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Abstract: In this paper, a collocation approach based on exponential polynomials is introduced to solve linear Fredholm–
Volterra integro-differential equations under the initial boundary conditions. First, by constructing the matrix forms
of the exponential polynomials and their derivatives, the desired exponential solution and its derivatives are written
in matrix forms. Second, the differential and integral parts of the problem are converted into matrix forms based on
exponential polynomials. Later, the main problem is reduced to a system of linear algebraic equations by aid of the
collocation points, the matrix operations, and the matrix forms of the conditions. The solutions of this system give
the coefficients of the desired exponential solution. An error estimation method is also presented by using the residual
function and the exponential solutions are improved by the estimated error function. Numerical examples are solved
to show the applicability and the effectiveness of the method. In addition, the results are compared with the results of
other methods.

Key words: Collocation method, exponential polynomials, exponential solutions, Fredholm–Volterra integro-differential
equations, initial boundary conditions, residual improvement

1. Introduction
Differential, integral, and integro-differential equations contribute to the modeling of many problems in science
and engineering. In this study, we introduce an exponential method together with residual error estimation and
residual correction method for solutions of the delay linear Fredholm integro-differential equations. In recent
years, integro-differential equations have solved semianalytical methods such as the homotopy perturbation
method [7, 26], the Taylor collocation method [11], the Haar functions method, [14, 15], He’s variational iteration
technique [8], the power series method [24], the Chebyshev technique [22], the Legendre-spectral method [9],
the Tau method [20], the Legendre multiwavelets method [13], the finite-difference scheme [5], the variational
iteration method [21], the CAS wavelet operational matrix method [3], the trigonometric wavelets method [12],
the Legendre matrix method [25], the Taylor polynomial approach [18], the Adomian method [1], the differential
transformation method [4], the Galerkin method [16], the Bessel matrix method [30], the Legendre collocation
method [32], the improved homotopy perturbation method [27], the modified homotopy perturbation method
[10], and the moving least square method [6, 17]. Yübaşı and Sezer [31] gave a matrix method based on
exponential polynomials for solutions of systems of differential equations.
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In this study, we have three goals for the mth order linear Fredholm–Volterra integro-differential equation
with variable coefficient in the form of

L[y(x)] =

R∑
k=0

Fk(x)y
(k)(x) + λ

∫ b

a

S∑
n=0

Kn(x, t)y
(n)(t)dt+ γ

∫ x

a

J∑
r=0

Pr(x, t)y
(r)(t)dt = g(x), (1.1)

m = max{R,S, J} , 0 ≤ a ≤ x, t ≤ b < ∞ , under the initial boundary conditions

m−1∑
k=0

(
ajky

(k)(a) + bjky
(k)(b)

)
= µj , j = 0, 1, ...,m− 1. (1.2)

Here ajk , bjk , λ , γ , and µj are suitable constants; y(0)(x) = y(x) is the unknown function; Fk(x) , g(x) ,
Kn(x, t) , and Pr(x, t) are the defined functions for (x, t) ∈ [a, b]× [a, b] ; and the kernel functions Kn(x, t) and
Pn(x, t) , (n = 0, 1, ..., S) can be expanded to Maclaurin series.

The first goal is to obtain the approximate solutions of the problem (1.1)–(1.2) in the form

yN (x) =

N∑
n=0

ane
−nx, (1.3)

where the exponential basis set is defined by {1, e−x, e−2x, ..., e−Nx} and an , (n = 0, 1, 2, ..., N) are unknown
coefficients.

The second goal is to make an error estimation for the problem and the method by using the residual
function.

The third goal of the study is to compute the improved exponential solutions in the form

yN,M (x) = yN (x) + eN,M (x). (1.4)

Here, yN (x) is the exponential solution given by (1.3) and

eN,M (x) =

M∑
n=0

a∗ne
−nx (1.5)

is the exponential solution of the error problem obtained by using the residual error function.
Here, a∗n , n = 0, 1, 2, ..., N , are the unknown coefficients; M are chosen as any positive integers such

that M ≥ N ≥ m.

This paper is organized as follows: the required matrix relations for the solution method are given in
Section 2. In Section 3, the exponential approach is presented for linear Fredholm–Volterra integro-differential
equations. In Section 4, an error estimation scheme and the residual correction technique are given for the
approximate solutions by using the residual function. In Section 5, we solve some numerical examples to clarify
the method, error estimation, and residual correction scheme. Section 6 concludes the paper with a brief
summary.

2. Main matrix relations required for the solution method

First, let us show Eq. (1.1) in the form

D(x) + λI(x) + γV (x) = g(x), (2.1)
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where the differential part is

D(x) =

R∑
k=0

Fk(x)y
(k)(x), (2.2)

the Fredholm integral part is

I(x) =

∫ b

a

S∑
n=0

Kn(x, t)y
(n)(t)dt, (2.3)

and the Volterra integral part is

V (x) =

∫ x

a

J∑
r=0

Pr(x, t)y
(r)(t)dt. (2.4)

In the following subsections, we will find the matrix forms of the solution y(x) and its k th order derivative
y(k)(x) and then we will obtain the matrix forms of the parts D(x) and I(x) , and the mixed conditions (1.2).

2.1. Matrix relations for the part D(x)

First, we can express the approximate solution (1.3) by the matrix form

yN (x) = E(x)A. (2.5)

Here,

E(x) =
[
1 e−x e−2x · · · e−Nx

]
, and A =

[
a0 a1 · · · aN

]T
.

k th order derivative E(k)(x) can be expressed by means of the matrix E(x) as follows:

E(k)(x) = E(x)Mk, k = 0, 1, 2, ... (2.6)

where

M =



0 0 0 · · · 0
0 −1 0 · · · 0
...

... −2
...

...

0 0 0
. . . 0

0 0 0 · · · −N

 and M0 is the unit matrix in the dimension(N + 1)× (N + 1).

Clearly, Mk is written as

Mk =



0 0 0 · · · 0
0 (−1)k 0 · · · 0
...

... (−2)k
...

...

0 0 0
. . . 0

0 0 0 · · · (−N)k

 .

By using (2.6), the k th order derivative of (2.5) becomes

y
(k)
N (x) = E(x)MkA. (2.7)
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We substitute expression (2.14) into (2.5) and so we have the matrix form

D(x) =
R∑

k=0

Fk(x)E(x)MkA. (2.8)

2.2. Matrix relations for the integral part I(x)

By using the following procedure, the kernel functions Kn(x, t) , (n = 0, 1, ..., S) can be converted to the matrix
forms.

In this subsection, we will find the matrix form of integral part I(x) . For this purpose, we will benefit
from the truncated Maclaurin series of the kernel functions Kn(x, t) for n = 0, 1, ..., S . The kernel functions
Kn(x, t) , (n = 0, 1, ..., S) can be expressed approximately by the truncated Maclaurin series

Kn(x, t) =

N∑
r=0

N∑
s=0

kT,n
r,s xrts, (2.9)

where

kT,n
r,s =

1

r!s!

∂r+sKn(0, 0)

∂xr∂ts
; r, s = 0, 1, ..., N, (n = 0, 1, ..., S).

On the order hand, the kernel functions Kn(x, t) , (n = 0, 1, ..., S) can be expressed by the truncated
exponential series form

Kn(x, t) =

N∑
r=0

N∑
s=0

kE,n
r,s e−rxe−st, (n = 0, 1, ..., S). (2.10)

Here, kE,n
r,s (n = 0, 1, ..., S) are the coefficients of the exponential series form and they are determined by the

following procedure.
The truncated series (2.9) and (2.10) can be transformed to the matrix forms

Kn(x, t) = X(x)KT
nXT (t), KT

n =
[
kT,n
r,s

]
, (2.11)

and

Kn(x, t) = E(x)KE
n ET (t), KE

n =
[
kE,n
r,s

]
, (2.12)

where

X(x) =
[
1 x x2 · · · xN

]
, r, s = 0, 1, ..., N, n = 0, 1, ...S.

The relation between the standard basis matrix X(x) =
[
1 x x2 · · · xN

]
and the exponential basis

matrix E(x) =
[
1 e−x e−2x · · · e−Nx

]
is given by

E(x) = X(x)ŞT , (2.13)
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where

Ş =



1 0 0 · · · 0

1 (−1)
1!

(−1)2

2! · · · (−1)N

N !

1 (−2)
1!

(−2)2

2! · · · (−2)N

N !

...
...

... . . . ...

1 (−N)
1!

(−N)2

2! · · · (−N)N

N !


.

By equaling relation (2.11) to relation (2.12) and by using relation (2.13), we get the matrix relation

KT
n = ŞT KE

n Ş

or

KE
n =

(
ŞT

)−1KT
nŞ−1. (2.14)

By placing relation (2.14) into Eq. (2.12), we gain

Kn(x, t) = E(x)
(
ŞT )−1KT

nŞ−1ET (t), (2.15)

where KT
n =

[
kT,n
r,s

]
, r, s = 0, 1, ..., N, n = 0, 1, ..., S are the Taylor coefficients matrix of the function

Kn(x, t) at the point (0, 0) . By putting Eqs. (2.7) and (2.15) into the part I(x) of Eq. (2.1), we obtain the
matrix form

I(x) =

∫ b

a

S∑
n=0

E(x)
(
ŞT

)−1KT
nŞ−1ET (t)E(t)MnAdt.

This equation can be simplified as follows:

I(x) = E(x)
(

ŞT
)−1

{
S∑

n=0

KT
nŞ−1QMn

}
A, (2.16)

where

Q =

∫ b

a

ET (t)E(t)dt.

Here, the matrix Q is computed by

Q =

∫ b

a

ET (t)E(t)dt = [qr,s] , r, s = 0, 1, ..., N,

where 
qr,s = b− a, for r = s = 0,

qr,s =
e−(r+s)b−e−(r+s)a

−(r+s) , for r ̸= s and r, s = 0, 1, ..., N.
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2.3. Matrix relations for the integral part V (x)

In this subsection, we first obtain matrix forms of the kernel functions Pn(x, t) ,
(
n = 0, 1, ..., J

)
. Similar to the

finding of the matrix forms of the kernel functions in the previous section, the matrix form Pn(x, t) becomes

Pn(x, t) = E(x)
(
ŞT

)−1PT
nŞ−1ET (t), (2.17)

where

PT
n =

[
pT,n
r,s

]
, Pn(x, t) =

N∑
r=0

N∑
s=0

pT,n
r,s xrts; pT,n

r,s =
1

r!s!

∂r+sPn(0, 0)

∂xr∂ts
; r, s = 0, 1, ..., N, (n = 0, 1, ..., J) .

We put Eqs. (2.7) and (2.17) into the part V (x) of Eq. (2.1) and thus we get

V (x) =

∫ x

a

J∑
r=0

E(x)
(
ŞT

)−1PT
r Ş−1ET (t)E(t)MrAdt.

If this equation is simplified, it becomes

V (x) = E(x)
(
ŞT

)−1
J∑

r=0

PT
r Ş−1

∫ x

a

ET (t)E(t)dtMrA = E(x)
(
ŞT

)−1
J∑

r=0

PT
r Ş−1QV (x)MrA. (2.18)

Here,

QV (x) =

∫ x

a

ET (t)E(t)dt =
[
qvr,s

]
, r, s = 0, 1, ..., N ;


qvr,s = x− a, for r = s = 0,

qvr,s =
e−(r+s)x−e−(r+s)a

−(r+s) , for r ̸= s and r, s = 0, 1, ..., N.

3. The solution of the problem

In Section 2, we constructed the required matrix relations for the solution of the problem. Now we will obtain
the approximate solution by computing the unknown coefficients.

First, we substitute the relations (2.8), (2.16) and (2.18), into Eq.(2.1) and thus we get the matrix
equation

R∑
k=0

Fk(x)E(x)MkA + λE(x)
(
ŞT

)−1
{ S∑

n=0

KT
nŞ−1QMn

}
A + γE(x)

(
ŞT

)−1
{ J∑

r=0

PT
r Ş−1QV (x)Mr

}
A = g(x).

(3.1)
The collocation points, defined by

xi = a+
(b− a)

N
i, i = 0, 1, ..., N, (3.2)
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are placed in Eq. (3.1), and thus we obtain a system of the matrix equations

R∑
k=0

Fk(xi)E(xi)MkA+λE(xi)
(
ŞT

)−1
{ S∑

n=0

KT
nŞ−1QMn

}
A+γE(xi)

(
ŞT

)−1
{ J∑

r=0

PT
r Ş−1QV (xi)Mr

}
A = g(xi),

i = 0, 1, ..., N. This system can be represented by the matrix form

{ R∑
k=0

FkEMk + λE
(
ŞT

)−1
S∑

n=0

KT
nŞ−1QMn + γĒŞ̄

J∑
r=0

�PrŞ̃QV
�Mr

}
A = G, (3.3)

where

Fk =


Fk(x0) 0 · · · 0

0 Fk(x1) · · · 0
...

... . . . ...
0 0 · · · Fk(xN )

 , E =


E(x0)
E(x1)

...
E(xN )

 =


1 e−x0 e−2x0 · · · e−Nx0

1 e−x1 e−2x1 · · · e−Nx1

...
...

... . . . ...
1 e−xN e−2xN · · · e−NxN

 ,

Ē =


E(x0) 0 · · · 0

0 E(x1) · · · 0
...

... . . . ...
0 0 · · · E(xN )

 , Ş̄ =


(
ŞT

)−1
0 · · · 0

0
(
ŞT

)−1 · · · 0
...

... . . . ...
0 0 · · ·

(
ŞT

)−1


(N+1)×(N+1)

,

�Pn =


PT

n 0 · · · 0
0 PT

n · · · 0
...

... . . . ...
0 0 · · · PT

n


(N+1)×(N+1)

, Ş̃ =


Ş−1 0 · · · 0

0 Ş−1 · · · 0
...

... . . . ...
0 0 · · · Ş−1


(N+1)×(N+1)

,

G =


g(x0)
g(x1)

...
g(xN )

 , QV =


QV (x0) 0 · · · 0

0 QV (x1) · · · 0
...

... . . . ...
0 0 · · · QV (xN )

 , �Mn =


Mn

Mn

...
Mn


(N+1)×1

.

Briefly, we can write Eq. (3.3) in the form

WA = G or [W;G], (3.4)

where

W = [Wpq] =

R∑
k=0

FkEMk + λE
(
ŞT

)−1
S∑

n=0

KT
nŞ−1QMn + γĒŞ̄

J∑
r=0

�PrŞ̃QV
�Mr; p, q = 0, 1, ..., N.

Let us compute the matrix form of the conditions (1.2). For this purpose, by putting a and b instead of
x in Eq. (2.7) and by using them in conditions (1.2), we have the matrix form

m−1∑
k=0

(
ajkE(a) + bjkE(b)

)
MkA = µj , j = 0, 1, ...,m− 1. (3.5)

2552



YÜZBAŞI/Turk J Math

Briefly, the matrix forms (3.5) can be expressed in the form

UA = µ or [U;µ], (3.6)

where

U =


U0

U1

...
Um−1

 , Uj =

m−1∑
k=0

(
ajkE(a) + bjkE(b)

)
MkA, j = 0, 1, ...,m− 1, µ =


µ0

µ1

...
µm−1

 .

To solve Eq. (1.1) under conditions (1.2), the unknown coefficients should be determined by using Eq.
(3.4) and Eq. (3.6). Therefore, we replace the rows of the matrix (3.6) by any m rows of the matrix (3.4) and
so we get the new augmented matrix:

[W̃; G̃] =



w0 0 w0 1 · · · w0 N ; g(x0)
w1 0 w1 1 · · · w1 N ; g(x1)
...

... . . . ...
...

...
wN−m 0 wN−m 1 · · · wN−m N ; g(xN−m)
u0 0 u0 1 · · · u0 N ; µ0

u1 0 u1 1 · · · u1 N ; µ1

...
... . . . ...

...
...

um−1 0 um−1 1 · · · um−1 N ; µm−1


. (3.7)

If rankW̃ = rank[W̃; G̃] = N + 1 , then we can write

A = (W̃)−1G̃.

Hence, the coefficients an , (n = 0, 1, ..., N) are uniquely determined by Eq. (3.7). By placing the determined
coefficients into Eq. (1.3), we obtain the exponential series solution

yN (x) =

N∑
n=0

ane
−nx. (3.8)

We note that, when
∣∣W̃∣∣ = 0 , if rank W̃ = rank[W̃; G̃] < N + 1 , then we may find a particular solution. If

rank W̃ ̸= rank[W̃; G̃] < N + 1 , then a solution is not available.

4. Error estimation and residual improvement

In this section, we introduce an error estimation technique based on the residual function. Oliveira [19] presented
the residual correction method for boundary value problems of linear differential equations, çelik [2] presented
a collocation method together with residual correction with Chebyshev series, Shahmorad [23] presented the
residual error estimation for solution of integro-differential equations by the Tau method, and Yübaşı[28, 29]
presented the Laguerre approach and the Bessel collocation method together with residual error estimation.

First, let us define the residual function of Eq. (1.1) for the approximate solution (3.8) as

RN (x) = L[yN (x)]− g(x). (4.1)
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Also, the approximate solution provides conditions (1.2) as follows:

m−1∑
k=0

(
ajky

(k)(a) + bjky
(k)(b)

)
= µj , j = 0, 1, ...,m− 1.

Thus, yN (x) satisfies the problem L[yN (x)] =
∑R

k=0 Fk(x)y
(k)
N (x) + λ

∫ b

a

∑S
n=0 Kn(x, t)y

(n)
N (t)dt+ γ

∫ x

a

∑J
r=0 Pr(x, t)y

(r)
N (t)dt = g(x) +RN (x),∑m−1

k=0

(
ajky

(k)
N (a) + bjky

(k)
N (b)

)
= µj , j = 0, 1, ...,m− 1.

(4.2)
y(x) and yN (x) represent the exact solution and the approximate solution (3.8) of the problem (1.1)–(1.2),
respectively. Then the error function can be estimated as

eN (x) = y(x)− yN (x).

By subtracting the integral equation in Eq. (4.2) from Eq. (1.1), we get the error differential equation

L[eN (x)] =

R∑
k=0

Fk(x)e
(k)
N (x) + λ

∫ b

a

S∑
n=0

Kn(x, t)e
(n)
N (t)dt+ γ

∫ x

a

J∑
r=0

Pr(x, t)e
(r)
N (t)dt = −RN (x), (4.3)

and by subtracting the conditions in (4.2) from the conditions in (1.2), we have the homogeneous mixed
conditions

m−1∑
k=0

(
ajke

(k)
N (a) + bjke

(k)
N (b)

)
= 0, j = 0, 1, ...,m− 1 (4.4)

for the error function. By solving the error differential equation (4.3) under the conditions in (4.4) by using the
suggested method in Section 3, we gain the approximation

eN,M (x) =

M∑
n=0

a∗ne
−nx (4.5)

to the error function eN (x) . By summing the approximate solution yN (x) and the estimated error function,
eN,M (x) , we gain the corrected approximate solution:

yN,M (x) = yN (x) + eN,M (x).

5. Illustrative examples
In this section, the applications of the method, the error estimation, and the residual correction are given by the
some examples. In this part, y(x) , yN (x) , yN,M (x) ,

∣∣eN (x)
∣∣ = ∣∣y(x) − yN (x)

∣∣ , yN,M (x) = yN (x) + eN,M (x) ,
and

∣∣EN,M (x)
∣∣ = ∣∣y(x)− yN,M (x)

∣∣ show the exact solution, the exponential solution, the corrected exponential
solution, the absolute error function, the estimated absolute error function, and the corrected absolute error
function, respectively, in the considered interval. We have done all numerical calculations by using a code
written in MATLAB.
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Example 5.1 First, let us solve the linear Fredholm integro-differential equation

y(2)(x)−xy(1)(x)+xy(x) = (x−1)sin(x)−(x+1)cos(x)+

∫ 1

0

[
sin(x+t)y(t)+cos(x+t)y

′
(t)

]
dt, 0 ≤ x, t ≤ 1 (5.1)

with the initial conditions y(0) = 0 , y(1)(0) = 1 , y(2)(0) = 0 , y(3)(0) = −1. Here, the exact solution of
the problem is y(x) = sin(x) , m = 2 , F2 = 1 , F1 = −x , F0 = x , Fi = 0 for values of i , λ = 1 ,
g(x) = (x− 1)sin(x)− (x+ 1)cos(x) , K0(x, t) = sin(x+ t) , K1(x, t) = cos(x+ t) .

By applying the method for N = 3 , we will obtain the approximate solution in the form

y3(x) =

3∑
n=0

ane
−nx.

Now we compute the unknown coefficients an , (n = 0, 1, ..., N) by following the procedure in Section 3.
The set of collocation points for N = 3 is

{
x0 = 0, x1 =

1

3
, x2 =

2

3
, x1 = 1

}
.

The fundamental matrix equation of the problem from Eq. (3.3) becomes

{
F0E + F1EM + F2EM2 − λE

(
ŞT

)−1(KT
0 Ş−1Q + KT

1 Ş−1QM
)}

A = G,

where

F0 =


0 0 0 0
0 1/3 0 0
0 0 2/3 0
0 0 0 1

 , F1 =


0 0 0 0
0 −1/3 0 0
0 0 −2/3 0
0 0 0 −1

 , F2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

E =


E(0)

E(1/3)
E(2/3)
E(1)

 =


1 1 1 1
1 1413/1972 287/559 536/1457
1 287/559 916/3475 329/2431
1 536/1457 329/2431 152/3053

 ,KT
0 =


0 1 0 −1/6
1 0 −1/2 0
0 −1/2 0 1/12
−1/6 0 1/12 0

 ,

KT
1 =


1 0 −1/2 0
0 −1 0 1/6
−1/2 0 1/4 0
0 1/6 0 −1/36

 ,M =


0 0 0 0
0 −1 0 0
0 0 −2 0
0 0 0 −3

 ,Ş =


1 0 0 0
1 −1 1/2 −1/6
1 −2 2 −4/3
1 −3 9/2 −9/2

 ,

Q =



1 1− e−1 1
2 − 1

2e
−2 1

3 − 1
3e

−3

1− e−1 1
2 − 1

2e
−2 1

3 − 1
3e

−3 1
4 − 1

4e
−4

1
2 − 1

2e
−2 1

3 − 1
3e

−3 1
4 − 1

4e
−4 1

5 − 1
5e

−5

1
3 − 1

3e
−3 1

4 − 1
4e

−4 1
5 − 1

5e
−5 1

6 − 1
6e

−6


,G =


−1

−3067/2075
−761/502
−429/397

 .
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Hence, the augmented matrix (3.4) is computed as

[
W;G

]
=


−4954/10633 1418/1073 1766/379 1835/187 ; −1
−11113/28153 538/437 1256/423 742/169 ; −3067/2075
−2155/8201 892/937 435/256 1419/746 ; −761/502
−139/1785 473/782 494/621 357/503 ; −429/397

 .

The augmented matrix form of the conditions from (3.6) is calculated as

[
U;µ

]
=

[
1 1 1 1 ; 0
0 −1 −2 −3 ; 1

]
and thus the new augmented matrix becomes

[W̃; G̃] =


−4954/10633 1418/1073 1766/379 1835/187 ; −1
−11113/28153 538/437 1256/423 742/169 ; −3067/2075

1 1 1 1 ; 0
0 −1 −2 −3 ; 1

 .

By solving the system corresponding to [W̃; G̃] , the coefficients matrix is found as

A =
[
335/192 −778/289 599/521 −181/894

]T
.

Finally, the determined coefficients are substituted into Eq. (1.3) and thus we get the approximate solution

y3(x) = −1275

1346
e−x +

599

521
e−2x − 181

894
e−3x.

For the problem in this example, the error problem from Equations (4.3)–(4.4) is written as

 e(2)(x)− xe(1)(x) + xe(x)−
∫ 1

0

[
sin(x+ t)e(t) + cos(x+ t)e

′
(t)

]
dt = −RN (x)

, 0 ≤ x, t ≤ 1
e(0) = 0, e(1)(0) = 0, e(2)(0) = 0, e(3)(0) = 0.

(5.2)

This error problem for M = 4 is solved by using the method defined in Section 3 and the coefficient matrix of
the error problem is computed as

A∗ =
[
−333/1328 2751/2675 −1499/928 1099/957 −628/2021

]T
.

The elements of the determined coefficient matrix are placed into Eq. (5.2) and thus we obtain the error
function, approximately, as

e3,4 = −0.250752792284+1.02841121120e−x − 1.61530125599e−2x +1.14838004752e−3x − 0.310737210440e−4x.

Hence, the corrected approximate solution for (N,M) = (3, 4) is computed as

y3,4(x) = y3(x) + e3,4(x) = 1.49403734933− 1.66362987469e−x − 0.465589509058e−2x

+0.945919244855e−3x − 0.310737210440e−4x.
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In a similar way, we solve the problem by our method for (N,M) = (3, 7), (6, 7), (6, 9), (15, 16), (15, 18) .
In Table 1, we tabulate the numerical results of the exact solution and the obtained approximate solutions
(exponential solutions and corrected exponential solutions). Also, we give the actual absolute errors, the
estimated absolute errors of the exponential solution, and the absolute errors of the corrected exponential
solution for the same values of (N,M) in Table 2. Figures 1–3 show the comparisons of the absolute error
functions (actual and estimated) for different values of (N,M) . In Figures 4–6, we compare the absolute error
function eN and the corrected absolute error functions EN,M for some values of (N,M) . We observe from
Table 2 and Figures 1–3 that the estimated absolute errors are quite close to the actual absolute errors. Also,
it is seen from Table 2 and Figures 4–6 that the corrected error function EN,M is better than the uncorrected
error function eN .
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Figure 1. Comparison of the absolute error functions∣∣eN (x)
∣∣ = ∣∣y(x)−yN (x)

∣∣ and the estimated absolute error
functions

∣∣eN,M (x)
∣∣ for N = 3 and M = 4, 7 of Eq. (5.1).

Figure 2. Comparison of the absolute error functions∣∣eN (x)
∣∣ = ∣∣y(x)−yN (x)

∣∣ and the estimated absolute error
functions

∣∣eN,M (x)
∣∣ for N = 6 and M = 7, 9 of Eq. (5.1).

Example 5.2 We consider the Fredholm–Volterra integro-differential equation

y(3)(x)−xy(1)(x)+xy(x)+

∫ 1

0

[
e−x−ty(1)(t)+ex−ty(2)(t)

]
dt−

∫ x

0

e−x+ty(t)dt = (x−1)e−x− (e2 − 1)(e−x − ex)

e2

under the initial conditions y(0) = 1 , y
′
(0) = −1 , y

′′
(0) = 1 . If this problem is solved by our method for

N = 3 in the interval 0 ≤ x, t ≤ 1 , the approximate solution is obtained as y(x) = e−x . We note that this
solution is the exact solution of the problem at the same time.

Example 5.3 [27] Now let us solve the Fredholm integro-differential equation

y
′
(x) = xex + ex − x+

∫ 1

0

xy(t)dt, 0 ≤ x, t ≤ 1 (5.3)

under the initial conditions y(0) = 1 . The exact solution of the problem is y(x) = xex . By applying the
procedure in Section 3 for (N,M) = (8, 8), (12, 12), (15, 15) , we find the corrected exponential approximate
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Figure 3. Comparison of the absolute error functions∣∣eN (x)
∣∣ = ∣∣y(x)−yN (x)

∣∣ and the estimated absolute error
functions

∣∣eN,M (x)
∣∣ for N = 15 and M = 16, 18 of Eq.

(5.1).

Figure 4. Comparison of the absolute error functions∣∣eN (x)
∣∣ = ∣∣y(x)− yN (x)

∣∣ and the corrected absolute error
functions

∣∣EN,M (x)
∣∣ = ∣∣y(x) − yN,M (x)

∣∣ for N = 3 and
M = 4, 7 of Eq. (5.1).
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Figure 5. Comparison of the absolute error functions∣∣eN (x)
∣∣ = ∣∣y(x)− yN (x)

∣∣ and the corrected absolute error
functions

∣∣EN,M (x)
∣∣ = ∣∣y(x) − yN,M (x)

∣∣ for N = 6 and
M = 7, 9 of Eq. (5.1).

Figure 6. Comparison of the absolute error functions∣∣eN (x)
∣∣ = ∣∣y(x)− yN (x)

∣∣ and the corrected absolute error
functions

∣∣EN,M (x)
∣∣ = ∣∣y(x)− yN,M (x)

∣∣ for N = 15 and
M = 16, 18 of Eq. (5.1).

solutions. In Table 3, the absolute errors of them are compared with the absolute errors of the other methods:
the differential transformation method (DTM) [4], the CAS wavelet method (CASWM) [3], and the improved
homotopy perturbation method (IHPM) [27]. It is seen from these comparisons that our results are quite good.
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Table 1. Numerical results of the exact solution and approximate solutions for (N,M) = (3, 4), (3, 7), (6, 7),
(6, 9), (15, 16), (15, 18) of Eq. (5.1).

xi

Exact solution Exponential solution Corrected exponential solution
y(xi) = sin(xi) y3(xi) y3,4(xi) y3,7(xi)

0 0 -0.5551115e-16 0.55511151e-16 0.17763568e-14
0.2 0.198669330795 0.200295302828 0.199386687541 0.198575557070
0.4 0.389418342309 0.395879803375 0.391838684023 0.389169666815
0.6 0.564642473395 0.580186646791 0.568955006473 0.564189913337
0.8 0.717356090900 0.748934077896 0.725664884684 0.716649791192
1 0.841470984808 0.899960206415 0.860414628213 0.840758097706
xi y(xi) = sin(xi) y6(xi) y6,7(xi) y6,9(xi)

0 0 0.33306690e-14 0.44408920e-14 0.31086244e-13
0.2 0.198669330795 0.199022602131 0.198582420244 0.198650549194
0.4 0.389418342309 0.390589998625 0.389196220499 0.389370124569
0.6 0.564642473395 0.567073285636 0.564247955627 0.564556443736
0.8 0.717356090900 0.721535078786 0.716750356012 0.717223752743
1 0.841470984808 0.848903039745 0.840911962707 0.841309490649
xi y(xi) = sin(xi) y15(xi) y15,16(xi) y15,18(xi)

0 0 0.115107923e-11 -0.21827872e-10 0.513864506e-10
0.2 0.198669330795 0.198669618297 0.198669395902 0.198669343311
0.4 0.389418342309 0.389419659460 0.389418505380 0.389418373488
0.6 0.564642473395 0.564645494905 0.564642762600 0.564642528573
0.8 0.717356090900 0.717361404766 0.717356534287 0.717356175421
1 0.841470984808 0.841479102516 0.841471612391 0.841471103997

6. Conclusions
In this paper, we have presented an exponential collocation method for the solutions of the Fredholm–Volterra
integro-differential equations under initial and boundary conditions. In addition, an error estimation technique
was given for the approximate solutions and also the approximate solutions were improved by means of the
residual correction method. It is observed from Table 2 and Figures 1–3 that the given error estimation scheme
is very good. They are quite close to the actual absolute errors. This error estimation technique can be used to
test the reliability of the solutions in the absence of the exact solutions of the problem. Also’ by Also, it is seen
from Figures 4-6 and Tables 1-2 that the corrected errors are better. In addition, the results of our method
were compared with the results of other methods in Table 3. It was observed from these comparisons that our
method gives more effective results than the other methods. In addition, if the exact solution of the problem
exists and it is an exponential polynomial, such as in Example 2, then the exact solution of the problem can
be computed by this method. This feature is seen from Example 2. Finally, we note that this method can be
applied for other problems such as systems of integro-differential equations.
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Table 2. Comparison of the absolute errors for (N,M) = (3, 4), (3, 7), (6, 7), (6, 9), (15, 16), (15, 18) of Eq. (5.1).

xi

Absolute errors for the Estimated absolute errors Absolute errors for the corrected
exponential solution for exponential solution exponential solution∣∣e3(xi)

∣∣ = ∣∣y(xi)− y3(xi)
∣∣ ∣∣e3,4(xi)

∣∣ ∣∣e3,7(xi)
∣∣ ∣∣E3,4(xi)

∣∣ ∣∣E3,7(xi)
∣∣

0 5.5511e-017 5.5511e-017 5.3291e-015 5.5511e-017 1.7764e-015
0.2 1.6260e-003 9.0862e-004 1.7197e-003 7.1736e-004 9.3774e-005
0.4 6.4615e-003 4.0411e-003 6.7101e-003 2.4203e-003 2.4868e-004
0.6 1.5544e-002 1.1232e-002 1.5997e-002 4.3125e-003 4.5256e-004
0.8 3.1578e-002 2.3269e-002 3.2284e-002 8.3088e-003 7.0630e-004
1 5.8489e-002 3.9546e-002 5.9202e-002 1.8944e-002 7.1289e-004
xi

∣∣e6(xi)
∣∣ = ∣∣y(xi)− y6(xi)

∣∣ ∣∣e6,7(xi)
∣∣ ∣∣e6,9(xi)

∣∣ ∣∣E6,7(xi)
∣∣ ∣∣E6,9(xi)

∣∣
0 3.3307e-015 1.7764e-015 1.6875e-014 1.7764e-015 1.1546e-014
0.2 3.5327e-004 4.4018e-004 3.7205e-004 8.6911e-005 1.8782e-005
0.4 1.1717e-003 1.3938e-003 1.2199e-003 2.2212e-004 4.8218e-005
0.6 2.4308e-003 2.8253e-003 2.5168e-003 3.9452e-004 8.6030e-005
0.8 4.1790e-003 4.7847e-003 4.3113e-003 6.0573e-004 1.3234e-004
1 7.4321e-003 7.9911e-003 7.5935e-003 5.5902e-004 1.6149e-004
xi

∣∣e15(xi)
∣∣ = ∣∣y(xi)− y15(xi)

∣∣ ∣∣e15,16(xi)
∣∣ ∣∣e15,18(xi)

∣∣ ∣∣E15,16(xi)
∣∣ ∣∣E15,18(xi)

∣∣
0 1.1511e-012 1.0118e-011 9.3621e-011 2.1828e-011 5.1386e-011
0.2 2.8750e-007 2.2240e-007 2.7499e-007 6.5107e-008 1.2516e-008
0.4 1.3172e-006 1.1541e-006 1.2860e-006 1.6307e-007 3.1180e-008
0.6 3.0215e-006 2.7323e-006 2.9663e-006 2.8921e-007 5.5178e-008
0.8 5.3139e-006 4.8705e-006 5.2293e-006 4.4339e-007 8.4522e-008
1 8.1177e-006 7.4901e-006 7.9985e-006 6.2758e-007 1.1919e-007

Table 3. Comparison of the absolute errors obtained by the different methods of Eq. (5.3).

xi
DTM CASWM IHPM Present method
[4] [3] [27]

∣∣E8,8(xi)
∣∣ ∣∣E12,12(xi)

∣∣ ∣∣E15,15(xi)
∣∣

0.1 1.00118e-02 1.34917e-03 2.31481e-06 6.3466e-004 2.6105e-005 2.3870e-006
0.2 2.78651e-02 1.15960e-03 9.25925e-06 6.0386e-004 2.5064e-005 2.4019e-006
0.4 7.55356e-02 5.93105e-02 3.70370e-05 6.4560e-004 2.6888e-005 2.5650e-006
0.6 1.09551e-01 4.39287e-02 8.33333e-05 7.0993e-004 2.9752e-005 2.8409e-006
0.8 6.94512e-02 1.34514e-02 1.48148e-04 7.9955e-004 3.3750e-005 3.2270e-006
0.9 1.00034e-02 1.32045e-02 1.87500e-04 8.7135e-004 3.6310e-005 3.4609e-006
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