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Abstract: Let T(X) be the full transformation semigroup on a set X . For two equivalence relations E and F on X
with F C E, let
T(X,E,F)={aeT(X):Vz,y € X, (z,y) € E= (za,yc) € F}.

Then T(X, E, F) is a subsemigroup of 7'(X). In this paper, we describe Green’s relations and the regularity of elements
for T(X, E,F). Also, the relations F' and E for which T'(X, E, F) is a regular semigroup are described.
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1. Introduction
In 1951, Green defined the equivalence relations £, R, and J on a semigroup S by the rules that, for a,b € S,

(a,b) € L if and only if Sta = S'b,

(a,b) € R if and only if aS* = bS!, and

(a,b) € J if and only if S*aS! = S1bS?
where S! is the semigroup with identity obtained from S by adjoining an identity if necessary. Then he also
defined the equivalence relations H =LNR and D = LoR. These five equivalence relations are known as
Green’s relations: see the book by Howie [4].

An element z of a semigroup S is called a regular element if there exists y € S such that x = xyx, and
S is called a regular semigroup if every element of S is regular.

Let X be a nonempty set. As usual, T(X) denotes the semigroup (under composition) of all full trans-
formations of X (that is, all mappings «: X — X ). It is a well-known fact that T/(X) is a regular semigroup
(see [3]) and every semigroup is isomorphic to a subsemigroup of some full transformation semigroup (see [4]).
Hence, in order to study the structure of semigroups, it suffices to consider some subsemigroups of T'(X).
Therefore, several researchers are interested in characterization of subsemigroups of the full transformation
semigroup. Particularly, characterization of regularity and Green’s relations on subsemigroups of T'(X) have
been investigated. See [1, 2, 5-11].

Let E be an equivalence relation on X . Recently, Pei [6] introduced a family of subsemigroups of T'(X)
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defined by
Tp(X)={aeT(X):Va,y € X, (z,y) € E = (za,ya) € E}

and called it the semigroup of transformation preserving an equivalence relation on X . It is easy to see that
if F=XxXor E=1Ix ={(z,z) : z € X}, then Tg(X) is equal to T(X). The author studied Green’s
relations and regularity on Tx(X).
Suppose that F and F are equivalence relations on X with F C FE. Sun and Pei [11] studied the
subsemigroup of T(X) defined by
Tepr(X)=Te(X)NTr(X).

They described the condition under which elements of Trr(X) are regular and discussed Green’s relations on
Ter(X).
The semigroup Tr(X) motivates us to define T(X, E, F) as follows:

T(X,E,F)={aecT(X):Vz,y € X,(z,y) € E = (za,ya) € F},

where E and F are equivalence relations on X with F C E. It is easy to see that T'(X, E, F') is a subsemigroup
of T(X) and that T(X,E,F) CTer(X) CTe(X) CT(X).

The purpose of this paper is to investigate the regularity of elements and Green’s relations for the
semigroup T'(X, FE, F'). Accordingly, in Section 2, the condition under which elements of T'(X, E, F') are regular
is analyzed. In Section 3, Green’s relations on T'(X, E, F') are described.

In the remainder of this paper, let ¥ and F be equivalence relations on a set X such that ' C FE.

2. Regularity of T(X,E, F)

For a € T(X), the symbol m(«) will denote the decomposition of X induced by the map a, namely
m(a) ={ra"!:x € Xa}.
Hence, 7(a) = X /ker o where kera = {(z,y) € X x X : za = ya}. Denote
E(a) ={Aa"': Ac X/E, Aa" # 0},
where FE is an equivalence relation on X . Then E(«) is a partition of X.

Lemma 2.1 Let « € T(X,E,F). For each A€ X/E, there exists B € X /F such that Ao C B.

Proof Let A€ X/E and a € A. Then there exists B € X /F such that aa € B. Let y € Aa. Then za =y
for some z € A. Since (a,z) € E and a € T(X,E, F), we have (ao,y) = (aa,za) € F. This means that
Yy € B. O

Since F' C E and by Lemma 2.1, we certainly have the following corollary.

Corollary 2.2 Let « € T(X,E,F). Then the following statements hold.
(i) For each A € X/F, there exists B € X/F such that Aa C B.

(i) For each A € X/E, there exists B € X /E such that Ao C B.
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Let P and Q be two partitions of a set X . If for every P € P, there exists Q € Q such that P C @,

we write P < Q. It is obvious that = is a partial order on the set of all partitions of X .

Proposition 2.3 Let a,8,7v € T(X,E,F) be such that a« = By. Then w(8) < 7(a), F(8) X F(«), and
E(B) < E(a).

Proof (i) Let A € n(3). Then A =yB~! for some y € X3. Thus, Aa = ABy =1yy and so A C (Ada)a~t C
(yy)a~t. Since (yy)a~! € m(a), we conclude that 7(3) < m(a).

(ii) Let A€ F(B). Then A= BB~! for some B € X/F with B~ # () and so A3 C B. By Corollary
2.2(i), we have By C C for some C € X/F. Therefore, Ao = ABy C By C C, so that A C (Aa)a=! C Ca~?t.
Since A#( and C € X/F, Ca~! € F(a). Hence, F(3) < F(a).

(iii) Similar to the proof of (ii). O

Proposition 2.4 Let « € T(X,E, F). Then the following statements hold.
(i) If AN Xa = Ba for some A,B € X/F, then Aa=' =J{ya™ ! :y € X,ya ' N B #0}.
(ii) If AN Xa = Ba for some A,B € X/E, then Aa=! = J{ya ™ t:ye X,ya 1N B #0}.

Proof (i) Suppose that AN Xa = Ba for some A,B € X/F. Let x € Aa~!. Then za € A and so za € Ba.
Thus, za = ba for some b € B. Therefore, b € (za)a™!, which implies that (ra)a~™!' N B # () and hence

z € (ra)at C U{yofl cy € X,ya~' N B #£ 0},

For the reverse inclusion, let z € J{ya™! : y € X,ya ' N B # 0}. Then z € ya~! for some y € X with
ya~'NB # (. Thus, za = y = ba for some b € ya~'NB. Since bae € Ba = ANXa, xa = ba € A. Therefore,
r € (ra)a™! C Aat.

(ii) Similar to the proof of (i). O

Proposition 2.5 Let a« € T(X,E,F). Then « is a right zero element of T(X,E,F) if and only if « is
constant.

Proof Suppose that « is nonconstant. Then there exist distinct elements a,b € X«. Thus, d’a = a and
b'aw =10 for some a',b’ € X. Thus V' € B for some B € X/E. Define 8 € T(X) by

- a ifreB,
TP=1 ¥ otherwise.

It is clear that 8 € T(X,E,F). Since b'Sa = d'a = a # b =b'a, we conclude that Sa # «. This proves that
« is not a right zero element of T(X, E, F). O

As a consequence of Proposition 2.5, a necessary and sufficient condition for being a right zero semigroup
can be given as follows.

Corollary 2.6 T(X,E,F) is a right zero semigroup if and only if E = X x X and F =1Ix.
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Proof We will prove the contrapositive of this statement. We can consider two cases as follows.
Case 1. E # X x X. Then there exist A,B € X/FE such that A # B. Let a € A and b € B. Define
aeT(X) by

_Joa ifxeA,
TE=1 b otherwise.

Certainly, « € T(X,E,F) and « is nonconstant. By Proposition 2.5, we obtain that « is not a right zero
element of T(X,E | F).
Case 2. F # Ix. Then there exist distinct elements ¢,d € X such that (¢,d) € F'. Define a € T'(X) by

a4 € ifx=c,
| d otherwise.

Clearly, o € T(X,E, F) and « is nonconstant. It then follows from Proposition 2.5 that « is not a right zero
element of T(X, E, F).

From the two cases we conclude that T(X, E, F') is not a right zero semigroup.

The converse is clear. O

In fact, the following example shows that T'(X, E, F) is not necessarily regular.

Example 2.7 Let X ={1,2,3,4,5,6,7,8}, X/FE ={{1,2,3},{4,5},{6,7,8}}, and X/F = {{1,2},{3},{4,5},{6,8},{7}}.
Let a e T(X,E,F) be defined by
w_(1 2345673
~\6 8 6 3 3 2 1 2/

Suppose that o is regular. Then a = afBa for some 8 € T(X,E,F). Since 1 = Ta = Tafa = 1fa and
3 = 4da = dapa = 3pa, we obtain that 15 = 7 and 368 € {4,5}. Since (1,3) € E and 8 € T(X,E,F),
(18,38) € F, which is a contradiction. Hence, a is not a regular element of T(X,E, F).

Next, we give a characterization of regular elements in T(X, E, F).

Theorem 2.8 Let a € T(X,E,F). Then « is reqular if and only if for each A € X /E, there exists B € X /F
such that AN Xa C Ba.

Proof Suppose that « is a regular element of T'(X, E,F). Then a = afa for some § € T(X,E,F). Let
A€ X/E. By Lemma 2.1, AG C B for some B € X/F. Let y € AN Xa. Then y = za for some z € X and
hence yB € AS C B. It then follows that y = za = zafa = yBa € Ba. Hence, AN Xa C Ba.

Conversely, assume that for each A € X/FE, there exists B € X/F such that AN Xa C Ba. Let
A € X/E be such that AN Xa # (. By assumption, we choose and fix By € X/F with AN Xa C Baa. For
each y € AN X, we choose a, € By such that y = ayo. Let by € By. Define 54 : A = X by

24 = a, ifreXa,
A7) bs otherwise.

Let 8: X — X be defined by
Ba ifANXa#0,
Bla =

Ca otherwise
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for all A € X/E and C4 is a constant map from A into X. Then § € T(X). Let z,y € X be such
that (z,y) € E. Then z,y € A for some A € X/FE and, by assumption, there is B4 € X/F such that
ANXa C Bya. We consider two cases as follows.
Case 1. ANXa=10. Then

(zB8,yB) = (xCa,yCa) € F,

by reflexivity of F'.

Case 2. AN Xa # (). Then there are three cases to consider.
If 2,y € Xa, then ay,a, € B4 and so (zf,yB) = (ag,ay) € F.
If 2,y ¢ Xa, then (z8,y83) = (ba,ba) € F.
If x € Xa and y ¢ X, then a,,bs € By and so

(xB,yB) = (agy,ba) € F.

From the two cases, we have § € T(X,E,F), and zafa = azoa = xa for all x € X. This shows that
« is a regular element of T(X, E, F) as desired. O

From Example 2.7, let A ={1,2,3} € X/E. Then AN Xa ¢ Ba for all B € X/F. By Theorem 2.8,
we have that « is not a regular element of T'(X, E, F).

Note that F' C E; it follows from Theorem 2.8 and we obtain a corollary as follows.

Corollary 2.9 Let « be a regular element of T(X,E, F). Then the following statements hold.
(i) For each A € X/F, there exists B € X/F such that AN Xa C Bo.
(i) For each A € X/E, there exists B € X/E such that AN Xa C Ba.

We also have the following theorem, which characterizes when T'(X, E, F) is a regular semigroup.

Theorem 2.10 T(X, E, F) is a regular semigroup if and only if T(X,E,F)=T(X) or T(X,E,F) is a right

Zero semigroup.

Proof Assume that T(X,E,F) # T(X) and T(X, E, F) is not a right zero semigroup. Since T(X, E, F) #
T(X), E # Ix and F # X x X. By Corollary 2.6, we obtain E # X x X or F # Ix. We distinguish two

cases as follows.
Case 1. F # X x X. Since E # Ix, there exist distinct elements a,b € X such that (a,b) € E. Then a,b € A

for some A € X/E. Define a: X — X by

_foa ifxeA,
TE=1 b otherwise.

Obviously, o € T(X, E,F). Suppose that « is regular. By Theorem 2.8, there exists B € X/F such that
ANXa C Ba. Since E # X x X and a,b € A, it follows that AN X« = {a,b}. Thus, za = a and ya = b for
some z,y € B. By the definition of a, we get that x € A and y € X \ A. These imply that BN A # 0 and
BN (X \ A)#0, a contradiction. Thereby, « is not a regular element of T(X, E, F').

2517



SAWATRAKSA and NAMNAK /Turk J Math

Case 2. F # Ix. Then there exist distinct elements ¢,d € X such that (¢,d) € F. Then ¢,d € A for some
A€ X/F. Define a: X — X by

_Jc ifxeA,
TE=1 d otherwise.

Since (¢,d) € F, a« € T(X,E, F). Suppose that « is regular. By Corollary 2.9(i), there exists B € X /F such
that AN Xa C Ba. Since F # X x X and ¢,d € A, we get that AN Xa = {c¢,d}. Thus, za = ¢ and ya =d
for some z,y € B. Therefore, x € A and y € X \ A, which implies that BN A # () and BN (X \ A) # 0. This
is a contradiction. Hence, « is not a regular element of T'(X, E, F).

The converse is clear. O

Next, we observe three properties for regular elements of the semigroup T'(X, E, F).

Proposition 2.11 Let a be a regular element of T(X, E, F). Then the following statements hold.
(i) If 0 # AN Xa C Ba for some A,B € X/F, then AN Xa = Ba.
(i) If 0 # AN Xa C Ba for some A,B € X/E, then AN Xa = Ba.

Proof (i) Suppose that ) # AN Xa C Ba for some A, B € X/F. By Corollary 2.2(i), Ba C C for some
C € X/F. This implies that

Aal=Aa'NX =(ANXa)a™' C(Ba)a™ C Ca™ .

Since F(a) is a partition of X, we get that Ao~ = Ca~! and so A = C. It follows that Ba C AN Xa.
Hence, AN Xa = Ba.

(ii) The proof is similar to the proof of (i). O

Proposition 2.12 Let a and 8 be reqular elements of T(X,E,F). If n(a) = w(f), then F(a) = F(8) and
E(e) = E(8).

Proof Suppose that 7(a) = 7(8). Let A € X/F be such that Aa=! # (). By Corollary 2.9(i), 0 #
AN Xa C Ba for some B € X/F. It follows from Propositions 2.11(i) and 2.4(i) that Ada=! = J{ya™! :y €
X,ya~t N B # (}. By assumption, we obtain that

Aol = U{yafl cy € X, ya ' NB#£ 0} = U{zﬂfl 1z € X,287'n B # ().

For each € Aa~! we have z € y3~! for some y € X with y8~' N B # (. Then there is b € B such that
B =y = bB. Thus, 3 € BB and therefore (Aa~1)3 C BA3. Corollary 2.2(i) implies that B3 C D for some
D € X/F. This implies that Aa™! C (Aa"1)BB~! C DB~! € F(B). Therefore, F(a) < F(B3). Similarly,
F(B) = F(a). Hence, F(a) = F(f).

Similarly, E(a) = E(B). O

Proposition 2.13 Let o and § be reqular elements of T(X,E,F). If Xa = X0, then for each A € X/E,
there exist B,C € X /F such that Aa C Bf3 and AS C Ca.
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Proof Suppose that Xa = X3. Let A € X/E. We can see from Lemma 2.1 that Ao C B for some
B € X /F. Regularity of 5 and Corollary 2.9(i) yield BN X3 C B'j3 for some B’ € X/F. Tt is evident that

AaCBNnXa=BNnXBCBA.

Similarly, it can be shown that A8 C Ca for some C € X/F. O

As a consequence of Proposition 2.13, the following result follows readily.

Corollary 2.14 Let o and 8 be regular elements of T(X,E,F) such that Xa = XB. Then the following

statements hold.

(i) For each A € X/F, there exist B,C € X/F such that Aa C B and AS C Ca.

(i) For each A € X/E, there exist B,C € X/E such that Ao. C B and AB C Ca.

3. Green’s relations on T(X, E, F)

In this section, we describe Green’s relations on T(X, E, F). Since H = LN R, we only consider the Green’s
relations £,R,J, and D in the following.
Next, we introduce the following terminology. For a € T(X) and A C X, we denote

ma(a) ={P em(a): PNA#0}.
Theorem 3.1 [4] Let a and b be elements of a semigroup S. Then the following statements hold.
(i) (a,b) € R if and only if there exist x,y € S* such that a = bx and b = ay.
(ii) (a,b) € L if and only if there exist x,y € S* such that a = xb and b = ya.

(iii) (a,b) € J if and only if there exist w,z,y,z € S* such that a = wbx and b= yaz.

Lemma 3.2 Let o, € T(X,E,F). Then a = Bu for some p € T(X,E,F) if and only if
(i) ker 8 C kera and
(i) for all z,y € X, (zf,yB) € E implies that (za,ya) € F'.

Proof The necessity is clear. To prove the sufficiency, we assume that conditions (i) and (ii) hold. For each
y € X[, there exists a, € X such that ay8 = y. Let A € X/E be such that AN Xp # (. Then there
exists y € AN XB. Thus, ay8 =y for some a, € X. We choose and fix by € X with (ba,aya) € F'. Define
ta:A— X by

R B E if x € X8,
FA=13 b 4 otherwise.

Let z,y € A be such that v = y. If z,y € X§, then there are a;,a, € X such that a,8 = = and a8 = y.
Thus, (agz,a,) € ker8 and so aza = aya by (i), which implies that zpua = yua. If z,y ¢ X5, then
xpus =ba =ypa.
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From the above discussion, we obtain that 4 is well defined. Define p: X — X by

MlA:{MA ifAﬂX,B#(D,

C4 otherwise

for all A € X/E where Cy4 is a constant map from A into X. Since X/F is a partition of X, we have that
o is well defined and so p € T(X). To show that p € T(X,E,F), let z,y € X be such that (z,y) € E. Then
z,y € A for some A€ X/E.

Case 1. AN X3 # (. Then there exists z € AN X such that a.8 = z and (bs,a,a) € F. We note that
(x,z) € E. It suffices to consider three cases as follows.

Subcase 1.1. z,y € X5. Then a,8 = = and a,f = y for some a,,a, € X. Thus, (az58,a,8) = (z,y) € E
and so (zp,yp) = (xpa, ypa) = (aza, aya) € F by (ii).

Subcase 1.2. z € X and y ¢ X3. Then a,0 = = for some a, € X and so (a,f,a.8) = (z,2) € E. By (ii),
we have (aga,a,a) € F. Since (aa,ba) € F, (xp,yp) = (zpa,ypa) = (aza,ba) € F by transitivity of F'.
Subcase 1.3. z,y ¢ X 3. Then by reflexivity of F', we obtain that

(zp,yp) = (xpa,ypa) = (ba,ba) € F.

Case 2. AN XS =10. Then by reflexivity of F', we have (zu,yp) = (zCa,yCa) € F.

From the two cases, we deduce that p € T(X,E,F). Let v € X. Then zf € X and zf € A for some
A€ X/E and so azgf = xf for some azg € X. Thus, (agg,x) € ker § so that za = agga = (zf8)pa = zfp
by (i). This shows that o = S as required. O

As an immediate consequence of Lemma 3.2, we have the following.

Theorem 3.3 Let o, € T(X,E,F). Then (o, ) € R if and only if
(i) ker B =kera,
(ii) for oll z,y € X, (zB,yB) € E implies that (za,ya) € F, and
(iii) for all z,y € X, (za,ya) € E implies that (zf,y8) € F.

To describe the R-relation again, the following lemma is required.

Lemma 3.4 Let o, € T(X,E,F). Then o = fu for some p € T(X,E,F) if and only if there exists a
mapping ¢ : XB — Xa satisfying

(i) o= By and

(ii) for all z,y € XB, (x,y) € E implies that (zp,yp) € F.
Proof The necessity is clear from Lemma 3.2 by just taking ¢ = u|xg. To prove the sufficiency, we suppose
that ¢ : X3 — X« is a mapping satisfying the conditions (i) and (ii). Let A € X/E be such that AN X8 # 0.

Then there exists a unique B € X /F such that (AN XB)p = BN Xa by (ii). Fix some by € B and define
ta:A— B by

_Jozp ifxe Xp,
Tha = { ba otherwise.
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Let p: X — X be defined by

[ TANXE 20
mla = C4 otherwise

for all A€ X/E and Cy is a constant map from A into X . Since X/E is a partition of X, we have that pu
is well defined. Let x,y € X be such that (z,y) € E. Then z,y € A for some A € X/E.

Case 1. AN X # (. Then there exists B € X/F such that (AN XB)¢p = BN X« by (ii) and so bs € B.
Subcase 1.1. z,y € XB. Then (zu,yp) = (zpa,ypa) = (xp,yp) € F by (ii).

Subcase 1.2. z € X3 and y ¢ XS. Then zp € B and so (zxu,yp) = (zpa,ypa) = (xp,ba) € F.

Subcase 1.3. z,y ¢ X3. Then by reflexivity of F', we have

(xp,yp) = (xpa,ypa) = (ba,ba) € F.

Case 2. ANXpB =0. Then by reflexivity of F', we have (zu,yu) = (xCa,yCa) € F.
From the two cases we deduce that p € T(X, E, F). It is routine to check that a = Su, as required. O

The following theorem is a direct consequence of Lemma 3.4.

Theorem 3.5 Let a, 5 € T(X,E,F). Then (o,8) € R if and only if there exists a bijection ¢ : X = X«
satisfying

(i) a= Py,
(ii) for all z,y € XB, (x,y) € E implies that (vp,yp) € F, and
(iii) for all x,y € Xa, (x,y) € E implies that (xo~ ', yp~1) € F.

For an equivalence E on a set X and ¢ : A — B where A, B C X, we say that ¢ is E* -preserving if
(z,y) € E if and only if (xp,yp) € E.

As a consequence, we obtain a corollary of Theorem 3.5.

Corollary 3.6 Let ,8 € T(X,E,F). If (a,) € R, then there exists a bijection ¢ : X — Xa is an

F* -preserving bijection and an E* -preserving bijection such that o = Sy.

Let o, 8 € T(X, E, F) and ¢ be a map from 7 («) into w(3). If for each A € X/FE, there exists B € X/F
such that
(rala))e C mp(8),

then ¢ is said to be EF -admissible. Note that, if £ = F'| then ¢ is said to be E-admissible. If ¢ is a bijection
and both ¢ and ¢~! are EF-admissible, then ¢ is said to be EF*-admissible, and if E = F, we say that ¢
is said to be E*-admissible. If v € T(X, E, F), then denote by v, the map from m(v) onto X~ induced by =,
namely P~, = py for each P € 7(y) and all p € P. Obviously, 7. is a bijection.

Proposition 3.7 Let o, € T(X,E,F). Then ¢ : w(a) = w(B) is EF -admissible if and only if for each
A € X/E there exists B € X /F such that BN Pp # 0 for all P € ma(a).
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Proof Suppose that ¢ : 7(a) = 7(8) is EF-admissible. Let A € X/E. Then there exists B € X/F such
that

(ma(@))p € 75(8).

Let P € ma(a). Then Py € ng(B). Hence, BN Py # (.

Conversely, suppose that for each A € X/FE, there exists B € X/F such that BN Py # () for all
P € my(a). Let A € X/E. Then there exists B € X/F such that BN Py # () for all P € ma(w). Let
P ema(a). Then Py € n(8) and BN Py # B. Thus, Py € mp(8). Hence, (ma(a))p C mp(8). O

The following lemma is used for characterizing the L-relation on T'(X, E, F).

Lemma 3.8 Let o,8 € T(X,E,F). Then the following statements are equivalent.
(i) o= A3 for some A€ T(X,E,F).
(i) For each A € X/E, there exists B € X /F such that Aa C Bf.

(iii) There exists EF -admissible ¢ : w(a) — 7(B) such that o, = @ .

Proof (i) = (ii) Assume that o = A3 for some A € T(X,E,F). Let A € X/E. Then by Lemma 2.1, we
have A\ C B for some B € X/F. By assumption, we obtain that Ao = A\g C Bf.

(if) = (iii) To show that Xa C X, let y € Xa. Then za =y for some = € X. Thus, x € A for some
A€ X/E. By (ii), there exists B € X/F such that

y=za € Aa C B C X§.

Therefore, Xao C Xp. For each P € w(a), we have Pa, = za € Xa C Xg for all x € P. Define
o :7m(a) = w(8) by
Py = (Pa,)p! for all P € 7(a).

Then ¢ is well defined. Let A € X/E and let I4 = {i € Xa : ia ' N A # 0}. For each i € I, we let
P; :=ia~!. Then
mala) ={P;:i€1,} and i = P, for alli € I4.

Let i € I4. By (ii), we have i € Ao C Bf for some B € X/F. Then BNP;p = BN(Pia.)371 = BNig~! #£ 0.
Hence, ¢ is EF-admissible by Proposition 3.7. Finally, we will show that a, = ¢f,. Let P € () and p € P.
Then pa € Xa € X3 and so pa = x3 for some z € X. Thus, = € (pa)3~! = (Pa,)B~1 = Pp. Therefore,

Pa. = pa = f = Pypp.,

as required.

(iif) = (i) Suppose that ¢ : 7(«) — w(8) is EF-admissible such that a, = ¢f.. Let A € X/E. Then
(ma(a))p C p(B) for some B € X/F. For each x € A, we let P, = (za)a™! € ma(a). By assumption and
Proposition 3.7, we have P, N B # (). We choose b, € P, N B. Define A4 : A — X by

Ay = b, for all z € A.
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Let A € T(X) be such that A\|4 = Mg for all A € X/E. Since X/E is a partition of X, A is well defined.
Obviously, A € T(X,E,F). Let x € X. Then x € A for some A € X/E. By Proposition 3.7, there is
B € X/F such that A = 2M| 4 = b, € PN B where P, € m4(«). Since a, = ¢f,, we obtain that

Hence, a = \5. O

Using Lemma 3.8, we can establish the next result.

Theorem 3.9 Let o, € T(X,E,F). Then the following statements are equivalent.
(i) (0 f) € L.
(ii) For each A € X/E, there exist B,C € X/F such that Ao C Bf8 and AB C Ca.
(iii) There exists an EF™ -admissible bijection ¢ : w(a) — 7(8) such that a. = @Bx.

As an immediate consequence of Theorem 3.9, we have the following.

Corollary 3.10 Let o, € T(X,E,F) be such that (a,B) € L. Then the following statements hold.
(i) For each A € X/E, there exist B,C € X/E such that Ao C B and AB C Ca.

(ii) For each A € X/F, there exist B,C € X/F such that Ao C Bf and AB C Ca.

(iii) There is an E*-admissible bijection ¢ : w(a) — 7(8) such that a. = @ .

(iv) There is an F*-admissible bijection ¢ : w(a) — w(B) such that o, = P«
(v) Xa=Xp.

Now we can determine £ for two regular elements of T'(X,E,F). As an immediate consequence of
Proposition 2.13 and Theorem 3.9, we obtain:

Theorem 3.11 Let o and 8 be regular elements of T(X,E, F). Then (a, ) € L if and only if Xa = Xf3.

To describe the J-relation on T'(X, E, F), we first give the following lemma.

Lemma 3.12 Let o,8 € T(X,E,F). Then o = \Bu for some A\, u € T(X, E,F) if and only if there exists
p: XB — X satisfying the following:

(i) for each z,y € X3, (z,y) € E implies that (xp,yp) € F and
(ii) for each A € X/E, there exists B € X/F such that Aa C (BS)y.

Proof Suppose that o = A\3p for some A\, p € T(X,E, F). Let ¢ = u|lxp and let z,y € XB be such that
(xz,y) € E. Then since u € T(X, E, F), we have

(o, yp) = (xplxp, yplxp) = (xp,yp) € F.
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Let A € X/E. By Lemma 2.1, there exists B € X/F such that AN C B. Thus, Aa = AX\Su C Bfu =
BBulxp = (BB)p.

Conversely, assume that there exists ¢ : X8 — X satisfying the conditions (i) and (ii). Let A € X/E be
such that ANXB #0. By (i), (AN XB)p C B for some B € X/F. Fix some by € B and define us: A — B
by

_Jozp ifxe Xp,
Tha = { ba otherwise.

Let p: X — X be defined by

A= pa TANXB A0,
Hla = C4 otherwise

for all A€ X/E and Cj4 is a constant map from A into X . Since X /FE is a partition of X, it follows that pu
is well defined. From (i), we have p € T(X,E, F).

For each A € X/E, by (ii) we choose and fix B4 € X/F such that Aa C (Baf)¢. Let © € A. Then
we choose and fix b, € By such that za = (b,8)p. Define A : X — X by A = b, for all z € X. Then
A€ T(X,E,F). Furthermore, for x € X,

TABp = by B = (bwﬁ%p = ra,

which implies that a = A\Gu, as desired. O

Lemma 3.12 is useful to obtain this result.

Theorem 3.13 Let o, € T(X,E,F). Then («,5) € J if and only if there exist ¢ : XB — X and
¥ Xa — X satisfying the following:

(i) for each z,y € X8, (x,y) € E implies that (zp,yp) € F,
(ii) for each z,y € Xa, (x,y) € E implies that (zi,yy) € F, and
(iii) for each A € X/E, there exist B,C € X/F such that Ao C (BfS)¢ and AS C (Ca)y.

Next, to describe the D-relation on T'(X, E, F'), the following corollary follows from Theorem 3.3 and

Proposition 2.3.
Corollary 3.14 Let o, € T(X,E,F). If (a,5) € R, then ©(a) = w(B8) and F(a) = F(B).

Theorem 3.15 Let o, € T(X,E,F). Then («, ) € D if and only if there exist an EF* -admissible bijection
p:m(a) = 7(B) and a bijection ¥ : Xa — X satisfying the following:

(i) for each z,y € Xa, (z,y) € E implies that (zi,yy) € F,
(ii) for each x,y € X3, (x,y) € E implies that (zp~1,yyp~1) € F, and
(i) o) = 9B
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Proof Suppose that (o, ) € D. Then (a,7) € R and (v,8) € L for some v € T(X, E, F). By Corollaries
3.14, and 3.10(v), we have m(a) = 7(y) and XS = X, respectively. Since (a,7) € R, by Theorem 3.5, there
exists a bijection ¥ : Xa — X satisfying (i), (ii), and

v = .

Let P € n(y) = m(a) and = € P. Then Py, = zy = zatp = Paytp. Thus, v, = a,t). Since (v,8) € L, by
Theorem 3.9, there exists an FF*-admissible bijection ¢ : m(a) — 7(8) such that

Ve = PP

Hence, o, = pf, and the assertion follows.

Conversely, assume that ¢ : w(a) — «(8) is an EF*-admissible bijection and ¢ : Xa — X is a
bijection satisfying the conditions (i), (ii), and (iii). Define v € T(X) by ay = (za)y for all z € X. Then
veT(X,E,F) by (i) and

Y=oy
Next, we will show that 7(a) = m(y). Let y € Xa. Then {yv} = (ya=')ary = (ya=')y. Thus, ya=t C
(ya=Hyy™t C (yy)y~! € w(y). Hence, m(a) < w(y). On the other hand, let 2 € Xv. Then {z¢p~!} =
(v Dyt = ey Hayy™t = (v Vaidxa = (2 Ha. Thus, 2971 C (29 Ha™! € m(a) and hence
7(y) = (a). Consequently, m(a) = w(v). Let P € w(y) and « € P. Then

Pr, =xv =xap = Pa,,

and this implies that v, = a,. By (iii), we obtain that 7. = a,¥ = ¢f.. By Theorem 3.9, we have that
(v,8) € L. Tt follows from Corollary 3.10(v) that X+ = X3. This implies that ¢ : Xa — X~ such that
v = atp. From (i) and (ii), it follows from Theorem 3.5 that («,~y) € R. Hence, (a, 8) € D, as required. O

In order to describe Green’s relation D for regular elements of T'(X, E, F), we observe the following.

Lemma 3.16 Let « and 8 be regular elements of T(X,E,F). Suppose that ¢ : Xao — X is a bijection
satisfying the following:

(i) for all z,y € Xa, (x,y) € E implies that (x,yp) € F and

(ii) for all z,y € XB, (x,y) € E implies that (x¢p~1, yp~ 1) € F.
Then there exists an EF* -admissible bijection ¢ : w(a) — w(5) such that b = pP. .
Proof Define ¢ : 7(a) = w(8) by

Py = (Pa,)B; ! for all P € m(a).

Obviously, ¢ is well defined and @3, = a.,1. Notice that ., S-' and v are all bijection, and so also is ¢.
Thus, what remains is to verify that ¢ is EF*-admissible. Let A € X/FE. Then B’ = Aa C B for some
B € X/E by Corollary 2.2(ii). By (i), we have that C' = B’y) C By C C for some C € X/F. By regularity
of B and Corollary 2.9(i), we can write

C’'cCnXpBcCDB
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for some D € X/F. We assert that (ma(a))p C wp(8). In fact, if P € wa(a), then Pa, € Ao = B’. Hence,
Pa,p € By =C"C D

and PoN D = (Pa,)B3;1 N D # 0, which implies that Py € mp(8) and the assertion holds. Hence, ¢ is
EF-admissible. Similarly, ¢~! is EF-admissible and the conclusion follows. O

As an immediate consequence of Theorem 3.15 and Lemma 3.16, we have the next result.

Theorem 3.17 Let o and S be regular elements of T(X,E, F). Then (a, ) € D if and only if there exists a
bijection v : Xa — X satisfying the following:

(i) for all z,y € Xa, (x,y) € E implies that (z,yy) € F and

(ii) for all z,y € X, (x,y) € E implies that (xp=1,yyp~1) € F.
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