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1. Introduction
In this paper, we study the nonlinear system


x∆(t) = p(t)f(y(t))

y∆(t) = q(t)g(z(t))

z∆(t) = −r(t)h(x(t))

(1)

on [t0,∞)T such that t0 ∈ T and t0 ≥ 0 , where p, q ∈ Crd([t0,∞)T, [0,∞)) , r ∈ Crd([t0,∞)T, (0,∞)) , and

∫ ∞

t0

p(s) ∆s = ∞ =

∫ ∞

t0

q(s) ∆s. (2)

We also assume that f, g, h ∈ C(R,R) are nondecreasing functions such that uf(u) > 0 , ug(u) > 0 and
uh(u) > 0 for u ̸= 0 . Here we only consider unbounded time scales, and by t ≥ t0 , we mean t ∈ [t0,∞)T :=

[t0,∞) ∩ T . Classifications of nonoscillatory solutions for some other versions of system (1) are also considered
in [8–11].

The theory of time scales was initiated by Stefan Hilger in his PhD thesis [6] in 1988. The main purpose
was to unify and extend continuous and discrete cases in one comprehensive theory. Since 1988, there has been
much research in many areas of time scales including the classification and existence of dynamical systems. For
an introduction to the theory of time scales, we refer readers to the books written by Bohner and Peterson
[2, 3].
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By a solution of (1), we mean a collection of functions, where x, y, z ∈ C1
rd([t0,∞)T,R), T ≥ t0 and

(x, y, z) satisfies system (1) for all large t ≥ T . A solution (x, y, z) of system (1) is said to be proper if

sup{|x(s)|, |y(s)|, |z(s)| : s ∈ [t,∞)T} > 0

for t ≥ t0. A proper solution (x, y, z) of (1) is said to be nonoscillatory if the component functions x, y , and z

are all nonoscillatory, i.e. either eventually positive or eventually negative. Otherwise, it is said to be oscillatory.
Suppose that N is a set of all nonoscillatory solutions (x, y, z) of system (1). In [1], Akin et al. showed

that any nonoscillatory solution (x, y, z) of system (1) belongs to one of the following classes:

N+ := {(x, y, z) ∈ N : sgnx(t) = sgn y(t) = sgn z(t), t ≥ t0}

N− := {(x, y, z) ∈ N : sgnx(t) = sgn z(t) ̸= sgn y(t), t ≥ t0}.

In the literature, solutions in N+ and N− are known as Type (a) and Type (b) solutions, respectively. The
following lemma describes the long-term behavior of two of the components of a nonoscillatory solution.

Lemma 1.1 [1, Lemma 4.2] Assume that (x, y, z) is a nonoscillatory solution in N− . Then

lim
t→∞

y(t) = lim
t→∞

z(t) = 0.

The following lemma gives us the criteria for relative compactness.

Lemma 1.2 [5, Lemma 2.2] Suppose that X ⊆ BC[t0,∞)T is bounded and uniformly Cauchy. Further, suppose
that X is equicontinuous on [t0, t1]T for any t1 ∈ [t0,∞)T. Then X is relatively compact.

We also give Schauder’s fixed point theorem, proved by Schauder in the 1930s, and Knaster’s fixed point
theorem; see [7, 12], respectively.

Theorem 1.3 (Knaster’s fixed point theorem) If (M,≤) is a complete lattice and T : M → M is order-
preserving (also called monotone or isotone), then T has a fixed point. In fact, the set of fixed points of T is a
complete lattice.

Theorem 1.4 (Schauder’s fixed point theorem) Let M be a nonempty, closed, bounded, convex subset of
a Banach space X , and suppose that T : M → M is a compact operator. Then T has a fixed point.

In the next section, we examine the solutions in each class N+ and N− . We used fixed point theorems
to establish our results. We provide an example of one of the results and close with open problems.

2. Classification and existence in N+ and N−

This section deals with the existence of nonoscillatory solutions of system (1) by using well-known fixed point
theorems such as the Knaster’s fixed point theorem and Schauder’s fixed point theorem. For the sake of
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simplicity in our main results, set

I1 =

∫ ∞

t0

p(t)f

(
k1 −

∫ ∞

t

q(s)g

(
k2 + k3

∫ ∞

s

r(τ)∆τ

)
∆s

)
∆t,

I2 =

∫ ∞

t0

q(t)g

(
k4 +

∫ ∞

t

r(s)h

(
k5

∫ s

t0

p(τ)∆τ

)
∆s

)
∆t,

I3 =

∫ ∞

t0

r(t)h

(∫ t

t0

p(s)f

(
k6

∫ s

t0

q(τ)∆τ

)
∆s

)
∆t,

I4 =

∫ ∞

t0

p(t)f

(∫ t

t0

q(s)g

(
k7

∫ ∞

s

r(τ)∆τ

)
∆s

)
∆t,

I5 =

∫ ∞

t0

p(t)f

(∫ ∞

t

q(s)g

(
k8

∫ ∞

s

r(τ)∆τ

)
∆s

)
∆t,

I6 =

∫ ∞

t0

p(t)f

(
k9

∫ t

t0

q(s)∆s

)
∆t,

I7 =

∫ ∞

t0

q(t)g

(∫ ∞

t

r(s)h

(
k10

∫ ∞

s

p(τ)∆τ

)
∆s

)
∆t,

I8 =

∫ ∞

t0

q(t)g

(
k11 + k12

∫ ∞

t

r(s)∆s

)
∆t,

I9 =

∫ ∞

t0

r(t)h

(
k13

∫ t

t0

p(s)∆s

)
∆t,

R(t,∞) =

∫ ∞

t

r(s)∆s

for all nonnegative real numbers ki where 1 ≤ i ≤ 13 .

2.1. Existence in N+

Suppose that (x, y, z) is a nonoscillatory solution of system (1) in N+ such that x > 0 eventually. (The
case x < 0 can be shown similarly.) Then by the equations of system (1), we have that x and y are positive
increasing functions, and z is a positive decreasing function. We conclude that x → c1 or x → ∞, y → c2 or
y → ∞, and z → c3 or z → 0, where 0 < c1, c2, c3 < ∞. Consequently, in light of this information, we have
the following subclasses:

N+
B,B,B :=

{
(x, y, z) ∈ N+ : lim

t→∞
|x(t)| = c1, lim

t→∞
|y(t)| = c2, lim

t→∞
|z(t)| = c3

}
N+

B,B,0 :=
{
(x, y, z) ∈ N+ : lim

t→∞
|x(t)| = c1, lim

t→∞
|y(t)| = c2, lim

t→∞
|z(t)| = 0

}
N+

B,∞,B :=
{
(x, y, z) ∈ N+ : lim

t→∞
|x(t)| = c1, lim

t→∞
|y(t)| = ∞, lim

t→∞
|z(t)| = c3

}
N+

B,∞,0 :=
{
(x, y, z) ∈ N+ : lim

t→∞
|x(t)| = c1, lim

t→∞
|y(t)| = ∞, lim

t→∞
|z(t)| = 0

}
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N+
∞,B,B :=

{
(x, y, z) ∈ N+ : lim

t→∞
|x(t)| = ∞, lim

t→∞
|y(t)| = c2, lim

t→∞
|z(t)| = c3

}
N+

∞,B,0 :=
{
(x, y, z) ∈ N+ : lim

t→∞
|x(t)| = ∞, lim

t→∞
|y(t)| = c2, lim

t→∞
|z(t)| = 0

}
N+

∞,∞,B :=
{
(x, y, z) ∈ N+ : lim

t→∞
|x(t)| = lim

t→∞
|y(t)| = ∞, lim

t→∞
|z(t)| = c3

}
N+

∞,∞,0 :=
{
(x, y, z) ∈ N+ : lim

t→∞
|x(t)| = lim

t→∞
|y(t)| = ∞, lim

t→∞
|z(t)| = 0

}
.

Throughout this paper, without loss of generality, we assume the first component function x of (x, y, z) is
eventually positive. Our first result is:

Theorem 2.1 Suppose R(t0,∞) < ∞. If I1 < ∞ and I8 < ∞ for all positive constants k1, k2, k3, k11, k12 ,
then N+

B,B,B ̸= ∅ .

Proof Assume I1 < ∞ and I8 < ∞ for all k1, k2, k3, k11, k12 > 0 . Choose t1 ≥ t0 such that∫ ∞

t1

p(t)f

(
k1 −

∫ ∞

t

q(s)g

(
k2 + k3

∫ ∞

s

r(τ)∆τ

)
∆s

)
∆t <

1

2

and ∫ ∞

t1

q(s)g

(
k11 + k12

∫ ∞

s

r(τ)∆τ

)
∆s < k1,

where k3 = k12 = h
(
1
2

)
> 0 and k2 = k11 for t ≥ t1 .

Let X be the set of all continuous and bounded functions with the norm ∥x∥ = sup
t≥t1

|x(t)| . Then X is a

Banach space [4]. Define a subset Ω of X such that

Ω :=

{
x ∈ X :

1

2
≤ x(t) ≤ 1, t ≥ t1

}

and an operator Fx : X → X by

(Fx)(t) =
1

2
+

∫ t

t1

p(s)f

(
k1 −

∫ ∞

s

q(u)g

(
k2 +

∫ ∞

u

r(τ)h(x(τ))∆τ

)
∆u

)
∆s

for t ≥ t1. First, for every x ∈ Ω, ∥x∥ = sup
t≥t1

|x(t)| , we have 1
2 ≤ ∥x(t)∥ ≤ 1 for t ≥ t1 , which implies Ω is

bounded. For showing that Ω is closed, it is enough to show that it includes all limit points. Let xn be a
sequence in Ω converging to x as n → ∞ . Then 1

2 ≤ xn(t) ≤ 1 for t ≥ t1 . Taking the limit of xn as n → ∞ ,
we have 1

2 ≤ x(t) ≤ 1 for t ≥ t1 , which implies x ∈ Ω . Since xn is any sequence in Ω , it follows that Ω is
closed. Now let us show that Ω is also convex. For x1, x2 ∈ Ω , and α ∈ [0, 1] , we have

1

2
=

α

2
+ (1− α)

1

2
≤ αx1 + (1− α)x2 ≤ α+ (1− α) = 1,
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where 1
2 ≤ x1, x2 ≤ 1 , i.e. Ω is convex. Also,

1

2
≤ (Fx)(t) ≤ 1

2
+

∫ t

t1

p(s)f

(
k1 −

∫ ∞

s

q(u)g

(
k2 + h

(
1

2

)∫ ∞

u

r(τ)∆τ

)
∆u

)
∆s

≤ 1,

i.e. F : Ω → Ω . Let us now show that F is continuous on Ω . Let {xn} be a sequence in Ω such that
xn → x ∈ Ω as n → ∞ . Then

|(Fxn − Fx)(t)|

≤
∫ t

t1

p(s)

∣∣∣∣f (
k1 −

∫ ∞

s

q(u)g

(
k2 +

∫ ∞

u

r(τ)h(xn(τ))∆τ

)
∆u

)

−f

(
k1 −

∫ ∞

s

q(u)g

(
k2 +

∫ ∞

u

r(τ)h(x(τ))∆τ

)
∆u

)∣∣∣∣∆s.

Then the continuity of f, g , and h and the Lebesgue dominated convergence theorem imply that F is continuous
on Ω . Finally, since

(Fx)∆(t) = p(t)f

(
k1 −

∫ ∞

t

q(u)g

(
k2 +

∫ ∞

u

r(τ)h(x(τ))∆τ

)
∆u

)
< ∞,

we have that F is relatively compact by the mean value theorem and Arzelà–Ascoli theorem. Thus, by Theorem
1.4, we have that there exists x̄ ∈ Ω such that x̄ = Fx̄ . Then by taking the derivative of x̄ , we obtain

x̄∆(t) = p(t)f

(
k1 −

∫ ∞

t

q(u)g

(
k2 +

∫ ∞

u

r(τ)h(x̄(τ))∆τ

)
∆u

)
, t ≥ t1.

Setting

ȳ(t) := k1 −
∫ ∞

t

q(u)g

(
k2 +

∫ ∞

u

r(τ)h(x̄(τ))∆τ

)
∆u

for k1 > 0 and taking its derivative yields

ȳ∆(t) = q(t)g

(
k2 +

∫ ∞

t

r(τ)h(x̄(τ))∆τ

)
, t ≥ t1.

Finally, differentiating

z̄(t) := k2 +

∫ ∞

t

r(τ)h(x̄(τ))∆τ

gives

z̄∆(t) = −r(t)h(x̄(t)), t ≥ t1.

Consequently, (x̄, ȳ, z̄) is a solution of system (1). As t → ∞ , we have that x̄(t) → c1 , ȳ(t) → k1 and
z̄(t) → k2 , where 0 < c1 < ∞, i.e. N+

B,B,B ̸= ∅ . 2

The following theorem can be proven very similarly to Theorem 2.1. Therefore, the proof is left to the
reader.
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Theorem 2.2 Suppose R(t0,∞) < ∞. If I1 < ∞ and I8 < ∞ for k2 = k11 = 0 and for all k1, k3, k12 > 0 ,
then N+

B,B,0 ̸= ∅ .

We now consider the case when x(t) diverges.

Theorem 2.3 If both I2 and I9 are finite for k4 = 0 and for all k5, k13 > 0 , then N+
∞,B,0 ̸= ∅ .

Proof Suppose that I2 < ∞ and I9 < ∞ for k4 = 0, k5, k13 > 0 . Then choose t1 ≥ t0 so large that

∫ ∞

t1

q(t)g

(∫ ∞

t

r(s)h

(
k5

∫ s

t1

p(τ)∆τ

)
∆s

)
∆t <

1

2
,

where k5 = f(1) > 0 . Let X be a partially ordered Banach space of all real-valued continuous functions with
the norm ∥y∥ = sup

t≥t1

|y(t)| and the usual pointwise ordering ≤ . Define a subset Ω of X such that

Ω :=

{
y ∈ X :

1

2
≤ y(t) ≤ 1, t ≥ t1

}

and an operator Fy : X → X by

(Fy)(t) =
1

2
+

∫ t

t1

q(s)g

(∫ ∞

s

r(u)h

(∫ u

t1

p(τ)f(y(τ))∆τ

)
∆u

)
∆s.

First, note that (Ω,≤) is a complete lattice. Indeed, infB ∈ Ω and supB ∈ Ω for any subset B of Ω . Now,
since

1

2
≤ (Fy)(t)

≤ 1

2
+

∫ t

t1

q(s)g

(∫ ∞

s

r(u)h

(
f(1)

∫ u

t1

p(τ)∆τ

)
∆u

)
∆s ≤ 1

for all t ≥ t1 , F : Ω → Ω . For y1 ≤ y2 , where y1, y2 ∈ Ω , we can show Fy1 ≤ Fy2 since f , g , and h are
nondecreasing mappings. Therefore, by Theorem 1.3, there exists ȳ ∈ Ω such that ȳ = F ȳ > 0 eventually.
Differentiating ȳ yields

ȳ∆(t) = q(t)g

(∫ ∞

t

r(u)h

(∫ u

t1

p(τ)f(ȳ(τ))∆τ

)
∆u

)
. (3)

Set

z̄(t) :=

∫ ∞

t

r(u)h

(∫ u

t1

p(τ)f(ȳ(τ))∆τ

)
∆u

for t ≥ t1 . Differentiating z̄(t) gives

z̄∆(t) = −r(t)h

(∫ t

t1

p(τ)f(ȳ(τ))∆τ

)
∆u. (4)
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Finally, by setting

x̄(t) =

∫ t

t1

p(τ)f(ȳ(τ))∆τ > 0

for t ≥ t1 , and taking its derivative, we have

x̄∆(t) = p(t)f(ȳ(t)).

Note that the above equation is the first of system (1), and (3) and (4) are the second and third of (1),
respectively.

Now let us examine the limit behavior of x̄, ȳ , and z̄ . Since

x̄(t) ≥ f

(
1

2

)∫ t

t1

p(τ)∆τ,

x̄(t) → ∞ as t → ∞ . The fact that ȳ ∈ Ω gives that it has a finite limit as t → ∞ . Finally, because∫ ∞

t

r(u)h

(∫ u

t1

p(τ)f

(
1

2

)
∆τ

)
∆u ≤ z̄(t) ≤

∫ ∞

t

r(u)h

(∫ u

t1

p(τ)f(1)∆τ

)
∆u,

and I9 < ∞ for k13 > 0 , we obtain z̄(t) → 0 as t → ∞ . Hence, N+
∞,B,0 ̸= ∅ . 2

The following theorem can be proven in a similar fashion to that of Theorem 2.3.

Theorem 2.4 If I2 < ∞ and I9 < ∞ for all k4, k5, k13 > 0 , then N+
∞,B,B ̸= ∅ .

Next we consider the case when both x(t) and y(t) diverge and z(t) converges to a positive real number.

Theorem 2.5 If I3 < ∞ and I6 = ∞ for all k6, k9 > 0 , then N+
∞,∞,B ̸= ∅ .

Proof Suppose that I3 < ∞ and I6 = ∞ for k6, k9 > 0 . Then choose t1 ≥ t0 sufficiently large that∫ ∞

t1

r(t)h

(∫ t

t1

p(s)f

(
k6

∫ s

t0

q(τ)∆τ

)
∆s

)
∆t <

1

4
,

where k6 = g( 12 ) and k9 = g( 14 ) . Let X be a partially ordered Banach space of real-valued continuous functions
with the norm ∥z∥ = sup

t≥t1

|z(t)| and the usual pointwise ordering ≤ . Define a subset Ω of X such that

Ω :=

{
z ∈ X :

1

4
≤ z(t) ≤ 1

2
, t ≥ t1

}
and an operator Fz : X → X by

(Fz)(t) =
1

4
+

∫ ∞

t

r(s)h

(∫ s

t1

p(u)f

(∫ u

t1

q(τ)g(z(τ))∆τ

)
∆u

)
∆s.

By a similar process as in Theorem 2.3, we can show that F : Ω → Ω is an increasing mapping and (Ω,≤) is a
complete lattice. Then, by Theorem 1.3, there exists a z̄ ∈ Ω such that z̄ = F z̄ . For t ≥ t1 , set

x̄(t) :=

∫ t

t1

p(u)f

(∫ u

t1

q(τ)g(z̄(τ))∆τ

)
∆u
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and

ȳ(t) :=

∫ t

t1

q(τ)g(z̄(τ))∆τ.

Then

z̄∆(t) = −r(t)h(x̄(t)),

ȳ∆(t) = q(t)g(z̄(t)),

x̄∆(t) = p(t)f

(∫ t

t1

q(τ)g(z̄(τ)) ∆τ

)
= p(t)f(ȳ(t)).

Consequently (x̄, ȳ, z̄) is a solution of system (1). Finally, by taking the limit of x̄, ȳ , and z̄ as t approaches
infinity, we have N+

∞,∞,B ̸= ∅ .
2

We continue in the case when z(t) converges to 0.

Theorem 2.6 Suppose R(t0,∞) < ∞ . If I3 < ∞ and I4 = I8 = ∞ for all positive constants k6, k7, k12 , and
k11 = 0 , then N+

∞,∞,0 ̸= ∅.

Proof Suppose I3 < ∞ and I4 = I8 = ∞ for k6, k7, k12 > 0, k11 = 0 . Then we can choose t1 ≥ t0 such that∫ ∞

t1

r(t)h

(∫ t

t1

p(s)f

(
k6

∫ s

t0

q(τ)∆τ

)
∆s

)
∆t <

1

2

and ∫ ∞

t1

p(s)f

(∫ s

t1

q(τ)g

(
k7

∫ ∞

τ

r(v)∆v

)
∆τ

)
∆s > 1, t ≥ t1,

where k6 = g( 12 ) and k7 = k12 = h(1) . Let X be a partially ordered Banach space of real-valued continuous
functions with the norm ∥y∥ = sup

t≥t1

|y(t)| and the usual pointwise ordering ≤ . Define a subset Ω of X such

that

Ω :=

{
z ∈ X : h(1)

∫ ∞

t

r(s)∆s ≤ z(t) ≤ d1
2
, t ≥ t1

}
.

Let us define an operator T : X → X such that

(Tz)(t) =

∫ ∞

t

r(s)h

(∫ s

t1

p(u)f

(∫ u

t1

q(τ)g(z(τ))∆τ

)
∆u

)
∆s.

The remainder of the proof can be done as in Theorem 2.5 by using the fact I4 = I8 = ∞ , and therefore,
N+

∞,∞,0 ̸= ∅ . 2

2.2. Existence in N−

This section represents the limit behavior of nonoscillatory solutions of system (1) along with the existence
of such solutions in N− . Suppose that (x, y, z) is a nonoscillatory solution of system (1) in N− such that x > 0

eventually. By the same discussion in the previous subsection and by Lemma 1.1, one has the following lemma:
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Lemma 2.7 Assume that (x, y, z) is a nonoscillatory solution of system (1) in N− . Then (x, y, z) belongs to
one of the following subclasses:

N−
B,0,0 :=

{
(x, y, z) ∈ N− : lim

t→∞
|x(t)| = c1 lim

t→∞
|y(t)| = 0, lim

t→∞
|z(t)| = 0

}
N−

0,0,0 :=
{
(x, y, z) ∈ N− : lim

t→∞
|x(t)| = 0, lim

t→∞
|y(t)| = 0, lim

t→∞
|z(t)| = 0

}
,

where 0 < c1 < ∞ .

The first result of this section considers the case when each of the component solutions converges.

Theorem 2.8 Suppose R(t0,∞) < ∞ . If I5 < ∞ and I8 < ∞ for all k8 = k12 > 0 and k11 = 0 , then
N−

B,0,0 ̸= ∅, provided that f is an odd function.

Proof Suppose that I5 < ∞ and I8 < ∞ for all k8 = k12 > 0 and k11 = 0 . Then choose k8, k12 > 0 , and
t1 ≥ t0 sufficiently large such that∫ ∞

t1

p(t)f

(∫ ∞

t

q(s)g

(
k8

∫ ∞

s

r(τ)∆τ

)
∆s

)
∆t <

1

2
,

where k8 = h
(
3
2

)
. Let X be a partially ordered Banach space of real-valued continuous functions with the

norm ∥x∥ = sup
t≥t1

|x(t)| and the usual pointwise ordering ≤ . Define a subset Ω of X such that

Ω :=

{
x ∈ X : 1 ≤ x(t) ≤ 3

2
, t ≥ t1

}

and an operator Fx : X → X by

(Fx)(t) = 1 +

∫ ∞

t

p(s)f

(∫ ∞

s

q(u)g

(∫ ∞

u

r(τ)h(x(τ))∆τ

)
∆u

)
∆s.

One can show that F is an increasing mapping into itself and (Ω,≤) is a complete lattice. Therefore, by
Theorem 1.3, there exists x̄ ∈ Ω such that x̄ = Fx̄ . It follows that x̄(t) > 0 for t ≥ t1 and converges to 1 as t

approaches infinity. Also,

x̄∆(t) = −p(t)f

(∫ ∞

t

q(u)g

(∫ ∞

u

r(τ)h(x̄(τ))∆τ

)
∆u

)
, t ≥ t1.

Now for t ≥ t1 , set

ȳ(t) = −
∫ ∞

t

q(u)g

(∫ ∞

u

r(τ)h(x̄(τ))∆τ

)
∆u

and

z̄(t) =

∫ ∞

t

r(τ)h(x̄(τ))∆τ.
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Then, since f is odd, we have

x̄∆(t) = p(t)f(ȳ(t)),

ȳ∆(t) = q(t)g(z̄(t)),

z̄∆(t) = −r(t)h(x̄(t)).

Consequently, (x̄, ȳ, z̄) is a solution of system (1). Since both ȳ(t) and z̄(t) converge to 0 as t approaches
infinity, N−

B,0,0 ̸= ∅. 2

3. Example
We give an example to illustrate one of our theoretical claims. Recall:

Theorem 3.1 [2, Theorem 1.79 (ii)] If [a, b] consists of only isolated points and a < b , then

∫ b

a

f(t)∆t =
∑

t∈[a,b)

µ(t)f(t).

The example illustrates Theorem 2.3.

Example 1 Let T = 3N, k5 = 1 = k13 , and consider the following system:
∆3x(t) =

(
t

t−1

) 1
3

y
1
3 (t)

∆3y(t) =
1

3t
1
5
z

3
5 (t)

∆3z(t) = − 26

54t
21
5
x

1
5 (t),

(5)

where

∆3k(t) =
k(σ(t))− k(t)

µ(t)
for σ(t) = 3t and µ(t) = 2t, t ∈ T.

First we show that (2) holds. If s = 3m and t = 3n , m,n ∈ N , we have

∫ ∞

3

p(s)∆s = lim
t→∞

∫ t

3

p(s)∆s = 2 lim
n→∞

ρ(3n)∑
s=3

(
s4

s− 1

) 1
3

> 2 lim
n→∞

n−1∑
m=1

3m = ∞.

Similarly one can obtain
∫ ∞

3

q(s)∆s = ∞ .

Now we consider I2 . With τ = 3m and s = 3n , m,n ∈ N , we have∫ s

3

(
τ

τ − 1

) 1
3

∆τ = 2

n−1∑
m=1

(
34m

3m − 1

) 1
3

< 2

n−1∑
m=1

(3m)
4
3

since 3m − 1 > 1 on N . We claim that
n−1∑
m=1

(3m)
4
3 < (3n)

4
3 .

2585



ÖZTÜRK and HIGGINS/Turk J Math

The sum formula for a finite geometric series, 1− 3
4
3 < 0 , and(

3
4
3

)1−n

− 1 < 1 for n ∈ N yield

0 ≤

(
3

4
3

)1−n

− 1

1− 3
4
3

< 1.

Thus, the claim indeed holds, and consequently we have∫ s

3

(
τ

τ − 1

) 1
3

∆τ < 2s
4
3 . (6)

Also, we obtain ∫ T

t

r(s)h

(∫ s

3

p(τ)∆τ

)
∆s <

∫ T

t

26

54

1

s
21
5

(2s
4
3 )

1
5∆s

=
26 · 2 6

5

54

∑
s∈[t,T )

3N

1

s
44
15

< 2
∑

s∈[t,T )
3N

1

s
44
15

by (6). Therefore, as T → ∞ , we obtain ∑
s∈[t,∞)

3N

1

s
44
15

= α · 1

t
44
15

, (7)

where α = 1− 1

3
44
15

. Finally, with t = 3m and T = 3n , m,n ∈ N , we have

∫ T

t0

q(t)g

(∫ ∞

t

r(s)h

(∫ s

t0

p(τ)∆τ

)
∆s

)
∆t <

(2α)
3
5

3

∫ T

3

1

t
1
5

(
1

t
44
15

) 3
5

∆t

=
(2α)

3
5

3

∫ T

3

1

t
49
25

∆t

=
(2α)

3
5

3

n−1∑
m=1

2
1

(3m)
49
25

3m

=
2(2α)

3
5

3

n−1∑
m=1

(
1

3
24
25

)m

by (7). Since the above integral converges as T approaches infinity, we have I2 < ∞ . By using a similar
discussion and (7), it is shown that I9 < ∞. One can also show that (t, 1− 1

t ,
1
t3 ) is a nonoscillatory solution

of system (5). Hence, N+
∞,B,0 ̸= ∅ by Theorem 2.3.

4. Conclusion and open problems
In this paper, we considered a three-dimensional time scale system of first-order dynamic equations. We
established some sufficient conditions for the existence of the nonoscillatory solutions of the system using

2586



ÖZTÜRK and HIGGINS/Turk J Math

the Schauder fixed point theorem and the Knaster fixed point theorem. While we were able to determine the
operators for a fixed point theorem for most subclasses of N+ , the operators needed for N+

B,∞,B and N+
B,∞,0

are still unknown; as an open problem, one can determine the conditions to guarantee that N+
B,∞,B ̸= ∅ and

N+
B,∞,0 ̸= ∅ . Similarly, existence of nonoscillatory solutions of (1) in N−

0,0,0 remains an open problem for
interested readers.

References

[1] Akin E, Došlá Z, Lawrence B. Almost oscillatory three-dimensional dynamical system. Adv Differ Equ-NY 2012;
46: 1-14.

[2] Bohner M, Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications. Boston, MA, USA:
Birkhäuser, 2001.

[3] Bohner M, Peterson A. Advances in Dynamic Equations on Time Scales. Boston, MA, USA: Birkhäuser, 2003.

[4] Ciarlet PG. Linear and Nonlinear Functional Analysis with Applications. Philadelphia, PA, USA: SIAM, 2013.

[5] Deng X, Wang Q, Agarwal RP. Oscillation and nonoscillation for second order neutral dynamic equations with
positive and negative coefficients on time scales. Adv Differ Equ-NY 2014; 115: 1-22.

[6] Hilger S. Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD, Universität Würzburg,
Würzburg, Germany, 1988 (in German).

[7] Knaster B. Un théorème sur les fonctions d’ensembles. Ann Soc Polon Math 1928; 6: 133-134 (in French).

[8] Öztürk Ö, Akın E. Classification of nonoscillatory solutions of nonlinear dynamic equations on time scales. Dynam
Systems Appl 2016; 25: 219-236.

[9] Öztürk Ö, Akın E. Nonoscillation criteria for two dimensional time scale systems. Nonauton Dyn Syst 2016; 3: 1-13.

[10] Öztürk Ö, Akın E. On nonoscillatory solutions of two dimensional nonlinear delay dynamical systems. Opuscula
Math 2016; 36: 5.

[11] Öztürk Ö, Akın E. On nonoscillatory solutions of Emden-Fowler dynamic systems on time scales. Filomat 2017; 31:
1529-1541.

[12] Zeidler E. Nonlinear Functional Analysis and its Applications - I: Fixed Point Theorems. Berlin, Germany: Springer
Verlag, 1986.

2587


	Introduction
	Classification and existence in N+ and N-
	Existence in N+
	Existence in N-

	Example
	Conclusion and open problems

