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Abstract: In this work, we study the one-dimensional Dirac system on a whole line with impulsive conditions. We
construct a spectral function of this system. Using the spectral function, we establish a Parseval equality and spectral
expansion formula for such a system.
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1. Introduction
Many problems of engineering interest are governed by partial differential equations. When we seek a solution of
a partial differential equation by separation of variables, it leads to the problem of expanding an arbitrary func-
tion as a series of eigenfunctions. The method relies on the completeness of the eigenfunctions corresponding to
one of the variables. Thus, spectral expansion theorems are important in mathematics. Using several methods,
the eigenfunction expansion is obtained, including the methods of integral equations, contour integration, and
finite difference (see [19], [32]).

The Dirac operators play an important role in the theory of relativistic quantum mechanics because
fundamental physics of relativistic quantum mechanics was formulated by the Dirac operators. For example,
they predict the existence of a positron and elucidate the origin of spin1/2 of an electron. We refer the reader
to [30].

Discontinuous (or impulsive) boundary value problems have been extensively investigated in recent years
(see [1–16, 18, 20–27, 29, 31, 33–41]). Many researchers have investigated these problems due to their significant
applications in various fields of science and engineering, such as in radio science (see [22]), the theory of heat
and mass transfer (see [21]), and geophysics (see [18]).

On the other hand, direct or inverse spectral problems for Dirac operators were studied in [1, 4, 6, 7,
12, 14, 19, 23, 34, 36, 39, 40]. In [13], Hıra and Altınışık investigated asymptotic behavior of eigenvalues and
eigenfunctions of the discontinuous Dirac system, which includes an eigenvalue parameter in a transmission
condition. In [31], Tharwat and Bhrawy computed the eigenvalues of discontinuous regular Dirac systems with
transmission conditions at the point of discontinuity numerically. In [15], Kablan and Özden studied a Dirac
system with transmission condition and eigenparameter in boundary conditions. They investigated the existence
of the solution and some spectral properties of this problem.
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In this work, we construct a spectral function and obtain a Parseval equality and a spectral expansion
theorem for Dirac systems with impulsive conditions on the whole line.

2. Main results
Let us consider the Dirac system

τ(y) :=

(
0 −1
1 0

)
dy (x)

dx
+B (x) y (x) = λy (x) , x ∈ J := J1 ∪ J2, (1)

where λ is a complex spectral parameter and

y (x) =

(
y1 (x)
y2 (x)

)
, B (x) =

(
p (x) 0
0 r (x)

)
,

J1 := [a, c), J2 := (c, b], −∞ < a < c < b < +∞. We assume that the points a, b , and c are regular for
the differential expression τ. p and r are real-valued, Lebesgue measurable functions on J and p, r ∈ L1(Jk)

(k = 1, 2). The point c is regular if p, r ∈ L1[c− ϵ, c+ ϵ] for some ϵ > 0.

We will consider the Dirac system (1) with the boundary conditions

y2 (a) cos γ + y1 (a) sin γ = 0, γ ∈ R := (−∞,∞) ,
y2 (b) cosα+ y1 (b) sinα = 0, α ∈ R, (2)

and impulsive (or transmission) conditions

y (c+) = Cy (c−) , C ∈M2 (R) , detC = δ > 0, (3)

where M2 (R) denotes the 2× 2 matrices with entries from R .

We introduce the direct sum Hilbert space H = L2 (J1;E)
·
+L2 (J2;E) (where E := R2 ) of vector-valued

functions with values in R2 and with the inner product

⟨u, v⟩H :=

∫ c

a

(u (x) , v (x))E dx+ β

∫ b

c

(u (x) , v (x))E dx, β =
1

δ
,

where

u (x) =

(
u1 (x)
u2 (x)

)
, v (x) =

(
v1 (x)
v2 (x)

)
,

u1 (x) =

{
u
(1)
1 (x) , x ∈ J1

u
(2)
1 (x) , x ∈ J2

, u2 (x) =

{
u
(1)
2 (x) , x ∈ J1

u
(2)
2 (x) , x ∈ J2

,

v1 (x) =

{
v
(1)
1 (x) , x ∈ J1

v
(2)
1 (x) , x ∈ J2

, v2 (x) =

{
v
(1)
2 (x) , x ∈ J1

v
(2)
2 (x) , x ∈ J2

,

(u (x) , v (x))E = u1 (x) v1 (x) + u2 (x) v2 (x) .
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We will denote by

ϕ1 (x, λ) =

(
ϕ11 (x, λ)
ϕ12 (x, λ)

)
, ϕ11 (x, λ) =

{
ϕ
(1)
11 (x) , x ∈ J1

ϕ
(2)
11 (x) , x ∈ J2

,

ϕ12 (x, λ) =

{
ϕ
(1)
12 (x) , x ∈ J1

ϕ
(2)
12 (x) , x ∈ J2

,

and

ϕ2 (x, λ) =

(
ϕ21 (x, λ)
ϕ22 (x, λ)

)
, ϕ21 (x, λ) =

{
ϕ
(1)
21 (x) , x ∈ J1

ϕ
(2)
21 (x) , x ∈ J2

,

ϕ22 (x, λ) =

{
ϕ
(1)
22 (x) , x ∈ J1

ϕ
(2)
22 (x) , x ∈ J2

,

the solution of the Dirac system τ(y) = λy (x) , x ∈ Ω1 ∪ Ω2 , which satisfies the initial conditions

ϕ
(1)
11 (a, λ) = − cos γ, ϕ(1)12 (a, λ) = sin γ,
ϕ
(2)
21 (b, λ) = cosα, ϕ(2)22 (b, λ) = − sinα,

(4)

and impulsive conditions (3).
Now we will prove that system (1) with conditions (2)–(3) has a compact resolvent operator and thus it

has a purely discrete spectrum. Furthermore, we get a Parseval equality for this problem.
Let us define

G (x, t, λ) =


ϕ2(x,λ)ϕ

T
1 (t,λ)

W (ϕ1,ϕ2)
, a ≤ t < x, x ̸= c, t ̸= c

ϕ1(x,λ)ϕ
T
2 (t,λ)

W (ϕ1,ϕ2)
, x < t ≤ b, x ̸= c, t ̸= c,

which is called Green’s matrix of the problem (1)–(3) (see [19] and [12]).

Definition 1 A matrix-valued function M (x, t) in E of two variables with a ≤ x, t ≤ b is called the Hilbert–
Schmidt kernel if ∫ b

a

∫ b

a

∥M (x, t)∥2E dxdt < +∞.

Theorem 2 ([28]) If
∞∑

i,k=1

|aik|2 < +∞, (5)

then the operator A defined by the formula A {yi} = {zi} , where

zi =

∞∑
k=1

aikyk, (i = 1, 2, ...), (6)

is compact in the sequence space l2.
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Theorem 3 Without loss of generality, we can assume that λ = 0 is not an eigenvalue of the problem (1)–
(3). Then G (x, t) defined by

G (x, t) := G (x, t, 0) =


ϕ2(x)ϕ

T
1 (t)

W (ϕ1,ϕ2)
, a ≤ t < x, x ̸= c, t ̸= c

ϕ1(t)ϕ
T
2 (t)

W (ϕ1,ϕ2)
, x < t ≤ b, x ̸= c, t ̸= c

(7)

is a Hilbert–Schmidt kernel.

Proof By the upper half of formula (7), we have

∫ b

a

dx

∫ x

a

∥G (x, t)∥2E dt < +∞,

and by the lower half of (7), we have

∫ b

a

dx

∫ b

x

∥G (x, t)∥2E dt < +∞

since the inner integral exists and is a linear combination of the products ϕij (x)ϕk,l (t) (i, j, k, l = 1, 2), and
these products belong to L2(a, b)×L2(a, b) because each of the factors belongs to L2(a, b). Then we obtain

∫ b

a

∫ b

a

∥G (x, t)∥2E dxdt < +∞. (8)

2

Theorem 4 The operator K defined by the formula

g(x) = (Kf) (x) :=

∫ b

a

G (x, t) f (t) dt

is compact and self-adjoint in space H .

Proof Let ϕi = ϕi (x) (i = 1, 2, ...) be a complete, orthonormal basis of H. Since G (x, t) is a Hilbert–Schmidt
kernel, we can define

yi = ⟨f, ϕi⟩H =

∫ c

a

(f (t) , ϕi (t))E dt+ β

∫ b

c

(f (t) , ϕi (t))E dt,

zi = ⟨g, ϕi⟩H =

∫ c

a

(g (t) , ϕi (t))E dt+ β

∫ b

c

(g (t) , ϕi (t))E dt,

aik =

∫ b

a

∫ b

a

(G (x, t)ϕi (x) , ϕk (t))E dxdt (i, k = 1, 2, ...).

Then H is mapped isometrically to l2. Consequently, our integral operator transforms into the operator defined
by formula (6) in the space l2 by this mapping and condition (8) is translated into condition (5). By Theorem
2, this operator is compact. Therefore, the original operator K is compact.
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Let f, g ∈ H. As G (x, t) = GT (t, x) and G (x, t) is a matrix-valued function in E defined on J × J, we
have

⟨Kf, g⟩H =

∫ c

a

((Kf) (x) , g (x))E dx+ β

∫ b

c

((Kf) (x) , g (x))E dx

=

∫ c

a

∫ c

a

(G (x, t) f (t) , g (x))E dtdx

+β

∫ b

c

∫ b

c

(G (x, t) f (t) , g (x))E dtdx

=

∫ c

a

(f (t) ,

∫ c

a

G (t, x) g (x))Edxdt

+β

∫ b

c

(f (t) ,

∫ b

c

G (t, x) g (x))Edxdt = ⟨f,Kg⟩H.

Thus, we have proved that K is self-adjoint in H . 2

From Theorem 4 and the Hilbert–Schmidt theorem [17], there is an orthonormal system {φn} (n ∈ Z :=

{0,±1,±2, ...}) of eigenvectors of the self-adjoint problem (1)–(3) with corresponding nonzero eigenvalues λn
(n ∈ Z) such that ∫ c

a

∥f (x)∥2E dx+ β

∫ b

c

∥f (x)∥2E dx =

∞∑
n=−∞

a2n, (9)

which is called the Parseval equality, where f ∈ H and an = ⟨f, φn⟩H (n ∈ Z).
We will denote by

ψ1 (x, λ) =

(
ψ11 (x, λ)
ψ12 (x, λ)

)
, ψ11 (x, λ) =

{
ψ
(1)
11 (x) , x ∈ Ω1

ψ
(2)
11 (x) , x ∈ Ω2

,

ψ12 (x, λ) =

{
ψ
(1)
12 (x) , x ∈ Ω1

ψ
(2)
12 (x) , x ∈ Ω2

,

(where Ω1 := (−∞, c), Ω2 := (c,∞)) and

ψ2 (x, λ) =

(
ψ21 (x, λ)
ψ22 (x, λ)

)
, ψ21 (x, λ) =

{
ψ
(1)
21 (x) , x ∈ Ω1

ψ
(2)
21 (x) , x ∈ Ω2

,

ψ22 (x, λ) =

{
ψ
(1)
22 (x) , x ∈ Ω1

ψ
(2)
22 (x) , x ∈ Ω2

,

the solution of the Dirac system τ(y) = λy (x) (x ∈ Ω1 ∪ Ω2) , which satisfies the initial conditions

ψ
(1)
11 (d, λ) = 1, ψ

(1)
12 (d, λ) = 0,

ψ
(1)
21 (d, λ) = 0, ψ

(1)
22 (d, λ) = 1, a < d < c,

(10)

and impulsive conditions (3).
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Let λn (n ∈ Z) be the eigenvalues and yn (n ∈ Z) be the corresponding eigenfunctions of the self-adjoint
problem (1)–(3), where

yn (x) =

(
yn1 (x)
yn2

(x)

)
,

yn1 (x) =

{
y
(1)
n1 (x) , x ∈ J1

y
(2)
n1 (x) , x ∈ J2

, yn2 (x) =

{
y
(1)
n2 (x) , x ∈ J1

y
(2)
n2 (x) , x ∈ J2.

Since the solutions ψ1 (x, λ) and ψ2 (x, λ) of system (1) are linearly independent, we get

yn (x) = cnψ1 (x, λn) + dnψ2 (x, λn) (n ∈ Z).

There is no loss of generality in assuming that |cn| ≤ 1 and |dn| ≤ 1 (n ∈ Z). Now let us set

α2
n =

∫ c

a

∥yn (x)∥2E dx+ β

∫ b

c

∥yn (x)∥2E dx (n ∈ Z).

Let

f (.) =

(
f1 (.)
f2 (.)

)
∈ H,

f1 (x) =

{
f
(1)
1 (x) , x ∈ J1

f
(2)
1 (x) , x ∈ J2

, f2 (x) =

{
f
(1)
2 (x) , x ∈ J1

f
(2)
2 (x) , x ∈ J2.

If we apply the Parseval equality (9) to f (x) , then we obtain∫ c

a

∥f (x)∥2E dx+ β

∫ b

c

∥f (x)∥2E dx

=

∞∑
n=−∞

1

α2
n

{∫ c

a

(f (x) , yn (x))E dx+ β

∫ b

c

(f (x) , yn (x))E dx

}2

=

∞∑
n=−∞

1

α2
n

{ ∫ c

a
(f (x) , cnψ1 (x, λn) + dnψ2 (x, λn))E dx

+β
∫ b

c
(f (x) , cnψ1 (x, λn) + dnψ2 (x, λn))E dx

}2

=

∞∑
n=−∞

c2n
α2
n

{ ∫ c

a
(f (x) , ψ1 (x, λn))E dx

+β
∫ b

c
(f (x) , ψ1 (x, λn))E dx

}2

+2

∞∑
n=−∞

cndn
α2
n

{ ∫ c

a
(f (x) , ψ1 (x, λn))E dx

+β
∫ b

c
(f (x) , ψ1 (x, λn))E dx

}

×
{ ∫ c

a
(f (x) , ψ2 (x, λn))E dx

+β
∫ b

c
(f (x) , ψ2 (x, λn))E dx

}

+

∞∑
n=−∞

d2n
α2
n

{ ∫ c

a
(f (x) , ψ2 (x, λn))E dx

+β
∫ b

c
(f (x) , ψ2 (x, λn))E dx

}2

. (11)
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Now we will define the step function µij,[a,b] (i, j = 1, 2) on R by

µ11,[a,b] (λ) =

 −
∑

λ<λn<0
c2n
α2

n
, for λ ≤ 0∑

0≤λn<λ
c2n
α2

n
for λ > 0,

µ12,[a,b] (λ) =

{
−
∑

λ<λn<0
cndn

α2
n
, for λ ≤ 0∑

0≤λn<λ
cndn

α2
n

for λ > 0,

µ12,[a,b] (λ) = µ21,[a,b] (λ) ,

µ22,[a,b] (λ) =

 −
∑

λ<λn<0
d2
n

α2
n
, for λ ≤ 0∑

0≤λn<λ
d2
n

α2
n

for λ > 0.

From (11), we obtain

∫ c

a

∥f (x)∥2E dx+ β

∫ b

c

∥f (x)∥2E dx =

∫ ∞

−∞

2∑
i,j=1

Fi (λ)Fj (λ) dµij,[a,b] (λ) , (12)

where

F1 (λ) =

∫ c

a

(f (x) , ψ1(x, λ))E dx+ β

∫ b

c

(f (x) , ψ1(x, λ))E dx,

F2 (λ) =

∫ c

a

(f (x) , ψ2(x, λ))E dx+ β

∫ b

c

(f (x) , ψ2(x, λ))E dx.

Now we will prove a lemma, but first we recall some definitions.
A function f defined on an interval [a1, b1] is said to be of bounded variation if there is a constant C > 0

such that
n∑

k=1

|f (xk)− f (xk−1)| ≤ C

for every partition
a1 = x0 < x1 < ... < xn = b1 (13)

of [a1, b1] by points of subdivision x0, x1, ..., xn.

Let f be a function of bounded variation. Then, by the total variation of f on [a1, b1], denoted by
b1
V
a1

(f) , we mean the quantity

b1
V
a1

(f) := sup
n∑

k=1

|f (xk)− f (xk−1)| ,

where the least upper bound is taken over all (finite) partitions (13) of the interval [a1, b1] (see [17]).
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Lemma 5 There exists a positive constant Λ = Λ (ξ) , ξ > 0 such that

ξ

V
−ξ

{
µij,[a,b] (λ)

}
< Λ (i, j = 1, 2) , (14)

where Λ does not depend on b.

Proof From (10), we have

ψ
(1)
ij (c0, λ) = δij ,

where δij (i, j = 1, 2) is the Kronecker delta. The functions ψ(1)
ij (x, λ) (i, j = 1, 2) are continuous both with

respect to x ∈ [a, c) and λ ∈ R. Thus, for any ε > 0 there exists a c0 < k < c such that∣∣∣ψ(1)
ij (x, λ)− δij

∣∣∣ < ε, ε > 0, |λ| < ξ, x ∈ [c0, k] . (15)

Let

fk (x) =

(
fk1 (x)
fk2 (x)

)
be a nonnegative vector-valued function such that fk1 (x) vanishes outside the interval [c0, k] with∫ k

c0

fk1 (x) dx = 1, (16)

and fk2 (x) = 0. Set

Fik (λ) =

∫ k

c0

(fk (x) , ψi)E dx

=

∫ k

c0

fk1 (x)ψ
(1)
i1 (x, λ) dx (i = 1, 2) .

Using (15) and (16), we obtain

|F1k (λ)− 1| < ε, |F2k (λ)| < ε, |λ| < ξ. (17)

Now, by applying the Parseval equality (12) to fk (x) , we get∫ k

c0

f2k1 (x) dx ≥
∫ ξ

−ξ

F 2
1k (λ) dµ11,[a,b] (λ) + 2

∫ ξ

−ξ

F1k (λ)F2k (λ) dµ12,[a,b] (λ)

+

∫ ξ

−ξ

F 2
2k (λ) dµ22,[a,b] (λ) ≥

∫ ξ

−ξ

F 2
1k (λ) dµ11,[a,b] (λ)− 2

∫ ξ

−ξ

|F1k (λ)| |F2k (λ)|
∣∣dµ12,[a,b] (λ)

∣∣ .
From (17), we have∫ k

c0

f2k1 (x) dx >

∫ ξ

−ξ

(1− ε)
2
dµ11,[a,b] (λ)− 2

∫ ξ

−ξ

ε (1 + ε)
∣∣dµ12,[a,b] (λ)

∣∣
= (1− ε)

2 (
µ11,[a,b] (ξ)− µ11,[a,b] (−ξ)

)
− 2ε (1 + ε)

ξ

V
−ξ

{
µ12,[a,b] (λ)

}
.
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Since
ξ

V
−ξ

{
µ12,[a,b] (λ)

}
≤ 1

2

[
µ11,[a,b] (ξ)− µ11,[a,b] (−ξ)
+µ22,[a,b] (ξ)− µ22,[a,b] (−ξ)

]
, (18)

we get

∫ k

c0

f2k1 (x) dx > (1− 3ε)
{
µ11,[a,b] (ξ)− µ11,[a,b] (−ξ)

}
−ε (1 + ε)

{
µ22,[a,b] (ξ)− µ22,[a,b] (−ξ)

}
. (19)

Let

gk (x) =

(
gk1 (x)
gk2 (x)

)
be a nonnegative vector-valued function such that gk2 (x) vanishes outside the interval [c0, k] with

∫ k

c0
gk2 (x) dx =

1, and gk1 (x) = 0. Similar arguments apply to the function gk (x) , and we obtain

∫ k

c0

g2k2 (x) dx > (1− 3ε)
{
µ22,[a,b] (ξ)− µ22,[a,b] (−ξ)

}
−ε (1 + ε)

{
µ11,[a,b] (ξ)− µ11,[a,b] (−ξ)

}
. (20)

If we add the inequalities (19) and (20), then we get

∫ k

c0

{
f2k1 (x) + g2k2 (x)

}
dx >

(
1− 4ε− ε2

){ µ11,[a,b] (ξ)− µ11,[a,b] (−ξ)
+µ22,[a,b] (ξ)− µ22,[a,b] (−ξ)

}
.

If we choose ε > 0 such that 1 − 4ε − ε2 > 0, then we obtain the assertion of the lemma for the functions
µ11,[a,b] (−ξ) and µ22,[a,b] (−ξ) relying on their monotonicity. From (18), we have the assertion of the lemma
for the function µ12,[a,b] (−ξ) . 2

Now we recall Helly’s theorems.

Theorem 6 ([17]) Let (wn)n∈N (N := {1, 2, ...} be a uniformly bounded sequence of real nondecreasing
functions on a finite interval a0 ≤ λ ≤ b0. Then there exists a subsequence (wnk

)k∈N and a nondecreasing
function w such that

lim
k→∞

wnk
(λ) = w (λ) , a0 ≤ λ ≤ b0.

Theorem 7 ([17]) Assume that (wn)n∈N is a real, uniformly bounded sequence of nondecreasing functions on
a finite interval a0 ≤ λ ≤ b0, and suppose that

lim
n→∞

wn (λ) = w (λ) , a0 ≤ λ ≤ b0.

If f is any continuous function on a0 ≤ λ ≤ b0, then

lim
n→∞

∫ b0

a0

f (λ) dwn (λ) =

∫ b0

a0

f (λ) dw (λ) .
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Now let ϱ be any nondecreasing function on −∞ < λ < ∞. Denote by L2
ϱ (R) the Hilbert space of all

functions f : R → R that are measurable with respect to the Lebesgue–Stieltjes measure defined by ϱ and such
that ∫ ∞

−∞
f2 (λ) dϱ (λ) <∞,

with the inner product

(f, g)ϱ :=

∫ ∞

−∞
f (λ) g (λ) dϱ (λ) .

We introduce the direct sum Hilbert space H := L2 (Ω1;E)
·
+ L2 (Ω2;E) , (Ω1 = (−∞, c), Ω2 = (c,∞))

with the inner product

⟨f, g⟩H :=

∫ c

−∞
(f (x) , g (x))E dx+ β

∫ ∞

c

(f (x) , g (x))E dx,

where

f (x) =

(
f1 (x)
f2 (x)

)
, g (x) =

(
g1 (x)
g2 (x)

)
,

f1(x) =

{
f
(1)
1 (x), x ∈ Ω1

f
(2)
1 (x), x ∈ Ω2

, f2(x) =

{
f
(1)
2 (x), x ∈ Ω1

f
(2)
2 (x), x ∈ Ω2

,

g1(x) =

{
g
(1)
1 (x), x ∈ Ω1

g
(2)
1 (x), x ∈ Ω2

, g2(x) =

{
g
(1)
2 (x), x ∈ Ω1

g
(2)
2 (x), x ∈ Ω2.

The main results of this paper are the following three theorems.

Theorem 8 Let f ∈ H. Then there exist monotonic functions µ11 (λ) and µ22 (λ) , which are bounded over
every finite interval, and a function µ12 (λ) , which is of bounded variation over every finite interval with the
property ∫ c

−∞
∥f (x)∥2E dx+ β

∫ ∞

c

∥f (x)∥2E dx =

∫ ∞

−∞

2∑
i,j=1

Fi (λ)Fj (λ) dµij (λ) , (21)

which is called the Parseval equality, where

Fi (λ) = lim
n→∞

{ ∫ c

−n
(f (x) , ψi (x, λ))E dx

+β
∫ n

c
(f (x) , ψi (x, λ))E dx

}
(i = 1, 2) .

We note that the matrix-valued function µ = (µij)
2
i,j=1 (µ12 = µ21) is called a spectral function for the

singular Dirac system τ(y) = λy (x) (x ∈ Ω1 ∪ Ω2) with the impulsive conditions (3).

Proof Assume that the vector-valued function fn (x) =

(
f1n (x)
f2n (x)

)
,

f1n(x) =

{
f
(1)
1n (x), x ∈ Ω1

f
(2)
1n (x), x ∈ Ω2

, f2n(x) =

{
f
(1)
2n (x), x ∈ Ω1

f
(2)
2n (x), x ∈ Ω2

,

satisfies the following conditions:
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1) fn (x) vanishes outside the interval [−n, c) ∪ (c, n] , where a < −n < c < n < b.

2) The vector-valued functions fn (x) and f ′n (x) are continuous.
3) fn (x) satisfies the conditions given by (2)–(3).

If we apply the Parseval equality to fn (x) , then we get

∫ c

−n

∥fn (x)∥2E dx+ β

∫ n

c

∥fn (x)∥2E dx

=

∞∑
k=−∞

1

α2
k

{ ∫ c

a
(fn (x) , yk (x))E dx

+β
∫ b

c
(fn (x) , yk (x))E dx

}2

. (22)

Then, via integrating by parts, we obtain

∫ c

a

(fn (x) , yk (x))E dx+ β

∫ b

c

(fn (x) , yk (x))E dx

=
1

λk

∫ c

a

f
(1)
1n (x)

[
−y(1)′k2 (x) + p (x) y

(1)
k1 (x)

]
dx

+
1

λk
β

∫ b

c

f
(2)
1n (x)

[
−y(2)′k2 (x) + p (x) y

(2)
k1 (x)

]
dx

+
1

λk

∫ c

a

f
(1)
2n (x)

[
y
(1)′
k1 (x) + r (x) y

(1)
k2 (x)

]
dx

+
1

λk
β

∫ b

c

f
(2)
2n (x)

[
y
(2)′
k1 (x) + r (x) y

(2)
k2 (x)

]
dx

=
1

λk

∫ c

a

[
−f (1)′2n (x) + p (x) f

(1)
1n (x)

]
y
(1)
k1 (x) dx

+
1

λk
β

∫ b

c

[
−f (2)′2n (x) + p (x) f

(2)
1n (x)

]
y
(2)
k1 (x) dx

+
1

λk

∫ c

a

[
f
(1)′
1n (x) + r (x) f

(1)
2n (x)

]
y
(1)
k2 (x) dx

+
1

λk
β

∫ b

c

[
f
(2)′
1n (x) + r (x) f

(2)
2n (x)

]
y
(2)
k2 (x) dx.

Thus, we have ∑
|λk|≥s

1

α2
k

{ ∫ c

−n
(fn (x) , yk (x))E dx

+β
∫ n

c
(fn (x) , yk (x))E dx

}2
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≤ 1

s2

∑
|λk|≥s

1

α2
k



∫ c

−n

[
−f (1)′2n (x) + p (x) f

(1)
1n (x)

]
y
(1)
k1 (x) dx

+β
∫ n

c

[
−f (2)′2n (x) + p (x) f

(2)
1n (x)

]
y
(2)
k1 (x) dx

+
∫ c

−n

[
f
(1)′
1n (x) + r (x) f

(1)
2n (x)

]
y
(1)
k2 (x) dx

+β
∫ n

c

[
f
(2)′
1n (x) + r (x) f

(2)
2n (x)

]
y
(2)
k2 (x) dx



2

≤ 1

s2

∞∑
k=−∞

1

α2
k



∫ c

−n

[
−f (1)′2n (x) + p (x) f

(1)
1n (x)

]
y
(1)
k1 (x) dx

+β
∫ n

c

[
−f (2)′2n (x) + p (x) f

(2)
1n (x)

]
y
(2)
k1 (x) dx

+
∫ c

−n

[
f
(1)′
1n (x) + r (x) f

(1)
2n (x)

]
y
(1)
k2 (x) dx

+β
∫ n

c

[
f
(2)′
1n (x) + r (x) f

(2)
2n (x)

]
y
(2)
k2 (x) dx



2

=
1

s2



∫ c

−n

[
−f (1)′2n (x) + p (x) f

(1)
1n (x)

]2
dx

+β
∫ n

c

[
−f (2)′2n (x) + p (x) f

(2)
1n (x)

]2
dx

+
∫ c

−n

[
f
(1)′
1n (x) + r (x) f

(1)
2n (x)

]2
dx

+β
∫ n

c

[
f
(2)′
1n (x) + r (x) f

(2)
2n (x)

]2
dx


.

By using (22), we obtain

∣∣∣∣∣∣
∫ c

−n

∥fn (x)∥2E dx+ β

∫ n

c

∥fn (x)∥2E dx−
∑

−N≤λk≤N

1

α2
k

{⟨fn (.) , yk (.)⟩H}2
∣∣∣∣∣∣

≤
∑

−N≤λk≤N

1

α2
k

{⟨fn (.) , (ckψ1 (., λk) + dkψ2 (., λk))⟩H}2

=

∫ N

−N

2∑
i,j=1

Fin (λ)Fin (λ) dµij,[a,b] (λ) ,

where

Fin (λ) = ⟨fn (.) , ψi (., λ)⟩H (i = 1, 2) .
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Consequently, we get ∣∣∣∣∣∣
∫ c

−n
∥fn (x)∥2E dx+ β

∫ n

c
∥fn (x)∥2E dx

−
∫ N

−N

∑2
i,j=1 Fin (λ)Fin (λ) dµij,[a,b] (λ)

∣∣∣∣∣∣
≤ 1

N2

∫ c

−n

[
−f (1)′2n (x) + p (x) f

(1)
1n (x)

]2
dx

+β 1
N2

∫ n

c

[
−f (2)′2n (x) + p (x) f

(2)
1n (x)

]2
dx

+ 1
N2

∫ c

−n

[
f
(1)′
1n (x) + r (x) f

(1)
2n (x)

]2
dx

+ 1
N2 β

∫ n

c

[
f
(2)′
1n (x) + r (x) f

(2)
2n (x)

]2
dx.

(23)

By Lemma 5 and Theorems 6 and 7, we can find sequences {as} and {bs} (as → −∞ and bs → +∞, s→ ∞)
such that the functions µij,[as,bs] (λ) converge to a function µij (λ) (i, j = 1, 2). Passing to the limit with respect
to {as} and {bs} in (23), we have∣∣∣∣∣

∫ c

−n
∥fn (x)∥2E dx+ β

∫ n

c
∥fn (x)∥2E dx

−
∫ N

−N

∑2
i,j=1 Fin (λ)Fjn (λ) dµij (λ)

∣∣∣∣∣ ≤ 1

N2

∫ c

−n

[
−f (1)′2n (x) + p (x) f

(1)
1n (x)

]2
dx

+β
1

N2

∫ n

c

[
−f (2)′2n (x) + p (x) f

(2)
1n (x)

]2
dx

+
1

N2

∫ c

−n

[
f
(1)′
1n (x) + r (x) f

(1)
2n (x)

]2
dx

+
1

N2
β

∫ n

c

[
f
(2)′
1n (x) + r (x) f

(2)
2n (x)

]2
dx.

As N → ∞, we get∫ c

−n

∥fn (x)∥2E dx+ β

∫ n

c

∥fn (x)∥2E dx =

∫ ∞

−∞

2∑
i,j=1

Fin (λ)Fjn (λ) dµij (λ) .

Now let

f(x) =

{
f (1)(x), x ∈ Ω1

f (2)(x), x ∈ Ω2
,

f (.) ∈ H. Choose vector-valued functions

fη (x) =

{
f
(1)
η (x), x ∈ Ω1

f
(2)
η (x), x ∈ Ω2

,

satisfying conditions 1–3 and such that

lim
η→∞

∫ c

−∞

∥∥∥f (1) (x)− f (1)η (x)
∥∥∥2
E
dx+ β lim

η→∞

∫ ∞

c

∥∥∥f (2) (x)− f (2)η (x)
∥∥∥2
E
dx = 0.
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Let

Fiη (λ) =

∫ c

−∞

(
f (1)η (x) , ψi (x, λ)

)
E
dx

+β

∫ ∞

c

(
f (2)η (x) , ψi (x, λ)

)
E
dx (i = 1, 2) .

Then we have

∫ c

−∞

∥∥∥f (1)η (x)
∥∥∥2
E
dx+ β

∫ ∞

c

∥∥∥f (2)η (x)
∥∥∥2
E
dx =

∫ ∞

−∞

2∑
i,j=1

Fiη (λ)Fjη (λ) dµij (λ) .

Since ∫ c

−∞

∥∥∥f (1)η1
(x)− f (1)η2

(x)
∥∥∥2
E
dx+ β

∫ ∞

c

∥∥∥f (2)η1
(x)− f (2)η2

(x)
∥∥∥2
E
dx→ 0

as η1, η2 → ∞, we have ∫ ∞

−∞

2∑
i=1

(Fiη1 (λ)Fjη1 (λ)− Fiη2 (λ)Fjη2 (λ)) dµij (λ)

=

∫ c

−∞

∥∥∥f (1)η1
(x)− f (1)η2

(x)
∥∥∥2
E
dx+ β

∫ ∞

c

∥∥∥f (2)η1
(x)− f (2)η2

(x)
∥∥∥2
E
dx→ 0

as η1, η2 → ∞. Therefore, there is a limit function Fi (i = 1, 2) that satisfies

∫ c

−∞

∥∥∥f (1) (x)∥∥∥2
E
dx+ β

∫ ∞

c

∥∥∥f (2) (x)∥∥∥2
E
dx =

∫ ∞

−∞

2∑
i,j=1

Fi (λ)Fj (λ) dµij (λ) ,

by the completeness of the space L2
µ (R) .

Now we will show that the sequence (Kηi) (i = 1, 2) given by

Kηi (λ) =

∫ c

−η

(f (1) (x) , ψi (x, λ))Edx+

∫ η

c

(f (2) (x) , ψi (x, λ))Edx (i = 1, 2)

converges as η → ∞ to Fi (i = 1, 2) in the metric of the space L2
µ (R) . Let g be another function in H. By

similar arguments, G (λ) can be defined by g. It is obvious that∫ c

−∞

∥∥∥f (1) (x)− g(1) (x)
∥∥∥2
E
dx+ β

∫ ∞

c

∥∥∥f (2) (x)− g(2) (x)
∥∥∥2
E
dx

=

∫ ∞

−∞

2∑
i,j=1

{(Fi (λ)−Gi (λ)) (Fj (λ)−Gj (λ))} dµij (λ) .

Let

g (x) =

{
f (x) , x ∈ [−η, c) ∪ (c, η]
0, otherwise.
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Then we have ∫ ∞

−∞

2∑
i,j=1

{(Fi (λ)−Kηi (λ)) (Fj (λ)−Kηj (λ))} dµij (λ)

=

∫ −η

−∞

∥∥∥f (1) (x)∥∥∥2
E
dx+ β

∫ ∞

η

∥∥∥f (2) (x)∥∥∥2
E
dx→ 0 (η → ∞) ,

which proves that (Kηi) converges to Fi (i = 1, 2) in L2
µ(R) as η → ∞. 2

Theorem 9 Suppose that the functions

f(x) =

{
f (1)(x), x ∈ Ω1

f (2)(x), x ∈ Ω2
, g(x) =

{
g(1)(x), x ∈ Ω1

g(2)(x), x ∈ Ω2
,

f, g ∈ H, and Fi (λ) , Gi (λ) (i = 1, 2) are their Fourier transforms. Then we have∫ c

−∞

(
f (1) (x) , g(1) (x)

)
E
dx+ β

∫ ∞

c

(
f (2) (x) , g(2) (x)

)
E
dx

=

∫ ∞

−∞

2∑
i,j=1

Fi (λ)Gj (λ) dµij (λ) ,

which is called the generalized Parseval equality.

Proof It is clear that F ∓G are transforms of f ∓ g. Therefore, we have∫ c

−∞

∥∥∥f (1) (x) + g(1) (x)
∥∥∥2
E
dx+ β

∫ ∞

c

∥∥∥f (2) (x) + g(2) (x)
∥∥∥2
E
dx

=

∫ ∞

−∞

2∑
i,j=1

(Fi (λ) +Gi (λ)) (Fj (λ) +Gj (λ)) dµij (λ)

and ∫ c

−∞

∥∥∥f (1) (x)− g(1) (x)
∥∥∥2
E
dx+ β

∫ ∞

c

∥∥∥f (2) (x)− g(2) (x)
∥∥∥2
E
dx

=

∫ ∞

−∞

2∑
i,j=1

(Fi (λ)−Gi (λ)) (Fj (λ)−Gj (λ)) dµij (λ) .

By subtracting one of these equalities from the other one, we obtain the desired result. 2

Theorem 10 Let

f(x) =

{
f (1)(x), x ∈ Ω1

f (2)(x), x ∈ Ω2
, f ∈ H.

Then the integrals ∫ ∞

−∞
Fi (λ)ψj (x, λ) dµij (λ) (i, j = 1, 2)
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converge in H. Consequently, we have

f (x) =

∫ ∞

−∞

2∑
i,j=1

Fi (λ)ψj (x, λ) dµij (λ) ,

which is called the expansion theorem.

Proof Take any function fs ∈ H and any positive number s, and set

fs (x) =

∫ s

−s

2∑
i,j=1

Fi (λ)ψj (x, λ) dµij (λ) ,

where

fs(x) =

{
f
(1)
s (x), x ∈ Ω1

f
(2)
s (x), x ∈ Ω2.

Let

g (x) =

{
g(1)(x), x ∈ Ω1

g(2)(x), x ∈ Ω2
, g ∈ H

be a vector-valued function that is equal to zero outside the finite interval [−τ, c) ∪ (c, τ ] , where τ ≥ s. Thus,
we obtain ∫ c

−τ

(
f (1)s (x) , g(1) (x)

)
E
dx+ β

∫ τ

c

(
f (2)s (x) , g(2) (x)

)
E
dx

=

∫ c

−τ

∫ s

−s

2∑
i,j=1

Fi (λ)ψj (x, λ) dµij (λ) , g
(1) (x)


E

dx

+β

∫ τ

c

∫ s

−s

2∑
i,j=1

Fi (λ)ψj (x, λ) dµij (λ) , g
(2) (x)


E

dx

=

∫ s

−s

2∑
i,j=1

Fi (λ)

{ ∫ c

−τ

(
g(1) (x) , ψj (x, λ)

)
E
dx

+β
∫ τ

c

(
g(2) (x) , ψj (x, λ)

)
E
dx

}

=

∫ s

−s

2∑
i,j=1

Fi (λ)Gj (λ) dµij (λ) . (24)

From Theorem 9, we get ∫ c

−∞

(
f (1) (x) , g(1) (x)

)
E
dx+ β

∫ ∞

c

(
f (2) (x) , g(2) (x)

)
E
dx

=

∫ ∞

−∞

2∑
i,j=1

Fi (λ)Gj (λ) dµij (λ) . (25)
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By (24) and (25), we have

⟨f − fs, g⟩H =

∫
|λ|>s

2∑
i,j=1

Fi (λ)Gj (λ) dµij (λ) .

Applying this equality to the function

g (x) =

{
f (x)− fs (x) , x ∈ [−s, c) ∪ (c, s]

0, otherwise,

we get

∥f − fs∥2H =

∫
|λ|>s

2∑
i,j=1

Fi (λ)Fj (λ) dµij (λ) .

Letting s→ ∞ yields the expansion result. 2
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