Y. Regularity and Green's relations on semigroups of transformation preserving order and compression. Bull Korean Math Soc 2012; 49: 1015-1025
[10] Sullivan RP, Mendes-Gonçalves S. Semigroups of transformations restricted by an equivalence. Cent Eur J Math 2010; 8: 1120-1131.
[11] Sun L, Pei H. Green's relations on semigroups of transformations preserving two equivalence relations. Journal of Mathematical Research and Exposition 2009; 29: 415-422.

