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Abstract: In this paper, we deal with the semilinear beam equation with localized viscosity. Under mild conditions on
the viscous coefficient, we establish the well-posedness and boundedness of the weak solutions. Then we prove that the
semigroup generated by this problem has a smooth global attractor in H3 (0, 1)×H1

0 (0, 1) .
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1. Introduction
This paper is devoted to the long-time behavior of the following semilinear beam equation with localized
viscosity:

utt + uxxxx − (a (x)ut)xx − (f (u))xx = g (x) , (t, x) ∈ (0,∞)× (0, 1) . (1.1)

Beam equations attract great interest from mathematicians due to their wide range of applications in
diverse fields of science. For example, the Boussinesq equation,

utt + αuxxxx − uxx − β
(
u2

)
xx

= 0, α > 0, β ∈ R, (1.2)

was introduced by Boussinesq (see [3]) to model shallow water wave propagation. Boussinesq equations find
applications in numerous areas of physics, extending from wave propagation in shallow water to systems of
nonlinear elastic beams. Among many papers related to (1.2), we confine ourselves to citing [7, 26–27]. The
original Boussinesq equation can be generalized as follows:

utt + αuxxxx − uxx − (f (u))xx = 0. (1.3)

Papers related to long-time dynamics of (1.3) can be exemplified by [1] and [19]. Due to the importance of
viscosity in real processes, the following damped Boussinesq equation,

utt + αuxxxx − 2buxxt − uxx − β
(
u2

)
xx

= 0, b > 0, α > 0, β ∈ R, (1.4)

is studied by some authors (see [6, 10, 23–25]). Equation (1.1) can be seen as a generalized version of the
Boussinesq equation with localized internal damping.
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We also mention that by replacing the localized internal damping term (a (x)ut)xx with frictional
damping ut in (1.1), we obtain the hyperbolic relaxation of the Cahn–Hilliard equation having the form

utt + uxxxx + ut − (f (u))xx = g (x) , (1.5)

which was proposed by Galenko [8] to describe the rapid spinodal decomposition in materials like glasses. For
contributions related to (1.5), we refer to [2, 8, 9, 11–15, 18, 21, 28].

The main novelty of this paper is that equation (1.1) includes localized viscosity, unlike the papers
mentioned above. Namely, in the aforementioned papers viscosity is effective on the whole domain, but in this
paper viscosity coefficient a (x) can vanish on a set of nonzero measures (see (2.3)–(2.4)). This situation bears
some difficulties. We overcome these obstacles by applying a multiplication technique and with the help of
compact embedding theorems. This paper is organized as follows: In the second section, we give the statement
of the problem and the main results. In the third section, the well-posedness and the boundedness of the weak
solutions are proved. Finally, in the last section, the existence of the regular attractor is established.

2. Statement of the problem and main results
This paper is devoted to the following initial boundary value problem:

utt + uxxxx − (a (x)ut)xx − (f (u))xx = g (x) , (t, x) ∈ (0,∞)× (0, 1) ,

u (t, 0) = u (t, 1) = uxx (t, 0) = uxx (t, 1) = 0, t ∈ (0,∞) ,

u (0, x) = u0 (x) , ut (0, x) = u1 (x) , x ∈ (0, 1) .

Defining the linear positive operator A : D (A) → L2 (0, 1) where A = − d2

dx2 and D (A) = H2 (0, 1)∩H1
0 (0, 1) ,

we can restate the original problem as follows:

utt +A (Au+ a (x)ut + f (u)) = g (x) , (t, x) ∈ (0,∞)× (0, 1) , (2.1)

u (0, x) = u0 (x) , ut (0, x) = u1 (x) , x ∈ (0, 1) . (2.2)

Here, g ∈ L2 (Ω) and the viscous coefficient a (·) satisfies the following conditions:

a ∈ W 2,∞ (0, 1) , a (x) ≥ 0 a.e. in (0, 1) , (2.3)

a (x) ≥ α0 > 0 a.e. in (r0, r1) , for some 0 ≤ r0 < r1 ≤ 1, (2.4)

and there exists a constant c > 0 such that

a′′ (x) ≤ c
√
a (x) a.e. in (0, 1) . (2.5)

Additionally, we assume that for the nonlinear function f the following holds:

f ∈ C3 (R) , lim inf
|s|→∞

f (s)

s
> −π2. (2.6)

The following well-posedness theorem is the first main result of our paper.
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Theorem 2.1 Let assumptions (2.3)–(2.6) hold. Then, for every T > 0 and (u0, u1) ∈ (H2 (0, 1)∩H1
0 (0, 1))×

L2 (0, 1) , the problem (2.1)–(2.2) has a unique weak solution u belonging to the class C([0, T ] ;H2 (0, 1) ∩
H1

0 (0, 1)) ∩ C1
(
[0, T ] ;L2 (0, 1)

)
and satisfying the inequality

∥u (t)∥H2(0,1) + ∥ut (t)∥L2(0,1) ≤ c1

(
∥(u0, u1)∥H2(0,1)×L2(0,1)

)
, ∀t ≥ 0,

where c1 : R+ → R+ is a nondecreasing function. Moreover, if v, w ∈ C([0, T ] ;H2 (0, 1) ∩ H1
0 (0, 1)) ∩

C1
(
[0, T ] ;L2 (0, 1)

)
are the weak solutions of the problem (2.1)–(2.2) with initial data (v0, v1) ∈ (H2 (0, 1) ∩

H1
0 (0, 1))× L2 (0, 1) and (w0, w1) ∈ (H2 (0, 1) ∩H1

0 (0, 1))× L2 (0, 1) , then

∥v (t)− w (t)∥H1(0,1) + ∥vt (t)− wt (t)∥H−1(0,1)

≤ c2 (T, r)
[
∥v0 − w0∥H1(0,1) + ∥v1 − w1∥H−1(0,1)

]
, ∀t ∈ [0, T ] ,

where c2 : R+ × R+ → R+ is a nondecreasing function with respect to the each variable and

r = max
{
∥(v0, v1)∥H2(0,1)×L2(0,1) , ∥(w0, w1)∥H2(0,1)×L2(0,1)

}
.

Hence, we observe that the problem (2.1)–(2.2) generates a weakly continuous semigroup {S (t)}t≥0 in(
H2 (0, 1) ∩H1

0 (0, 1)
)
× L2 (0, 1) , given by the formula S (t) (u0, u1) = (u (t) , ut (t)) , where u (t, x) is a weak

solution determined by Theorem 2.1.
The second main result of our paper is as follows:

Theorem 2.2 Assume that assumptions (2.3)–(2.6) hold. Then the semigroup {S (t)}t≥0 generated by the

problem (2.1)–(2.2) possesses a global attractor A in
(
H2 (0, 1) ∩H1

0 (0, 1)
)
×L2 (0, 1) . Moreover, A is bounded

in H3 (0, 1)×H1
0 (0, 1) .

3. Well-posedness

We start with the following theorem.

Theorem 3.1 Let assumptions (2.3)–(2.6) hold. Then for every T > 0 and (u0, u1) ∈
(
H2 (0, 1) ∩H1

0 (0, 1)
)
×

L2 (0, 1) , the problem (2.1)–(2.2) has a weak solution u belonging to the class C
(
[0, T ] ;

(
H2 (0, 1) ∩H1

0 (0, 1)
))
∩

C1
(
[0, T ] ;L2 (0, 1)

)
and satisfying the inequality

∥u (t)∥H2(0,1) + ∥ut (t)∥L2(0,1) ≤ c1

(
∥(u0, u1)∥H2(0,1)×L2(0,1)

)
, ∀t ≥ 0,

where c1 : R+ → R+ is a nondecreasing function.

Proof First, we will deal with the strong solutions, and then by using the density argument we will obtain
the desired result for weak solutions. Namely, assume that (u0, u1) ∈ H1 := {(u, v) ∈ (H4 (0, 1) ∩H1

0 (0, 1)) ×
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(
H2 (0, 1) ∩H1

0 (0, 1)
)
: uxx (t, 0) = uxx (t, 1) = 0, t ∈ (0,∞)} . Then the problem (2.1)–(2.2) can be reduced

to the following initial value problem in H :=
(
H2 (0, 1) ∩H1

0 (0, 1)
)
× L2 (0, 1) :{

d
dt (u (t) , ut (t)) = B (u (t) , ut (t)) + Φ (u (t) , ut (t)) , ∀t > 0,
(u (0) , ut (0)) = (u0, u1) ,

(3.1)

where D (B) = H1 , B (w1, w2) =
(
w2,−A2w1 −A (a (x)w2)

)
and Φ(w1, w2) = (0,−A (f (w1)) + g) . It is easy

to show that B is a maximal dissipative operator in H . Thus, due to the Lumer–Phillips theorem (see [20,
Theorem 4.3]), it generates a linear continuous semigroup

{
etB

}
t≥0

in H and H1 . Also, one can easily prove

that the operator Φ : H → H is Lipschitz continuous. Hence, applying semigroup theory (see [4, Theorem 4.3.4
and Proposition 4.3.9]), for every (u0, u1) ∈ H1 the problem (3.1), and consequently (2.1)–(2.2), have a unique
strong solution (u, ut) belonging to the class C ([0, Tmax);H1)∩C1 ([0, Tmax);H) . Let u (t, x) be a local strong
solution of (2.1)–(2.2) in (0, Tmax)× (0, 1) ; then, multiplying (2.1) by A−1ut and integrating over (0, t)× (0, 1) ,
we obtain

1

2

∥∥∥A− 1
2ut (t)

∥∥∥2
L2(0,1)

+
1

2

∥∥∥A 1
2u (t)

∥∥∥2
L2(0,1)

+

1∫
0

(F (u (t, x))− f (0)u (t, x)) dx

−
1∫
0

g (x)A−1u (t, x) dx+

t∫
0

1∫
0

a (x) |ut (τ, x)|2 dxdτ

=
1

2

∥∥∥A− 1
2u1

∥∥∥2
L2(0,1)

+
1

2

∥∥∥A 1
2u0

∥∥∥2
L2(0,1)

+

1∫
0

(F (u0 (x))− f (0)u0 (x)) dx

−
1∫
0

g (x)A−1u0 (x) dx, 0 ≤ t < Tmax, (3.2)

where F (z) =
∫ z

0
f (t) dt . By the conditions of the theorem, we infer from (3.2) that

∥ut (t)∥2H−1(0,1) + ∥u (t)∥2H1(0,1)

+

t∫
0

1∫
0

a (x) |ut (τ, x)|2 dxdτ ≤ Q (∥(u0, u1)∥H) , ∀t ∈ [0, Tmax), (3.3)

where Q : R+ → R+ is a nondecreasing function. Next, multiplying (2.1) by 2ut and integrating over (0, 1) ,
with the help of (3.3) and the embedding H1 (0, 1) ↪→ L∞ (0, 1) , we have

d

dt

∥ut (t)∥2L2(0,1) + ∥uxx (t)∥2L2(0,1) +

1∫
0

f ′ (u (t, x)) |ux (t, x)|2 dx

+ 2

1∫
0

a (x) |uxt (t, x)|2 dx

≤
1∫
0

f ′′ (u (t, x))ut (t, x) |ux (t)|2 dx+

1∫
0

a′′ (x) |ut (t, x)|2 dx+ 2

1∫
0

h (x)ut (t, x) dx
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≤ c1 ∥ut (t)∥L2(0,1) ∥ux (t)∥2L4(0,1) + c1

(
1 + ∥aut (t)∥L2(0,1)

)
∥ut (t)∥L2(0,1)

≤ c2 ∥ut (t)∥L2(0,1) ∥ux (t)∥2H1/4(0,1) + c1

(
1 + ∥aut (t)∥L2(0,1)

)
∥ut (t)∥L2(0,1)

≤ c2 ∥ut (t)∥L2(0,1) ∥ux (t)∥3/2L2(0,1) ∥ux (t)∥1/2H1(0,1) + c1

(
1 + ∥aut (t)∥L2(0,1)

)
∥ut (t)∥L2(0,1)

Then, recalling (3.3) again, we deduce

d

dt

∥ut (t)∥2L2(0,1) + ∥uxx (t)∥2L2(0,1) +

1∫
0

f ′ (u (t, x)) |ux (t, x)|2 dx

+ 2

1∫
0

a (x) |uxt (t, x)|2 dx

≤ c3 ∥ut (t)∥L2(0,1) ∥u (t)∥
1/2
H2(0,1) + c1

(
1 + ∥aut (t)∥L2(0,1)

)
∥ut (t)∥L2(0,1) . (3.4)

Let ζ ∈ C∞ ([0, 1]) , 0 ≤ ζ (x) ≤ 1 and ζ (x) =

{
1, 0 ≤ x ≤ r0

0, r0+r1
2 ≤ x ≤ r1

. Now, multiplying (2.1) by εζ2xux and

integrating over (0, 1) , we get

ε
d

dt

 1∫
0

ut (t, x) ζ
2 (x)xux (t, x) dx− 1

2

1∫
0

a′ (x) ζ2 (x)x |ux (t, x)|2 dx



+
ε

2
∥ζut (t)∥2L2(0,1) + ε

1∫
0

ζ (x) ζ ′ (x)x |ut (t, x)|2 dx

−ε

2

1∫
0

(
ζ2 (x)x

)′′′ |ux (t, x)|2 dx+ 3ε

1∫
0

ζ (x) ζ ′ (x)x |uxx (t, x)|2 dx

+ε
3

2
∥ζuxx (t)∥2L2(0,1) + ε

1∫
0

f ′ (u (t, x)) |ux (t, x)|2
(
2ζ (x) ζ ′ (x)x+ ζ2 (x)

)
dx

+ε

1∫
0

f ′ (u (t, x))ux (t, x) ζ
2 (x)xuxx (t, x) dx+ ε

1∫
0

a′ (x)ut (t, x) 2ζ (x) ζ
′ (x)xux (t, x) dx

+ε

1∫
0

a (x)utx (t, x) 2ζ (x) ζ
′ (x)xux (t, x) dx+ ε

1∫
0

a′ (x)ut (t, x) ζ
2 (x)ux (t, x) dx

+ε

1∫
0

a (x)utx (t, x) ζ
2 (x)ux (t, x) dx− ε

1∫
0

(
a′ (x) ζ2 (x)x

)
x
ut (t, x)ux (t, x) dx

+ε

1∫
0

a (x)uxt (t, x) ζ
2 (x)xuxx (t, x) dx = ε

1∫
0

h (x) ζ2 (x)xux (t, x) dx.
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Hence, by (2.3), (2.4), and (2.6), and using the embedding H1 (0, 1) ↪→ L∞ (0, 1) , applying the Young inequality,
we deduce

ε
d

dt

 1∫
0

ut (t, x) ζ
2 (x)xux (t, x) dx− 1

2

1∫
0

a′ (x) ζ2 (x)x |ux (t, x)|2 dx


+ε ∥ζuxx (t)∥2L2(0,1) + ε ∥ζut (t)∥2L2(0,1)

≤ εc4

(
1 + ∥ut (t)∥2L2(r0,r1)

+
∥∥√auxx (t)

∥∥2
L2(0,1)

+
∥∥√autx (t)

∥∥2
L2(0,1)

)
. (3.5)

Next, assume that η ∈ C∞ ([0, 1]) , 0 ≤ η (x) ≤ 1 and η (x) =

{
0, 0 ≤ x ≤ r0+r1

2
1, r1 ≤ x ≤ 1

. Then, multiplying (2.1)

by εη2 (x− 1)ux and applying similar arguments used for the multiplier ζ2xux , we get

ε
d

dt

 1∫
0

ut (t, x) η
2 (x− 1)ux (t, x) dx− 1

2

1∫
0

a′ (x) η2 (x− 1) |ux (t, x)|2 dx


+ε ∥ηuxx (t)∥2L2(0,1) + ε ∥ηut (t)∥2L2(0,1)

≤ εc5

(
1 + ∥ut (t)∥2L2(r0,r1)

+
∥∥√auxx (t)

∥∥2
L2(0,1)

+
∥∥√autx (t)

∥∥2
L2(0,1)

)
.

Then, adding the last inequality to (3.5), we find that

ε
d

dt

 1∫
0

ut (t, x) ζ
2 (x)xux (t, x) dx− 1

2

1∫
0

a′ (x) ζ2 (x)x |ux (t, x)|2 dx



ε
d

dt

 1∫
0

ut (t, x) η
2 (x− 1)ux (t, x) dx− 1

2

1∫
0

a′ (x) η2 (x− 1) |ux (t, x)|2 dx


+ε ∥uxx (t)∥2L2((0,1)\(r0,r1)) + ε ∥ut (t)∥2L2((0,1)\(r0,r1))

≤ εc6

(
1 + ∥ut (t)∥2L2(r0,r1)

+
∥∥√auxx (t)

∥∥2
L2(0,1)

+
∥∥√autx (t)

∥∥2
L2(0,1)

)
. (3.6)

Next, multiplying (2.1) by a (x)u and integrating over (0, 1) , we get

d

dt

 1∫
0

ut (t, x) a (x)u (t, x) dx+ ∥a′u (t)∥2L2(0,1)

+
∥∥√auxx (t)

∥∥2
L2(0,1)

≤
∥∥√aut (t)

∥∥2
L2(0,1)

+

∣∣∣∣∣∣
1∫
0

uxx (t, x) a
′′ (x)u (t, x) dx

∣∣∣∣∣∣
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+
∥∥∥√|a′′|ux (t)

∥∥∥2
L2(0,1)

+

∣∣∣∣∣∣
1∫
0

f ′ (u (t, x))ux (t, x) a (x)ux (t, x) dx

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1∫
0

f ′ (u (t, x))ux (t, x) a
′ (x)u (t, x) dx

∣∣∣∣∣∣+
∣∣∣∣∣∣
1∫
0

a′ (x) a (x)ut (t, x)ux (t, x) dx

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1∫
0

a (x) a′ (x)u (t, x)utx (t, x) dx

∣∣∣∣∣∣+
∣∣∣∣∣∣
1∫
0

a2 (x)ux (t, x)utx (t, x) dx

∣∣∣∣∣∣ .
Taking into account (2.4) and (2.6), and again with the help of the embedding H1 (0, 1) ↪→ L∞ (0, 1) , from
(3.3) and the last inequality, it follows that

d

dt

 1∫
0

ut (t, x) a (x)u (t, x) dx+ ∥a′u (t)∥2L2(0,1)

+
∥∥√auxx (t)

∥∥2
L2(0,1)

≤ c7

(
1 +

∥∥√aut (t)
∥∥2
L2(0,1)

)
+ c7

∥∥√autx (t)
∥∥
L2(0,1)

. (3.7)

Then, summing (3.3), (3.4), (3.6), and (3.7), choosing ε small enough and applying the Young inequality, we
have

d

dt

∥ut (t)∥2L2(0,1) + ∥uxx (t)∥2L2(0,1) +

1∫
0

f ′ (u (t, x)) |ux (t, x)|2 dx



+ε
d

dt

 1∫
0

ut (t, x) ζ
2 (x)xux (t, x) dx− 1

2

1∫
0

a′ (x) ζ2 (x)x |ux (t, x)|2 dx



+ε
d

dt

 1∫
0

ut (t, x) η
2 (x− 1)ux (t, x) dx− 1

2

1∫
0

a′ (x) η2 (x− 1) |ux (t, x)|2 dx



+
d

dt

 1∫
0

ut (t, x) a (x)u (t, x) dx+ ∥a′u (t)∥2L2(0,1)



+ ∥ut (t)∥2L2(0,1) + ∥uxx (t)∥2L2(0,1) +

1∫
0

a (x) |utx (t, x)|2 dx

≤ c8

(
1 + ∥ut (t)∥2L2(r0,r1)

+
∥∥√aut (t)

∥∥2
L2(0,1)

)
. (3.8)

From the last inequality and (2.4), it follows that

d

dt
Ψ(u (t)) + c9E (u (t)) ≤ c10

(
1 +

∥∥√aut (t)
∥∥2
L2(0,1)

)
, (3.9)
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where Ψ(u (t)) = ∥ut (t)∥2L2(0,1) + ∥uxx (t)∥2L2(0,1) + ∥a′u (t)∥2L2(0,1) +
1∫
0

f ′ (u (t, x)) |ux (t, x)|2 dx

+ε
1∫
0

ut (t, x) ζ
2 (x)xux (t, x) dx− ε

2

1∫
0

a′ (x) ζ2 (x)x |ux (t, x)|2 dx+ ε
1∫
0

ut (t, x) η
2 (x− 1)ux (t, x) dx−

ε
2

1∫
0

a′ (x) η2 (x− 1) |ux (t, x)|2 dx +
1∫
0

ut (t, x) a (x)u (t, x) dx + ∥a′u (t)∥2L2(0,1) and E (u (t)) = ∥uxx (t)∥2L2(0,1) +

∥ut (t)∥2L2(0,1) . It is easy to show that

µ1E (u (t))−K ≤ Ψ(u (t)) ≤ µ2E (u (t)) +K, (3.10)

for some 0 < µ1 < µ2 and K > 0 . Then considering (3.10) in (3.9), we infer

d

dt
Ψ(u (t)) + c11Ψ(u (t)) ≤ c12

(
1 +

∥∥√aut (t)
∥∥2
L2(0,1)

)
which yields

Ψ(u (t)) ≤ e−c11tΨ(u (0)) + c12e
−c11t

t∫
0

e−c11s
(
1 +

∥∥√aut (s)
∥∥2
L2(0,1)

)
ds

and consequently, by (3.3), the following holds:

E (u (t)) ≤ c13. (3.11)

Now, by using the density argument, we will prove (3.11) for the weak solutions of (2.1)–(2.3). Let
(u0, u1) ∈ H . Since H1 is dense in H , there exists a sequence {(u0n, u1n)}∞n=1 ⊂ H1 such that (u0n, u1n) →
(u0, u1) strongly in H . Hence, following steps similar to those outlined above, for the problems

{
untt +A (Aun + f (un) + a (x)unt) = h (x) , (t, x) ∈ (0,∞)× (0, 1) ,

un (0, x) = u0n (x) , unt (0, x) = u1n (x) , x ∈ (0, 1) ,
(3.12)

we readily obtain that
E (un (t)) ≤ M, ∀t ≥ 0, (3.13)

where M only depends on ∥(u0, u1)∥H1
and is independent of n . Also, with the help of (3.13), from (3.12)1

we infer that ∥∥A−1untt

∥∥
L2(0,1)

≤ M̂ , ∀t ≥ 0.

Then from (3.13) and (3.14), it follows that the sequence {(un, unt)}∞n=1 has a weakly star convergent subse-
quence in L∞ (0,∞;H) ∩W 1,∞ (

0,∞;L2 (Ω)×D
(
A−1

))
. Without loss of generality, denote this subsequence

again by {(un, unt)}∞n=1 . Then we have

 un → u weakly star in L∞ (
0,∞;H2 (0, 1) ∩H1

0 (0, 1)
)
,

unt → ut weakly star in L∞ (
0,∞;L2 (0, 1)

)
,

untt → utt weakly star in L∞ (
0,∞;D

(
A−1

))
,

(3.14)
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where (u, ut) ∈ L∞ (0,∞;H) ∩ W 1,∞ (
0,∞;L2 (Ω)×D

(
A−1

))
. From (3.14)1 and (3.14)2 , in virtue of [22,

Corallary 4], it follows that

un → u strongly in C
(
[0, T ] ;H2−ε (0, 1)

)
, ∀ε > 0.

Moreover, from the last limit we can conclude that

un → u strongly in C ([0, T ]× [0, 1]) , (3.15)

for every T ≥ 0 . On the other hand, we get the following equation from (3.12)1 :

(un − um)tt +A (A (un − um) + f (un)− f (um) + a (x) (unt − umt)) = 0.

Testing the last equation with 2 (unt − umt) , and taking into account (3.13), we then obtain that

∥(unxx − umxx) (t)∥2L2(0,1) + ∥(unt − umt) (t)∥2L2(0,1)

≤ ∥(u0n − u0m)xx∥
2
L2(0,1)

+ ∥(u1n − u1m)t∥
2
L2(0,1)

+c14

t∫
0

(
∥(unxx − umxx) (s)∥2L2(0,1) + ∥(unt − umt) (s)∥2L2(0,1)

)
ds

+c14T
(
∥f ′

n (un)− f ′
m (um)∥C([0,T ]×[0,1]) + ∥f ′′

n (un)− f ′′
m (um)∥C([0,T ]×[0,1])

)
, ∀t ∈ [0, T ] .

Hence, with the help of Gronwall’s lemma and (3.15), it readily follows that

lim
n→∞
m→∞

∥E (un − um)∥C([0,T ]) = 0, ∀T ≥ 0,

and consequently
(un, unt) → (u, ut) strongly in C ([0, T ] ;H) . (3.16)

Thus, considering (3.14)3 and (3.16) and passing to the limit in (3.12) and (3.13), we complete the proof of the
theorem. 2

Theorem 3.2 Let v (t, x) and w (t, x) be the weak solutions of (2.1)–(2.3) in [0, T ] × (0, 1) , with the initial
data (v0, v1) and (w0, w1) . Then the following inequality holds:

∥v (t)− w (t)∥H1(0,1) + ∥vt (t)− wt (t)∥H−1(0,1)

≤ c (T, r)
[
∥v0 − w0∥H1(0,1) + ∥v1 − w1∥H−1(0,1)

]
, ∀t ∈ [0, T ] , (3.17)

where c : R+ × R+ → R+ is a nondecreasing function with respect to the each variable and

r = max
{
∥(v, vt)∥C([0,T ];H) , ∥(w,wt)∥C([0,T ];H)

}
.
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Proof Let us set the function u := v − w . Then u ∈ C
(
[0, T ] ;H2 (0, 1) ∩H1

0 (0, 1)
)

∩C1
(
[0, T ] ;L2 (0, 1)

)
∩ W 2,∞ (

0,∞;D
(
A−1

))
and u is the solution of the following problem:{

utt +A2u+A (f (v)− f (w)) +A (a (x)ut) = 0,
u (0) = v0 − w0, ut (0) = v1 − w1.

(3.18)

Testing (3.18)1 with A−1ut and considering (3.18), we obtain that

∥∥∥A− 1
2ut (t)

∥∥∥2
L2(0,1)

+
∥∥∥A 1

2u (t)
∥∥∥2
L2(0,1)

≤
∥∥∥A− 1

2 (v1 − w1)
∥∥∥2
L2(0,1)

+
∥∥∥A 1

2 (v0 − w0)
∥∥∥2
L2(0,1)

+ c1

t∫
0

∥∥∥A− 1
2ut (τ)

∥∥∥2
L2(0,1)

dτ + c1

t∫
0

∥∥∥A 1
2u (τ)

∥∥∥2
L2(0,1)

dτ. (3.19)

Therefore, by applying Gronwall’s inequality, we obtain (3.17) and the proof of the theorem is complete. 2

Consequently, Theorem 3.1, together with Theorem 3.2, proves Theorem 2.1.

4. Existence of the smooth global attractor

Firstly, we prove the following asymptotic compactness lemma by using the idea in [16].

Lemma 4.1 Let conditions (2.4)–(2.6) hold and let B be a bounded subset of H . Then every sequence of the
form {S (tk)φk}∞k=1 , where {φk}∞k=1 ⊂ B , tk → ∞ , has a convergent subsequence in H .

Proof Due to Theorem 3.1, the sequence {S (·)φk}∞k=1 is bounded in L∞ (0,∞;H) . Thus, for every T > 0

there exists a subsequence {km}∞m=1 such that tkm
≥ T and um → u weakly star in L∞ (

0,∞;H2 (0, 1) ∩H1
0 (0, 1)

)
,

umt → ut weakly star in L∞ (
0,∞;L2 (0, 1)

)
,

um → u strongly in C
(
[0, T ] ;H2−ε (0, 1)

)
,

(4.1)

for some u ∈ L∞ (
0,∞;H2 (0, 1) ∩H1

0 (0, 1)
)
∩W 1,∞ (

0,∞;L2 (0, 1)
)
, where (um (t) , umt (t)) = S (t+ tkm − T )φkm .

With the help of (3.3), we find that

t∫
0

∥∥√aumt (s)
∥∥2
L2(0,1)

ds ≤ c1, ∀t ≥ 0. (4.2)

Now, by (2.1), we have

(untt − umtt) +A2 (un − um) +A (f (un)− f (um)) +A (a (x) (unt − umt)) = 0. (4.3)

With multiplication of (4.3) by (unt − umt) and integrating over (0, 1)× (0, t) , we readily get

t∫
0

∥∥√a (untx (s)− umtx (s))
∥∥2
L2(0,1)

ds ≤ c2

1 +

t∫
0

∥unt (s)− umt (s)∥L2(0,1) ds

 .
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Then, multiplying (4.3) by ε
(
ζ2x+ η2 (x− 1)

)
(unx − umx) , integrating over (0, 1)× (0, t) , and considering the

last estimate, we have

ε

t∫
0

(
∥unxx (s)− umxx (s)∥2L2((0,1)\(r0,r1)) + ∥unt (s)− umt (s)∥2L2((0,1)\(r0,r1))

)
ds

≤ ε

t∫
0

(∥∥√a (unxx (s)− umxx (s))
∥∥2
L2(0,1)

+ ∥unt (s)− umt (s)∥2L2(r0,r1)

)
ds

+εc3𝟋 (un (t) , um (t)) + εc3

1 +

t∫
0

∥unt (s)− umt (s)∥L2(0,1) ds

 , (4.4)

where 𝟋 (un (t) , um (t)) =
t∫
0

(∥f ′′ (un (s))− f ′′ (um (s))∥L∞(0,1) + ∥f ′ (un (s))− f ′ (um (s))∥L∞(0,1))ds+

t∫
0

∥un (s)− um (s)∥H1(0,1) ds+ ∥un − um∥C([0,T ];H1(0,1)) and from (4.1)

lim sup
n→∞

lim sup
m→∞

𝟋 (un (t) , um (t)) = 0. (4.5)

After that, multiplying (4.3) by a (x) (un − um) and integrating over (0, 1)× (0, t) , the following holds:

t∫
0

∥∥√a (unxx (s)− umxx (s))
∥∥2
L2(0,1)

ds ≤ c4𝟋 (un (t) , um (t))

+c4

t∫
0

∥∥√a (unt (s)− umt (s))
∥∥2
L2(0,1)

ds. (4.6)

Thus, summing (4.4) and (4.6), and exploiting (4.2) and (4.5), for sufficiently small ε , we deduce that

lim sup
n→∞

lim sup
m→∞

t∫
0

E (un (s)− um (s)) ds ≤ c5, ∀t ≥ 0. (4.7)

Now, multiplying (4.2) by 2t (unt − umt) and integrating over (0, T )× (0, 1) , from (2.5), it follows that

TE (un (T )− um (T )) + 2

T∫
0

t
∥∥√a (untx (t)− umtx (t))

∥∥2
L2(0,1)

dt

≤
T∫
0

E (un (t)− um (t)) dt+ c6 (T + 1)𝟋 (un (t) , um (t))
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+c6

T∫
0

t
∥∥√a (unt (t)− umt (t))

∥∥
L2(0,1)

∥(unt (s)− umt (s))∥L2(0,1) dt. (4.8)

Then, multiplying (4.2) by ε
(
ζ2x+ η2 (x− 1)

)
t (unx − umx) and integrating over (0, T )× (0, 1) , we infer that

ε

T∫
0

t
(
∥unxx (t)− umxx (t)∥2L2((0,1)\(r0,r1)) + ∥unt (t)− umt (t)∥2L2((0,1)\(r0,r1))

)

≤ εc7

T∫
0

t
(
∥unxx (t)− umxx (t)∥2L2(r0,r1)

+ ∥unt (t)− umt (t)∥2L2(r0,r1)

)
dt

+εc7𝟋 (un (T ) , um (T )) + εc7

T∫
0

t
∥∥√a (untx (t)− umtx (t))

∥∥2
L2(0,1)

dt

+εc7

T∫
0

t
∥∥√a (unxx (t)− umxx (t))

∥∥2
L2(0,1)

dt. (4.9)

Next, multiplying (4.2) by ta (x)u and integrating over (0, T )× (0, 1) , the following inequality holds:

T∫
0

t ∥unxx (t)− umxx (t)∥2L2((0,1)) ≤ c8𝟋 (un (T ) , um (T ))

+c8

T∫
0

t
∥∥√a (unt (t)− umt (t))

∥∥2
L2(0,1)

dt+ c8

T∫
0

t
∥∥√a (untx (t)− umtx (t))

∥∥
L2(0,1)

dt. (4.10)

Then, summing (4.8), (4.9), and (4.10), we obtain

TE (un (T )− um (T ))

≤
T∫
0

E (un (t)− um (t)) dt+ c9 (T + 1)𝟋 (un (t) , um (t))

+c9

T∫
0

t
∥∥√a (unt (t)− umt (t))

∥∥2
L2(0,1)

dt. (4.11)

At this point, to estimate the last term on the right-hand side of (4.11), a multiplication of (4.3) by 2tA−1 (unt − umt)

entails that

T
∥∥∥A− 1

2 (unt (T )− umt (T ))
∥∥∥2
L2(0,1)

+ T
∥∥∥A 1

2 (un (T )− um (T ))
∥∥∥2
L2(0,1)
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+

T∫
0

1∫
0

ta (x) |(unt (t, x)− umt (t, x))|2 dxdt

≤
T∫
0

∥∥∥A− 1
2 (unt (t)− umt (t))

∥∥∥2
L2(0,1)

dt+

T∫
0

∥∥∥A 1
2 (un (t)− um (t))

∥∥∥2
L2(0,1)

dt

+c10T ∥un − um∥C([0,T ];L2(0,1)) ,

from (4.1) and (4.7), which yields

lim sup
n→∞

lim sup
m→∞

T∫
0

t
∥∥√a (unt (t)− umt (t))

∥∥2
L2(0,1)

dt ≤ c11, for all T > 0. (4.12)

Then, taking into account (4.5), (4.7), and (4.12) in (4.11), we infer

lim sup
n→∞

lim sup
m→∞

E (un (T )− um (T )) ≤ c12
T

, for all T > 0,

which gives

lim sup
n→∞

lim sup
m→∞

∥S (tk)φk − S (tm)φm∥H ≤ c13√
T
.

Consequently, we deduce
lim inf
n→∞

lim inf
m→∞

∥S (tk)φk − S (tm)φm∥H = 0,

and in view of the proof of [17, Lemma 3.4], the last equality completes the proof of the lemma. 2

Now we are in a position to prove the existence of the global attractor.

Theorem 4.1 Under the conditions (2.4)–(2.6), the semigroup {S (t)}t≥0 possesses a global attractor A in
H .

Proof Let B be a bounded subset of H . Then, as a consequence of the previous asymptotic compactness
lemma,

ω (B) = ∩
τ≥0

∪
t≥τ

S (t)B

is a nonempty, compact set. Also, it is invariant with respect to S (t) and attracts B. Let θ ∈ ω (B) and
(u (t) , ut (t)) = S (t) θ . Then, from (3.2), it follows that the Lyapunov function L (u (t) , ut (t)) , defined by the
formula

L (u (t) , ut (t)) :=
1

2

∥∥∥A− 1
2ut (t)

∥∥∥2
L2(0,1)

+
1

2

∥∥∥A 1
2u (t)

∥∥∥2
L2(0,1)

+

1∫
0

(F (u (t, x))− f (0)u (t, x)) dx−
1∫
0

g (x)A−1u (t, x) (x) dx,

is a nonincreasing function with respect to t . Therefore, since L ((u (t) , ut (t))) is also bounded, we infer

lim
t→−∞

L (u (t) , ut (t)) = l. (4.13)
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On the other hand, let us establish an α -limit set as follows:

α (θ) := {φ ∈ ω (B) : there exists a sequence {(u (tk) , ut (tk))}∞k=1 , such that tk ↘ −∞

and (u (tk) , ut (tk)) → φ strongly in H} .

One can readily deduce that α (θ) is a compact and invariant subset of ω (B) . Then, in view of the definition
of the set α (θ) and (4.13), the following holds:

L (φ) = l, ∀φ ∈ α (θ) .

Hence, recalling the invariance of α (θ) , we also find

L (S (t)φ) = l, ∀φ ∈ α (θ) , ∀t ≥ 0.

Now, assume that φ ∈ α (θ) and establish (v (t) , vt (t)) = S (t)φ . Then, considering the last equality in (3.2),
we have

t∫
0

1∫
0

a (x) |vt (τ, x)|2 dxdτ = 0, ∀t ≥ 0,

and recalling (2.3) and (2.4), from the last equality it follows that

vt (τ, x) = 0 a. e. in [0,∞)× (r0, r1) . (4.14)

Our objective is to show that
vt (τ, x) = 0 a. e. in [0,∞)× (0, 1) . (4.15)

Defining w (t, x) := vt (t, x) , from (4.14), w ∈ C
(
0,∞;L2 (0, 1)

)
∩ C1

(
0,∞;D

(
A−1

))
and it is the solution of

the following problem:{
A−3/2wtt +A1/2w +A−1/2 (f ′ (v)w) = 0, (t, x) ∈ [0,∞)× (0, 1) ,

w = 0, (t, x) ∈ [0,∞)× (r0, r1) .
(4.16)

Then, testing (4.16)1 by xnζ2w and taking into account (2.6), we have

n (n− 1) (n− 2)

2

t∫
0

1∫
0

xn−3ζ2
∣∣∣A−3/2wt (t, x)

∣∣∣2 dxdt+ n

2

t∫
0

1∫
0

xn−1ζ2 |w (t, x)|2 dxdt

≤ c1

t∫
0

1∫
0

xnζ2 |w (t, x)|2 dxdt.

Since x ∈ (0, 1) , for sufficiently large n , from the last inequality, it follows that

t∫
0

r0∫
0

xn |w (t, x)|2 dxdt = 0.
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Therefore, from the last one, we deduce

w (τ, x) = 0 a. e. in [0,∞)× (0, r0) . (4.17)

Similarly, a testing of (4.16)1 by (1− x)
n
µ2w yields

t∫
0

1∫
r1

(1− x)
n |w (t, x)|2 dxdt = 0,

and so
w (τ, x) = 0 a. e. in [0,∞)× (r0, r1) ,

which proves (4.15), together with (4.14) and (4.17). Since (4.15) is satisfied, there holds

S (t)φ = φ, ∀t ∈ [0,∞),

and so α (θ) is the subset of the stationary points N (for definition, see [5, p. 35]). Then, from the definition
of the set α (θ) , ω (B) is the subset of the unstable manifold Mu (N ) emanating from N . On the other hand,
since {S (t)}t≥0 is weakly continuous and asymptotically compact, and N is bounded in H , we readily obtain
that Mu (N ) is invariant and compact. Hence, we conclude that A := Mu (N ) is a global attractor. 2

Finally, we establish the regularity of the global attractor in the following theorem.

Theorem 4.2 The global attractor A is a bounded subset of H3 (0, 1)×H1 (0, 1) .

Proof Assume that (u0, u1) ∈ A . Due to the invariance of A , there exists a full trajectory {(u (t) , ut (t)) , t ∈ R}

⊂ A , such that (u (0) , ut (0))) = (u0, u1) . Denoting v (t) := u(t+h)−u(t)
h , h > 0 , by (2.1), v solves the following

equation:

vtt +A2v +
1

h
A (f (u (t+ h))− f (u (t))) +A (a (x) vt) = 0, (t, x) ∈ R× (0, 1) . (4.18)

A multiplication of (4.18) by 2A−1vt and then integration on (0, 1) entail that

d

dt

(∥∥∥A− 1
2 vt (t)

∥∥∥2
L2(0,1)

+
∥∥∥A 1

2 v (t)
∥∥∥2
L2(0,1)

+

∫ 1

0

∫ 1

0

f ′ (u (t) + τhv (t, x)) dτ |v (t, x)|2 dx
)

+
∥∥√avt (t)

∥∥2
L2(0,1)

≤ c1 ∥v (t)∥2L2(Ω) , ∀t ∈ R. (4.19)

Now, assume that κ ∈ C∞ ([0, 1]) , 0 ≤ κ (x) ≤ 1 and κ (x) =

{
0, x ∈ (0, 1) \ (r0, r1)

1, r̃0 < x < r̃1
where r̃0, r̃1 ∈ (r0, r1) .

Then we test equation (4.18) by A−1 (εκ (x) v) , so as to get

ε
d

dt

 1∫
0

A
−1
2 vt (t, x)κ (x)A

−1
2 v (t, x) dx

+ ε
∥∥∥A 1

2 v (t)
∥∥∥2
L2(r̃0,r̃1)

≤ εc2 ∥v (t)∥2L2(0,1) + εc2 ∥vt (t)∥2L2(r0,r1)
. (4.20)
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Let ζ̃ ∈ C∞ ([0, 1]) , 0 ≤ ζ̃ (x) ≤ 1 and ζ̃ (x) =

{
1, 0 ≤ x ≤ r̃0

0, r̃0+r̃1
2 ≤ x ≤ 1

. A further testing of equation (4.18) by

A−1
(
ε2xζ̃2vx

)
gives us

ε2
d

dt

 1∫
0

A
−1
2 vt (t, x)xζ̃

2A
−1
2 vx (t, x) dx+

1∫
0

A−1vt (t, x)A
1
2

(
xζ̃2

)
A

−1
2 vx (t, x) dx



+ε2
∥∥∥A−1

2 vt (t)
∥∥∥2
L2(0,r̃0)

+ ε2
∥∥∥A 1

2 v (t)
∥∥∥2
L2(0,r̃0)

≤ ε2c3 ∥v (t)∥2L2(0,1) + ε2c3
∥∥√avt (t)

∥∥2
L2(0,1)

+ ε2c3

∥∥∥A 1
2 v (t)

∥∥∥2
L2((r̃0,r̃1))

. (4.21)

Similarly defining η̃ ∈ C∞ ([0, 1]) , 0 ≤ η̃ (x) ≤ 1 and η̃ (x) =

{
0, 0 ≤ x ≤ r̃0+r̃1

2
1, r̃1 ≤ x ≤ 1

and testing equation (4.18)

by A−1
(
ε2 (1− x) η̃2vx

)
, the following holds:

ε2
d

dt

 1∫
0

A
−1
2 vt (t, x) (1− x) η̃2A

−1
2 vx (t, x) dx+

1∫
0

A−1vt (t, x)A
1
2

(
(1− x) η̃2

)
A

−1
2 vx (t, x) dx



+ε2
∥∥∥A−1

2 vt (t)
∥∥∥2
L2(r̃1,1)

+ ε2
∥∥∥A 1

2 v (t)
∥∥∥2
L2(r̃1,1)

≤ ε2c4 ∥v (t)∥2L2(0,1) + ε2c4
∥∥√avt (t)

∥∥2
L2(0,1)

+ ε2c4

∥∥∥A 1
2 v (t)

∥∥∥2
L2((r̃0,r̃1))

. (4.22)

Finally, summing inequalities (4.19)–(4.22) and picking ε sufficiently small, with the help of (2.4), we obtain
the estimate

d

dt
Ψ̃ (v (t)) + c4Ẽ (v (t)) ≤ c5 ∥v (t)∥2L2(0,1) (4.23)

where Ψ̃ (v (t)) =
∥∥∥A− 1

2 vt (t)
∥∥∥2
L2(0,1)

+
∥∥∥A 1

2 v (t)
∥∥∥2
L2(0,1)

+
1∫
0

A
−1
2 vt (t, x)κ (x)A

−1
2 v (t, x) dx

+
1∫
0

A
−1
2 vt (t, x)xζ̃

2A
−1
2 vx (t, x) dx+

1∫
0

A−1vt (t, x)A
1
2

(
xζ̃2

)
A

−1
2 vx (t, x) dx

+
1∫
0

A
−1
2 vt (t, x) (1− x) η̃2A

−1
2 vx (t, x) dx+

1∫
0

A−1vt (t, x)A
1
2

(
(1− x) η̃2

)
A

−1
2 vx (t, x) dx

+
1∫
0

1∫
0

f ′ (u (t) + τhv (t, x)) dτ |v (t, x)|2 dx and Ẽ (v (t)) =
∥∥∥A− 1

2 vt (t)
∥∥∥2
L2(0,1)

+
∥∥∥A 1

2 v (t)
∥∥∥2
L2(0,1)

.

At this point, it is worth mentioning that estimate (4.23) is first justified for strong solutions, and then it can
be extended to weak solutions by using the density argument.
On the other hand, by the conditions of the theorem, it is easy to show that

λ1Ẽ (u (t))−M ≤ Ψ̃ (u (t)) ≤ λ2Ẽ (u (t)) , (4.24)
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for some 0 < λ1 < λ2 and M > 0 . Considering (4.24) in (4.23), we find that

d

dt
Ψ̃ (v (t)) + c6Ψ̃ (v (t)) ≤ c7 ∥v (t)∥2L2(0,1) ,

and in particular

Ψ̃ (v (t)) ≤ e−c6(t−s)Ψ̃ (v (s)) + c7

t∫
s

e−c6(t−τ) ∥v (τ)∥2L2(Ω) dτ, s ≤ t. (4.25)

At this point, recalling the definition of v , we have

∥v (t)∥L2(Ω) ≤
1∫
0

∥ut (t+ τh)∥L2(Ω) dτ ≤ c8, ∀t ∈ R,

which, together with (4.23), yields that

Ψ̃ (v (t)) ≤ e−c6(t−s)Ψ̃ (v (s)) + c9, s ≤ t. (4.26)

Then passing to the limit in (4.24) as s → −∞ and recalling (4.24), we find

Ẽ (v (t)) ≤ c10, ∀t ∈ R.

Consequently, passing to the limit as h → 0+ in the last inequality, by using the definition of v , the following
holds:

∥utt (t)∥H−1(Ω) + ∥ut (t)∥H1(Ω) ≤ c11, ∀t ∈ R.

Taking into account the previous estimate in (2.1)–(2.2), we infer that

∥u (t)∥H3(Ω) + ∥ut (t)∥H1(Ω) ≤ c12, ∀t ∈ R.

Hence, choosing t = 0 in the last inequality, we eventually obtain that

∥u0∥H3(Ω) + ∥u1∥H1(Ω) ≤ c8,

which concludes the proof of the theorem. 2

In conclusion, Theorem 2.1 follows from Theorem 4.1 and Theorem 4.2.
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